Przetwarzanie sygnałów biomedycznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przetwarzanie sygnałów biomedycznych"

Transkrypt

1 Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Wykład XI Filtracja homomorficzna

2 Filtracja homomorficzna Filtracja liniowa zakłada, że filtrowane sygnały zostały dodane do siebie: y(t = x(t +n(t, filtracja liniowa pozwala na eliminację niepożądanych składowych Sygnały mogą być związane w inny sposób niż zsumowanie, np.: y(t=x(tn(t iloczyn albo y(t=x(t*n(t splot Widmo sygnału y(t nie jest w tych przypadkach sumą widm sygnałów x(t i n(t. Filtracja liniowa nie przyniesie pożądanych skutków. Filtracja homomorficzna Spostrzeżenie Logarytm widmowej gęstości mocy sygnału zawierającego echo ma składową okresową odpowiadająca temu echu - w TF logarytmu widmowej gęstości mocy powinno występować maksimum odpowiadające opóźnieniu echa. s ygn al 5 log modulu TF

3 Filtracja homomorficzna Logarytm widmowej gęstości mocy sygnału zawierającego echo ma składową okresową odpowiadająca temu echu - w TF logarytmu widmowej gęstości mocy powinno występować maksimum odpowiadające opóźnieniu echa. 4 log modulu TF TF log m odulu TF 7 TF log m odulu TF Filtracja homomorficzna względem splotu Układ realizujący operację filtracji homomorficznej względem splotu operator D oznacza sekwencję operacji TF i logarytmowania, D - sekwencję operacji funkcji wykładniczej i odwrotnej TF

4 Filtracja homomorficzna względem mnożenia Układ realizujący operację filtracji homomorficznej względem mnożenia zawiera blok logarytmu, filtracji liniowej oraz blok anyylogarytmu Definicje cepstrum sygnału f(t TF log m odulu TF 7 cepstrum rzeczywiste jωτ C( τ = log( G( ω e dω = F[log( G( ω] albo j ωτ d C( τ = log( G( ω e ω gdzie G ( ω F( ω = T T jωt = f ( t e dt albo C( τ = log( G( ω e π jωτ dω = F [log( G( ω]

5 Cepstrum rzeczywiste - właściwości Logarytm widma mocy funkcja rzeczywista parzysta, a więc proste i odwrotne przekształcenie Fouriera daje ten sam wynik. Druga defincja cepstrum daje pierwiastek cepstrum uzyskanego w myśl pierwszej definicji. Trzecia definicja cepstrum zbliżona do funkcji autokorelacji Cepstrum rzeczywiste nie zachowuje informacji o fazie sygnału! Definicje cepstrum sygnału f(t cepstrum zespolone jωτ C( τ = log( F( ω e dω = F [log( F ( ω ] π gdzie jωt = f ( t e dt F( ω Dla f(t rzeczywistej log(f(ω jest wielkością parzystą sprzężoną, wobec czego odwrotna TF tej wielkości jest rzeczywista. Cepstrum zespolone zachowuje informację o fazie sygnału.

6 Zastosowania filtracji homomorficznej Eliminacja pogłosu (echa Określanie właściwości toru i pobudzenia na podstawie sygnały wyjściowego (ton krtaniowy i tor głosowy Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa sygnał s(t x( t t + M a s( t k t k k= sygnał z pogłosem czyli x(t=s(t*p(t - splot M p( t = δ ( t + a δ ( t k t k k = sygnał z pojedynczym echem opóźnionym o t: p( t = δ ( t + aδ ( t t x( t t + a s( t t

7 Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa sygnał z pojedynczym echem opóźnionym o t: p( t = δ ( t + aδ ( t t x( t t + a s( t t TF sygnału x(n (S(ω=F[s(t] jωt X ( ω = S ( ω( + a e Logarytm (cepstrum rzeczywiste log( ( log( ( log ( j ω X ω = S ω + + a t e Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa Logarytm (cepstrum rzeczywiste ω ω jωt log( X ( = log( S( + log ( + ae Składnik nieokresowy związany z s(t log( S( ω jω t składnik okresowy z okresem π/t log ( + a e Logarytm modułu kwadratu widma x(t zawiera składową związaną z interesującym nas sygnałem wolnym od echa, oraz składową okresową, wynikającą z obecności pogłosu. Składową pogłosową można odfiltrować metodami filtracji liniowej, o ile jej widmo nie pokrywa się z widmem log( S

8 Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa (sygnał z czasem dyskretnym sygnał s(n sygnał z pogłosem x(n: <n <n <...<n k przypadek sygnału z pojedynczym echem: x( n n + M a s( n k n k k= p( n = δ ( n + a δ ( n M k n k k= p( n = δ ( n + aδ ( n n x( n n + as( n n Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa (sygnał z czasem dyskretnym przypadek sygnału z pojedynczym echem: x( n n + as( n n TF sygnału x(n (S(e j ω =F[s(t] - cepstrum zespolone jω jω jωn X ( e = S ( e ( + a e logarytm jω jω jωn log( X ( e = log( S( e + log( + ae S(e jω może być rzeczywiste i dodatnie,np. sygnał cosinusoidalny jωn składnik okresowy z okresem π/n log( + a e Logarytm widma zawiera składową związaną z interesującym nas sygnałem wolnym od echa, oraz składową okresową, wynikającą z obecności pogłosu. Składową pogłosową można odfiltrować metodami filtracji liniowej, o ile jej widmo nie pokrywa się z widmem log(s.

9 Zastosowania filtracji homomorficznej Usuwanie pogłosu. sygnał + echo. widmo sygnału z echem (moduł 3. ln modułu TF sygnału sygnal + echo modul TF s ygnalu + ec ho ln modulu TF s ygna lu + e cho Zastosowania filtracji homomorficznej Usuwanie pogłosu 4. cepstrum sygnału i cepstrum po eliminacji składowej związanej z echem 5. widmo sygnału bez echa (moduł 6. sygnał po eliminacji echa TF ln modulu TF s ygna lu + e cho modul TF sygnalu po f. homomorficznej TF odwrotna TF s ygnalu po f. homomorficznej

10 Analiza homomorficzna (cepstralna sygnału mowy Sygnał mowy Sygnał mowy jest splotem pobudzenia (tonu krtaniowego g(t i odpowiedzi impulsowej toru głosowego h(t. Ton krtaniowy ciąg impulsów o pewnej częstotliwości. W celu uzyskania informacji o torze głosowym (właściwościach częstotliwościowych i pobudzeniu zastosowanie filtracji homomorficznej względem splotu. Analiza homomorficzna (cepstralna sygnału mowy Sytuacja jest podobna jak w przypadku echa splot pobudzenia i odpowiedzi toru. Logarytm widma sygnału mowy powinien zawierać składową okresową związaną z pobudzeniem i z torem głosowym. ω ω jωt log( X ( = log( S( + log ( + ae Logarytm widma sygnału

11 Analiza homomorficzna (cepstralna sygnału mowy Tor głosowy ton krtaniowy Analiza homomorficzna (cepstralna sygnału mowy

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 21 lutego 2011 Eksperyment fizyczny, Czwórniki,

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Przetwarzanie sygnałów w telekomunikacji

Przetwarzanie sygnałów w telekomunikacji Przetwarzanie sygnałów w telekomunikacji Prowadzący: Przemysław Dymarski, Inst. Telekomunikacji PW, gm. Elektroniki, pok. 461 dymarski@tele.pw.edu.pl Wykład: Wstęp: transmisja analogowa i cyfrowa, modulacja

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów

Bardziej szczegółowo

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały

Bardziej szczegółowo

Analiza sygnałów biologicznych

Analiza sygnałów biologicznych Analiza sygnałów biologicznych Paweł Strumiłło Zakład Elektroniki Medycznej Instytut Elektroniki PŁ Co to jest sygnał? Funkcja czasu x(t) przenosząca informację o stanie lub działaniu układu (systemu),

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Transformacje Fouriera * podstawowe własności

Transformacje Fouriera * podstawowe własności Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

Podstawy Transmisji Przewodowej Wykład 1

Podstawy Transmisji Przewodowej Wykład 1 Podstawy Transmisji Przewodowej Wykład 1 Grzegorz Stępniak Instytut Telekomunikacji, PW 24 lutego 2012 Instytut Telekomunikacji, PW 1 / 26 1 Informacje praktyczne 2 Wstęp do transmisji przewodowej 3 Multipleksacja

Bardziej szczegółowo

Definicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa

Definicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa Definicja Krótko czasowa transformata Fouriera(STFT) może być rozumiana jako seria transformat Fouriera wykonanych na sygnale okienkowanym, przy czym położenie okienka w czasie jest w ramach takiej serii

Bardziej szczegółowo

Transformata Fouriera. Krzysztof Patan

Transformata Fouriera. Krzysztof Patan Transformata Fouriera Krzysztof Patan Aproksymacja sygnałów Aproksymacja sygnału x(t) za pomocą rozwinięcia o skończonej długości polega na znalezieniu funkcji ˆx n (t) = c 1 x 1 (t) + + c k x k (t) +

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Miernictwo Wibroakustyczne Literatura. Wykład 1 Wprowadzenie. Sygnały pomiarowe

Miernictwo Wibroakustyczne Literatura. Wykład 1 Wprowadzenie. Sygnały pomiarowe Wykład Wprowadzenie. Sygnały pomiarowe Dr inż.adeusz Wszołek Miernictwo Wibroakustyczne - Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki D-, p.6, konsultacje-poniedziałek,

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Materiały pomocnicze do wykładu

Materiały pomocnicze do wykładu do wykładu 1 1. Tomasz P. Zieliński - Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań, WKŁ, 2009, 2. Richard G. Lyons, Wprowadzenie do cyfrowego przetwarzania sygnałów, WKŁ, 2010 (wyd. 2 rozszerzone),

Bardziej szczegółowo

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Sterowanie przekształtników elektronicznych zima 2011/12

Sterowanie przekształtników elektronicznych zima 2011/12 Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

dr inż. Jacek Naruniec

dr inż. Jacek Naruniec dr inż. Jacek Naruniec Przetwarzanie wstępne Wyznaczenie obszarów zainteresowania Ekstrakcja cech - dźwięk Klasyfikacja detekcja mowy okno analizy spektrogram filtr preemfazy wokodery (formantów, kanałowe,

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 7 Transformaty i kodowanie Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego

Bardziej szczegółowo

Analiza sygnału mowy pod kątem rozpoznania mówcy chorego. Anna Kosiek, Dominik Fert

Analiza sygnału mowy pod kątem rozpoznania mówcy chorego. Anna Kosiek, Dominik Fert Analiza sygnału mowy pod kątem rozpoznania mówcy chorego Anna Kosiek, Dominik Fert Wstęp: Analiza sygnału akustycznego była wykorzystywana w medycynie jeszcze przed wykorzystaniem jej w technice. Sygnał

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Pomiar parametrów sygnałów sieci elektroenergetycznej dr inż.

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

Modelowanie wybranych. urządzeń mechatronicznych

Modelowanie wybranych. urządzeń mechatronicznych Modelowanie wybranych elementów torów pomiarowych urządzeń mechatronicznych Pomiary - element sterowania napędem mechatronicznym Układ napędowy - Zintegrowane czujniki Zewnetrzne sygnały sterujące Sprzężenia

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

PARAMETRYZACJA SYGNAŁU MOWY. PERCEPTUALNE SKALE CZĘSTOTLIWOŚCI.

PARAMETRYZACJA SYGNAŁU MOWY. PERCEPTUALNE SKALE CZĘSTOTLIWOŚCI. 1 PARAMETRYZACJA SYGNAŁU MOWY. PERCEPTUALNE SKALE CZĘSTOTLIWOŚCI. mgr inż. Kuba Łopatka Katedra Systemów Multimedialnych p. 628, tel. 348-6332 PLAN WYKŁADU 1. Potrzeba i istota parametryzacji 2. Klasyfikacja

Bardziej szczegółowo

LINIOWE UKŁADY DYSKRETNE

LINIOWE UKŁADY DYSKRETNE LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU i klasyfikacja sygnału audio dr inż. Jacek Naruniec Sygnał mowy mózg (układ sterujący) głośnia (źródło dźwięku) rezonator akustyczny (filtr) sygnał mowy 2 Sygnał mowy

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

TEORIA WYTWARZANIA DŹWIĘKÓW

TEORIA WYTWARZANIA DŹWIĘKÓW 1 TEORIA WYTWARZANIA DŹWIĘKÓW MOWY, FORMANTY, MODELOWANIE WYTWARZANIA DŹWIĘKÓW MOWY. mgr inż. Kuba Łopatka PLAN WYKŁADU 1. Teoria wytwarzania dźwięków mowy Ogólna teoria wytwarzania dźwięków mowy Ton krtaniowy

Bardziej szczegółowo

Systemy akwizycji i przesyłania informacji

Systemy akwizycji i przesyłania informacji Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL

Bardziej szczegółowo

Układy pasywne RLC. 1. Czas trwania: 6h

Układy pasywne RLC. 1. Czas trwania: 6h kłady pasywne LC. Czas trwania: 6h 2. Cele ćwiczenia Badanie własności prostych pasywnych układów LC. Badanie szeregowego obwodu rezonansowego LC. 3. Wymagana znajomość pojęć działania na liczbach zespolonych,

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43 Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału

Bardziej szczegółowo

Przetwarzanie sygnału cyfrowego (LabVIEW)

Przetwarzanie sygnału cyfrowego (LabVIEW) Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział: Elektryczny, Kierunek: Informatyka Projekt zaliczeniowy Przedmiot: Systemy akwizycji i przesyłania informacji Przetwarzanie sygnału

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Kompresja sygnałów multimedialnych sygnały multimedialne jedne z najważniejszych typów sygnałow cyfrowych;

Bardziej szczegółowo

Analiza danych środowiskowych III rok OŚ

Analiza danych środowiskowych III rok OŚ Analiza danych środowiskowych III rok OŚ Wykład 6 Andrzej Leśniak KGIS, GGiOŚ AGH Kroskorelacja Cel wykładu Rozszerzenie idei autokorelacji na przypadek dwóch różnych szeregów czasowych oraz dyskusja koherencji

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Analiza sygnałów czasowych Opracował: dr inż. Roland Pawliczek Opole 2016 1 2 1. Cel

Bardziej szczegółowo

Analiza szeregów czasowych: 3. Filtr Wienera

Analiza szeregów czasowych: 3. Filtr Wienera Analiza szeregów czasowych: 3. Filtr Wienera P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Filtr Wienera ( filtr optymalny ) Przypuśćmy, że pewien układ (fizyczny, biologiczny,

Bardziej szczegółowo

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

Systemy przetwarzania sygnałów

Systemy przetwarzania sygnałów Systemy przetwarzania sygnałów x(t) y(t)? x(t) System przetwarzania sygnałów y(t) 23 P. Strumiłło 1 Systemy przetwarzania sygnałów sygnał cigły x(t) y(t)=h(x(t)) System czasu cigłego y(t) np. megafon -

Bardziej szczegółowo

Systemy i sygnały dyskretne w czasie

Systemy i sygnały dyskretne w czasie Systemy i sygnały dyskretne w czasie Podstawowe definicje: Sygnały dyskretne w czasie reprezentowane są przez ciągi liczb, oznacza się przez {x[n]} Elementy tych ciągów nazywa się próbkami, wartości próbek

Bardziej szczegółowo

Laboratorium EAM. Instrukcja obsługi programu Dopp Meter ver. 1.0

Laboratorium EAM. Instrukcja obsługi programu Dopp Meter ver. 1.0 Laboratorium EAM Instrukcja obsługi programu Dopp Meter ver. 1.0 Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

10. Wykrywanie doraźnych uszkodzeń łożysk tocznych metodami wibroakustycznymi

10. Wykrywanie doraźnych uszkodzeń łożysk tocznych metodami wibroakustycznymi 10. Wykrywanie doraźnych uszkodzeń łożysk tocznych metodami wibroakustycznymi Ćwiczenie jest przykładem ilustrującym możliwości wykorzystania zaawansowanych technik pomiarowych w diagnostyce maszyn. Zadanie

Bardziej szczegółowo

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości

Bardziej szczegółowo

LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha

LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Opis modułu kształcenia Automatyka przemysłowa

Opis modułu kształcenia Automatyka przemysłowa Opis modułu kształcenia Automatyka przemysłowa Nazwa studiów podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku studiów, z którym jest związany

Bardziej szczegółowo

7. Szybka transformata Fouriera fft

7. Szybka transformata Fouriera fft 7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Materiały pomocnicze do wykładu

Materiały pomocnicze do wykładu Materiały pomocnicze do wykładu 1 Plan zajęć Podstawowe wiadomości o sygnałach Szeregi Fouriera Ciągła Transformata Fouriera Sygnały cyfrowe Próbkowanie sygnałów. Zjawisko aliasingu Dyskretna i Szybka

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Systemy wbudowane. Kurs Systemy wbudowane SW (Embedded Systems)

Systemy wbudowane. Kurs Systemy wbudowane SW (Embedded Systems) Kurs Systemy wbudowane SW (Embedded Systems) Prof. PP,dr hab. inż. Andrzej URBANIAK Dr inż. Zygmunt KUBIAK Dr inż. Przemysław ZAKRZEWSKI Mgr inż. Mariusz NOWAK (1) Kurs przedmiotu pod tytułem Systemy wbudowane

Bardziej szczegółowo

Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

Transformacja Fouriera i biblioteka CUFFT 3.0

Transformacja Fouriera i biblioteka CUFFT 3.0 Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny

Bardziej szczegółowo

Stacjonarność i ergodyczność

Stacjonarność i ergodyczność Stacjonarność i ergodyczność Stacjonarność: Jeśli dla procesu stochastycznego ξ(t) wszystkie momenty są niezależne od czasu to jest on stajonarny wścisłymsensie.jeślitylkośrednia µ x i autokorelacjar x

Bardziej szczegółowo

Systemy badań przesiewowych

Systemy badań przesiewowych ZASTOSOWANIE TECHNIK MULTIMEDIALNYCH W BADANIACH I TERAPII ZMYSŁÓW KOMUNIKACJI dr inż. Piotr Odya Politechnika Gdańska, Wydział ETI Katedra Systemów Multimedialnych Systemy badań przesiewowych systemy

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki

AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki Kierunek: Transport AUTOMATYKA dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki godz. przyjęć: wtorki 9 5 Instytut Automatyki, ul. Stefanowskiego 8/22 środy 8 5 2 Zakład Techniki Sterowania, al.

Bardziej szczegółowo