EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ
|
|
- Lidia Szewczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Pomiar parametrów sygnałów sieci elektroenergetycznej dr inż. Dariusz Borkowski /3
2 Cyfrowe pomiary parametrów sygnałów 2 Pomiary parametrów sygnałów w dziedzinie częstotliwości 3 Błędy w analizie częstotliwościowej sygnałów 2/3
3 Cyfrowe pomiary parametrów sygnałów Analogowo cyfrowy tor pomiarowy ANALOGOWA WIELKOŚĆ MIERZONA Przetworniki pomiarowe: napięcia, ciśnienia, temperatury, pola magnetycznego, prądu, itp. na napięcie, prąd, częstotliwość, itp. (np. przekładniki napięciowe i prądowe) SYGNAŁ ANALOGOWY Układy kondycjonowania: separacja galwaniczna (optoizolatory, separatory pojemnościowe), dopasowanie zakresu (wzmacniacze operacyjne, dzielniki napięcia), dopasowanie pasma (filtry antyaliasingowe lub pasmowe) SYGNAŁ ANALOGOWY Przetwornik A/C: układ próbkującopamiętający, kwantyzator, próbkowanie,koder SYGNAŁ CYFROWY Cyfrowy układ przetwarzania: cyfrowa realizacja definicji pomiaru wielkości złożonych w CPU, DSP, FPGA (np. wartość skuteczna, THD) WYNIK POMIARU W POSTACI CYFROWEJ Bloki funkcjonalne typowego toru przetwarzania analogowo cyfrowego. 3/3
4 Cyfrowe pomiary parametrów sygnałów Operacje przetwarzania analogowo cyfrowego próbkowanie (dyskretyzacja w dziedzinie czasu) zapamiętywanie chwilowych wartości wielkości mierzonej w dyskretnych chwilach czasu nt S, gdzie n =, 2,..., N, T S = F S, gdzie F S jest częstotliwością próbkowania 2 kwantowanie (dyskretyzacja w dziedzinie amplitudy) zamiana wartości ciągłej wielkości mierzonej na jedną ze skończonej liczby dyskretnych wartości (np. przetwornik 2-to bitowy daje 2 2 = 496 możliwych wartości) 3 kodowanie przekształcenie wyniku przetwarzania do konkretnego kodu liczbowego (np. liczby całkowite NB, U2; liczby niecałkowite float, double, Q5) 4/3
5 Cyfrowe pomiary parametrów sygnałów Błędy związane z rozdzielczością przetworników A/C (kwantowaniem) Z operacją kwantowania wartości X wiąże się tzw. błąd kwantowania K zależny od rozdzielczości przetwornika A/C. obecne przetworniki A/C mają co najmniej 6 bitów 6 bitów to 2 6 = możliwych wartości, więc błędy kwantowania są małe; 2 i mniej bitów mogą posiadać proste cyfrowe oscyloskopy i multimetry. względny błąd kwantowania δk = K X jest stały rośnie silnie przy małych wartościach X wzmocnienie toru przed przetwornikiem A/C powinno być dobrane tak, by wykorzystać maksymalnie zakres napięć wejściowych przetwornika, a mimo to pomiar bardzo małych wartości X może być obarczony znacznym błędem! pomiary różnicowe, a w szczególności dzielenie przez różnicę wartości jest obarczone ryzykiem katastrofalnego błędu rozważmy wyrażenie ; jeśli X X X X 2 to może się zdarzyć, że po 2 kwantowaniu X = X 2 a wtedy X X 2 = = 5/3
6 Cyfrowe pomiary parametrów sygnałów Przykład błędów kwantowania sygnal oryginalny sprobkowany, przed kwantowaniem sprobkowany, po kwantowaniu t [s] Próbkowanie i kwantowanie sygnału 5 Hz, F S = 2 khz, przetwornik 6 bitów. 6/3
7 Cyfrowe pomiary parametrów sygnałów Twierdzenie o próbkowaniu Aby poprawnie odtworzyć sygnał oryginalny z jego próbek, próbkowanie musi się odbywać z częstotliwością F S większą niż 2f g, gdzie f g to najwyższa częstotliwość w sygnale F S > 2 f g Fs = 6, f = 5 Hz, M =.2 Fs =, f = 5 Hz, M = 2 Fs = 5, f = 5 Hz, M = czas [s] czas [s] czas [s] Przykłady niespełnienia twierdzenia o próbkowaniu. 7/3
8 Cyfrowe pomiary parametrów sygnałów Próbkowanie synchroniczne i niesynchroniczne Próbkowanie synchroniczne częstotliwość próbkowania F S jest całkowitą wielokrotnością M częstotliwości podstawowej f sygnału F S = M f, M N Fs = 4, f = 5 Hz, M = Fs = 4, f = 5 Hz, M = 8 Fs = 4, f = 49 Hz, M = czas [s] czas [s] czas [s] Przykład próbkowania niesynchronicznego i synchronicznego. 8/3
9 Cyfrowe pomiary parametrów sygnałów Ile próbek użyć do pomiaru czyli cyfrowe realizacje definicji miar miara definicja definicja (analogowa) realizacja (cyfrowa) T wartość skuteczna U sygnału U = N u(t) 2 dt U = u(n) 2 okresowego u(t) o okresie T T N n= T N moc czynna P dla okresowych P = u(t)i(t)dt P = u(n)i(n) napięcia i prądu u(t), i(t) T N n= Ile powinno wynosić N? N musi być całkowite (wynika z definicji) N powinno być liczbą próbek w okresie sygnału T (lub całkowita jej wielokrotnością) Wniosek: próbkowanie musi być synchroniczne, aby uniknąć błędów 9/3
10 Cyfrowe pomiary parametrów sygnałów Przykład błędów w zależności od długości okna pomiarowego Czy synchroniczne próbkowanie wystarczy? Nie wystarczy! N musi być całkowitą wielokrotnością M, gdzie M = F S /f N Fs = 4, f = 55, M = , N = 7, P =.5282 Fs = 4, f = 5, M = 8, N = 7, P = czas [s] Fs = 4, f = 55, M = , N = 8, P = czas [s] Fs = 4, f = 5, M = 8, N = 8, P = czas [s] czas [s] Próbkowanie niesynchroniczne (lewa), synchroniczne (prawa). /3
11 Cyfrowe pomiary parametrów sygnałów Dlaczego synchronizacja próbkowania jest takie ważna? Częstotliwość podstawowa systemu elektroenergetycznego prawie nigdy nie jest równa dokładnie 5 Hz. Częstotliwość podstawowa systemu elektroenergetycznego wciąż się zmienia, oscyluje wokół 5 Hz. Odchyłki od częstotliwości znamionowej z reguły są nie większe niż ±5 mhz podczas normalnej pracy. Odchyłki od częstotliwości znamionowej w stanach awaryjnych mogą być znacznie większe. /3
12 Cyfrowe pomiary parametrów sygnałów Przykład błędów pomiaru mocy czynnej pomiar mocy czynnej odbiornika kw zasilanego napięciem o częstotliwości znamionowej i nieznamionowej. układ pomiarowy o przyjętej na sztywno częstotliwości próbkowania dobranej do częstotliwości znamionowej, czyli pomiar mocy co /5 s czyli co 2 ms, długość okna 2 ms 4 2 P t [s] Zmierzona moc czynna dla napięcia: 5 Hz (niebieski), 5, Hz (czerwony). 2/3
13 Cyfrowe pomiary parametrów sygnałów 2 Pomiary parametrów sygnałów w dziedzinie częstotliwości 3 Błędy w analizie częstotliwościowej sygnałów 3/3
14 Pomiary parametrów sygnałów w dziedzinie częstotliwości Podstawowe określenia Sygnał okresowy x(t) o okresie T to sygnał, którego wartości powtarzają się co okres czyli x(t) = x(t + mt ), m Z. Częstotliwość podstawowa sygnału f = /T (ω = 2πf ) Częstotliwość harmoniczna f h całkowita wielokrotność częstotliwości podstawowej f czyli f h = h f, h N Dowolny sygnał okresowy można otrzymać przez sumowanie składowych sinusoidalnych o różnych amplitudach, fazach i częstotliwościach harmonicznych. Składowe sygnałów (okresowych i prawie okresowych) ze względu na częstotliwość: Podstawowa składowa sinusoidalna o częstotliwości f = f Harmoniczna składowa sinusoidalna o częstotliwości f = f h Interharmoniczna składowa sinusoidalna o częstotliwości f > f f f h Subharmoniczna składowa sinusoidalna o częstotliwości f < f Przejściowa składowa niesinusoidalna np. exp( t/τ) 4/3
15 Pomiary parametrów sygnałów w dziedzinie częstotliwości Do czego można wykorzystać wyniki analizy częstotliwościowej? Analiza częstotliwościowa sygnałów dostarcza istotnych informacji: pozwala na niezależne określanie mocy i wartości skutecznych dla pojedynczych harmonicznych pozwala określić całkowite odkształcenie sygnałów np. THD U = H h=2 U2 h U pozwala określić udział pojedynczych składowych (harmonicznych lub interharmonicznych) w sygnale pozwala na wyznaczanie wartości skutecznych na podstawie harmonicznych U = U 2 + Hh= 2 Uh 2 5/3
16 Pomiary parametrów sygnałów w dziedzinie częstotliwości Reprezentacja sygnałów okresowych w dziedzinie częstotliwości Ciągły sygnał okresowy x(t) o okresie T = f = 2π ω możemy przedstawić w postaci dyskretnego szeregu Fouriera: s(t) = k (A k cos (kωt) + B k sin (kωt)) T T gdzie A k = 2 x(t) cos (kωt) dt B T k = 2 x(t) sin (kωt) dt k =,, 2,... T a sygnały prawie okresowe i nieokresowe możemy tym szeregiem przybliżyć. W przypadku pewnych sygnałów (np. prostokąt) szereg ten będzie nieskończony. N próbek (N = RM, R N) dyskretnego okresowego sygnału x(n) o okresie M = T T S = F S f możemy zapisać jako szereg Fouriera: s(n) = ( ) )) K k= A k cos (k 2π N n + B k sin (k 2π N n N ( gdzie A k = x(n) cos k 2π n) N (, B N k = x(n) sin k 2π n), k =,,..., N N n= n= pod warunkiem spełnienia twierdzenia o próbkowaniu F S > 2f g. 6/3
17 Pomiary parametrów sygnałów w dziedzinie częstotliwości DFT przejście do dziedziny częstotliwości dla sygnałów dyskretnych Zapisując współczynniki szeregu Fouriera w postaci zespolonej dostajemy wzór na dyskretną transformację Fouriera (DFT): N X k = A k + jb k = x(n) exp ( jk 2π ) N n, k =,,..., N n= Rozdzielczość częstotliwościowa widma DFT to odstęp pomiędzy sąsiednimi prążkami widma. Dla DFT o długości N i częstotliwości próbkowania F S wynosi ona f = F S N. Zespolony składnik X k zawiera informacje o amplitudzie i fazie składowej X k sin(2πf k nt S + φ k ) o częstotliwości f k = k f. Amplituda tej składowej to X k = A 2 k + B2 k ( ) Argument (faza) tej składowej to φ k = arctan Bk A k FFT to szybka implementacja DFT, daje dokładnie te same wyniki! 7/3
18 Cyfrowe pomiary parametrów sygnałów 2 Pomiary parametrów sygnałów w dziedzinie częstotliwości 3 Błędy w analizie częstotliwościowej sygnałów 8/3
19 Błędy w analizie częstotliwościowej sygnałów Błędy analizy częstotliwościowej DFT W analizie DFT sygnałów okresowych najczęściej występują błędy: rozmycie widma (przeciek widma) może wynikać z: braku synchronizacji próbkowania, źle dobranej liczby próbek poddawanych DFT, nieokresowości sygnału (składowe interharmoniczne, subharmoniczne, przejściowe), stosowania nieprostokątnych okien czasowych aliasing (nakładanie się widm) może wynikać z: braku filtracji antyaliasingowej, zbyt słabego tłumienia w filtracji antyaliasingowej, źle dobranej częstotliwości granicznej w filtracji antyaliasingowej, 9/3
20 Błędy w analizie częstotliwościowej sygnałów Rozmycie widma DFT Rozmycie widma DFT polega na rozłożeniu energii związanej z pojedynczą składową sygnału pomiędzy wiele prążków widma DFT. Dzieje się tak, gdy częstotliwość składowej sinusoidalnej sygnału nie jest równa częstotliwości żadnego z prążków widma. Częstotliwości kolejnych prążków widma sygnału są dane wzorem f k = k f = k FS N, k =,,..., N gdzie F S to częstotliwość próbkowania, N liczba próbek poddawanych DFT Przykład: DFT o długości N = próbek Widmo faktyczne sygnału sinusoidalnego o częstotliwości Rozmyte widmo DFT f = 55 Hz próbkowanego z częstotliwością F S = Hz. Rozdzielczość widma f = Hz, więc częstotliwość żadnego prążka nie jest równa f (najbliższe to 5 Hz i 6 Hz). Skutek: widmo jest rozmyte Częstotliwość [Hz] 2/3
21 x(t), w(t) x w (n) x(t), w(t) x w (n) Błędy w analizie częstotliwościowej sygnałów Mechanizm rozmycia widma DFT Mnożenie funkcji w dziedzinie czasu odpowiada splotowi widm tych funkcji w dziedzinie częstotliwości x(t) w(t) X(ω) W (ω) Wybór N próbek sygnału do DFT to mnożenie sygnału przez funkcję prostokątną w dziedzinie czasu, więc wynik DFT jest splotem widma okna i widma sygnału..5. t [s].5. t [s].5. t [s].5. t [s] X w (f) X w (f) faktyczne widmo sygnalu widmo okna przesuniete do f widmo okna przesuniete do +f suma przesunietych widm okien wynik DFT f [Hz] faktyczne widmo sygnalu widmo okna przesuniete do f widmo okna przesuniete do +f suma przesunietych widm okien wynik DFT f [Hz] Przyład DFT: N = 6, F S = 4 Hz, f = 5 Hz (góra), f = 48 Hz (dół). 2/3
22 Błędy w analizie częstotliwościowej sygnałów Przyczyny rozmycia widma W przypadku przyrządów próbkujących niesynchronicznie, ze stałą częstotliwością (zazwyczaj F S = M f N = M 5 Hz) rozmycie widma najczęściej wynika ze faktu, że w systemie częstotliwość podstawowa różni się od znamionowej: f f N W przypadku przyrządów próbkujących synchronicznie (F S = M f ) rozmycie może się pojawić: w stanach dynamicznych systemu ze względu na obecność niesinusoidalnych składowych przejściowych (transienty) w stanie normalnym przy obecności interharmonicznych, o częstotliwościach różnych od częstotliwości prążków widma 22/3
23 Błędy w analizie częstotliwościowej sygnałów Sposoby redukcji rozmycia widma synchroniczne próbkowanie: śledzenie częstotliwości podstawowej f i ustawianie F S = M f 2 synchroniczne repróbkowanie: programowa aproksymacja spróbkowanego sygnału i ponowne wyznaczenie jego próbek we właściwych miejscach, tak by na okres T przypadało dokładnie M próbek, nie redukuje rozmycia od składowych przejściowych i interharmonicznych 3 stosowanie nieprostokątnych okien czasowych: mnożenie próbek czasowych przez funkcję okna przed DFT, zmienia postać rozmycia na możliwą do przyjęcia t.j. zwiększa tłumienie szumu tła kosztem szerokości prążków Najlepsze efekty daje zastosowanie metody (ew. 2) razem z metodą 3, przy znacznej rozdzielczości (małe f ) widma uzupełnione o grupowanie harmonicznych. 23/3
24 Błędy w analizie częstotliwościowej sygnałów Przykład wpływu kształtu okien czasowych na wyniki DFT x(t), w(t) t [s] W(f) f [Hz] X w (f) f [Hz] x w (t) t [s] W(f) [db] f [Hz] X w (f) [db] f [Hz] x(t), w(t) t [s] W(f) f [Hz] X w (f) f [Hz] x w (t) t [s] W(f) [db] f [Hz] X w (f) [db] f [Hz] Sygnał f = 5 Hz, F S = 8 Hz, N = 6. Okno prostokątne (góra) i Hanna (dół). Sygnał i okno czasowe (lewa), widmo okna (środek), wynik DFT (prawa). 24/3
25 Moduł widma [db] Błędy w analizie częstotliwościowej sygnałów Błędy rozmycia w DFT sygnałów poliharmonicznych f = const = 49,97 Hz po repróbkowaniu bez repróbkowania Rząd harmonicznej f = var Moduł widma [db] (5 do 48 Hz, Hz/s) po repróbkowaniu bez repróbkowania Rząd harmonicznej Sygnał symulowany: harmoniczne ; 5; 59; 7 + interharmoniczna 33,7 + szum biały. Uśrednione wyniki 5-ciu DFT długości KM = 32 próbek, F Sin = 8 Hz. Amplituda [db] Bez repróbkowania Po repróbkowaniu Rząd harmonicznej Sygnał rzeczywisty F S = 8 Hz, M = 6, K =, f = 5 Hz. 25/3
26 Błędy w analizie częstotliwościowej sygnałów Wpływ rozmycia widma na estymację impedancji harmonicznej Odchyłki od częstotliwości znamionowej w systemie są zazwyczaj bardzo małe, więc rozmycie także. Czy zatem w praktyce rozmycie ma znaczenie? Tak, np. w estymacji impedancji harmonicznej systemu zasilającego Z(f ) = U(f ) I(f ) Moduł impedancji [Ω] Moduł impedancji [Ω] 5 Po repróbkowaniu Wart. prawdziwe Bez repróbkowania 5 Rząd harmonicznej 5 Bez repróbkowania Po repróbkowaniu Wart. prawdziwe 5 Rząd harmonicznej Argument impedancji [ o ] Argument impedancji [ o ] Po repróbkowaniu Bez repróbkowania Wart. prawdziwe 5 Rząd harmonicznej Wart. prawdziwe Bez repróbkowania Po repróbkowaniu 5 Rząd harmonicznej Wyniki estymacji impedancji harmonicznej, model symulowany (góra), model laboratoryjny (dół). 26/3
27 Błędy w analizie częstotliwościowej sygnałów Efekt stosowania okien nieprostokątnych vs. repróbkowanie 2 4 Bez repróbkowania, okno prostokątne Bez repróbkowania, okno Hanninga Po repróbkowaniu, okno prostokątne Po repróbkowaniu, okno Hanninga 6 Moc [db] Rząd harmonicznej Poprawa tłumienia szumu tła dzięki zastosowaniu okna Hanninga lub/oraz repróbkowania. 27/3
28 Błędy w analizie częstotliwościowej sygnałów Aliasing Aliasing to nieodwracalne zniekształcenie sygnału w procesie próbkowania wynikające z niespełnienia założeń twierdzenia o próbkowaniu F S > 2 f g. Powstaje ono poprzez dodanie się składowych powtórzonych widm do widma oryginalnego sygnału. Widmo sygnału oryginalnego (analogowego) przed spróbkowaniem X(f) f g - częstotliwość graniczna sygnału dolnopasmowego f S - częstotliwość próbkowania f g f Widmo sygnału spróbkowanego poprawnie brak aliasingu F S > 2fg X S (f) -2f S -2f S -f S Widmo sygnału spróbkowanego niepoprawnie aliasing F S < 2f g f f S 2f S 3f S f g X S ( f ) błędy spowodowane aliasingiem -2f S -2f S -f S f g f S 2f S 3f S f 28/3
29 Błędy w analizie częstotliwościowej sygnałów Przeciwdziałanie aliasingowi Jedynym sposobem uniknięcia aliasingu jest stosowanie analogowych dolnoprzepustowych filtrów przed próbkowaniem (tzw. filtry antyaliasingowe przed przetwornikiem A/C). Niestety filtry mają swoje ograniczenia. Przy stałym rzędzie filtra mocne tłumienie jest osiągane za cenę szerokiego pasma przejściowego lub oscylacji w paśmie przepustowym. Dlatego czasem stosuje się wielokrotne nadpróbkowanie z łagodnym filtrem niskiego rzędu, a następnie cyfrową filtrację i decymację, gdyż łatwiej jest zrealizować stromy filtr cyfrowy niż analogowy. 29/3
30 Błędy w analizie częstotliwościowej sygnałów Przykłady wpływu aliasingu na wyniki Dla sygnałów energetycznych charakterystyczne jest, że amplitudy ich harmonicznych maleją z częstotliwością (mniejsze są w napięciu, większe w prądzie), więc wpływ aliasingu na widmo jest mały. Czy zatem aliasing ma znaczenie? Tak, np. w estymacji impedancji harmonicznej systemu zasilającego Z u(f ) = U(f ) I(f ) abs(z u ) [ohm] wartosc faktyczna estymata estymata 2 abs(z u ) [ohm] wartosc faktyczna estymata estymata f [Hz] f [Hz] 2 2 arg(z u ) [rad] arg(z u ) [rad] f [Hz] f [Hz] Wyniki estymacji impedancji harmonicznej, z filtrem AA (lewa), bez filtra AA (prawa). 3/3
31 Literatura Lyons Richard G.: Wprowadzenie do cyfrowego przetwarzania sygnałów Przekładniki w elektroenergetyce. WKŁ, Warszawa 999. Zieliński Tomasz. Od teorii do cyfrowego przetwarzania sygnałów AGH, Kraków 22. Borkowski Dariusz. Zastosowanie metody synchronicznego repróbkowania sygnałów energetycznych w pomiarze zastępczej impedancji systemu elektroenergetycznego. Przegląd Elektrotechniczny, 7/8 26. PN-EN 6-4-7:27 Kompatybilność elektromagnetyczna (EMC) Część 4-7: Metody badań i pomiarów Ogólny przewodnik dotyczący pomiarów harmonicznych i interharmonicznych oraz przyrządów pomiarowych, dla sieci zasilających i przyłączonych do nich urządzeń Warszawa 26. 3/3
PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control
Cyfrowe przetwarzanie sygnałów w urządzeniach EAZ firmy Computers & Control 1. Wstęp 2.Próbkowanie i odtwarzanie sygnałów 3. Charakterystyka sygnałów analogowych 4. Aliasing 5. Filtry antyaliasingowe 6.
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
1. Modulacja analogowa, 2. Modulacja cyfrowa
MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej
P. OTOMAŃSKI Politechnika Poznańska P. ZAZULA Okręgowy Urząd Miar w Poznaniu Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej Seminarium SMART GRID 08 marca
Obwód wejściowy układu do pomiaru parametrów napięcia w sieci elektroenergetycznej
Obwód wejściowy układu do pomiaru parametrów napięcia w sieci elektroenergetycznej Jakub Rzeszutko W artykule opisano skonstruowany przez autora obwód wejściowy urządzenia służącego do analizy widmowej
uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
Pomiary i przyrządy cyfrowe
Pomiary i przyrządy cyfrowe Przyrządy analogowe trochę historii Ustrój magnetoelektryczny z I z I N d S B r ~ Ω I r r zaciski pomiarowe U U = r I amperomierz woltomierz współczynnik poszerzenia zakresu
METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH
INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH Methods of analyzing vibro-acoustics signal Zakres ćwiczenia: 1. Rodzaje sygnałów. 2. Metody analizy sygnałów w dziedzinie
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych
Przetwarzanie analogowo-cyfrowe sygnałów
Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów
Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
WOLTOMIERZ CYFROWY. Metoda czasowa prosta. gdzie: stała całkowania integratora. stąd: Ponieważ z. int
WOLOMIEZ CYFOWY Metoda czasowa prosta int o t gdzie: stała całkowania integratora o we stąd: o we Ponieważ z f z więc N w f z f z a stąd: N f o z we Wpływ zakłóceń na pracę woltomierza cyfrowego realizującego
Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia:
Ćwiczenie 11 Podstawy akwizycji i cyfrowego przetwarzania sygnałów Program ćwiczenia: 1. Konfiguracja karty pomiarowej oraz obserwacja sygnału i jego widma 2. Twierdzenie o próbkowaniu obserwacja dwóch
OCENA JAKOŚCI DOSTAWY ENERGII ELEKTRYCZNEJ
OCENA JAKOŚCI DOSTAWY ENERGII ELEKTRYCZNEJ dr inż. KRZYSZTOF CHMIELOWIEC KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII AGH KRAKÓW PODSTAWY PRAWNE WSKAŹNIKI JAKOŚCI ANALIZA ZDARZEŃ
Podstawowe funkcje przetwornika C/A
ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Analiza sygnałów czasowych Opracował: dr inż. Roland Pawliczek Opole 2016 1 2 1. Cel
Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.
Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Przykładowe pytania 1/11
Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości
Generowanie sygnałów na DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
Ćwiczenie 4: Próbkowanie sygnałów
Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW MODULACJI I SYSTEMÓW Ćwiczenie 4: Próbkowanie sygnałów Opracował dr inż. Andrzej
a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa.
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektroniczno-telekomunikacyjnej na zawody I. stopnia 1 Na rysunku przedstawiony jest schemat
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Analizy Ilościowe EEG QEEG
Analizy Ilościowe EEG QEEG Piotr Walerjan PWSIM MEDISOFT 2006 Piotr Walerjan MEDISOFT Jakościowe vs. Ilościowe EEG Analizy EEG na papierze Szacunkowa ocena wartości częstotliwości i napięcia Komputerowy
Komputerowe systemy pomiarowe. Podstawowe elementy sprzętowe elektronicznych układów pomiarowych
Komputerowe systemy pomiarowe Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny laboratorium Wykład III Podstawowe elementy sprzętowe elektronicznych układów pomiarowych 1 - Linearyzatory, wzmacniacze, wzmacniacze
Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA. Autor: Daniel Słowik
Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA Autor: Daniel Słowik Promotor: Dr inż. Daniel Kopiec Wrocław 016 Plan prezentacji Założenia i cel
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad
Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych
Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 310) Wydział/Kierunek Nazwa zajęć laboratoryjnych Nr zajęć
ANALIZATOR TOPAS 1000 (FLUKE 1760) POMIARY PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ
ANALIZATOR TOPAS 1000 (FLUKE 1760) POMIARY PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ dr inż. Andrzej Firlit dr inż. Robert Jarocha Laboratorium Jakości Energii Elektrycznej AKADEMIA GÓRNICZO-HUTNICZA im.
Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ
Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)
) (2) 1. A i. t+β i. sin(ω i
Ćwiczenie 8 AALIZA HARMOICZA PRZEBIEGÓW DRGAŃ 1. Cel ćwiczenia Analiza przebiegów drgań maszyny i wyznaczenie składowych harmonicznych tych przebiegów,. Wprowadzenie.1. Sygnały pomiarowe W celu przeprowadzenia
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Ćwiczenie: "Mierniki cyfrowe"
Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Analiza i przetwarzanie sygnałów 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,
Teoria przetwarzania A/C i C/A.
Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych
Ćwiczenie 4 BADANIE MULTIMETRÓW DLA FUNKCJI POMIARU NAPIĘCIA ZMIENNEGO
Ćwiczenie 4 BADANIE MLTIMETÓW DLA FNKCJI POMIA NAPIĘCIA ZMIENNEGO autor: dr hab. inż. Adam Kowalczyk, prof. Pz I. Cel ćwiczenia Celem ćwiczenia jest eksperymentalne badanie wybranych właściwości metrologicznych
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia
Przepisy i normy związane:
Przepisy i normy związane: 1. Ustawa z dnia 10 kwietnia 1997 roku Prawo energetyczne. 2. Rozporządzenie Ministra Gospodarki z dnia 4 maja 2007 roku w sprawie szczegółowych warunków funkcjonowania systemu
WOLTOMIERZA PRÓBKUJĄCY Z ANALIZĄ HARMONICZNYCH W ŚRODOWISKU LabVIEW
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 60 Politechniki Wrocławskiej Nr 60 Studia i Materiały Nr 27 2007 Krzysztof PODLEJSKI *, Rafał PIETRUSZKA * Woltomierz próbkujący, środowisko
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Energetyka Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie podstawowej wiedzy
LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha
AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku: Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
KOMPUTEROWE SYSTEMY POMIAROWE
KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze
IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7
Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
POLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8
Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;
PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 232305 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 425576 (22) Data zgłoszenia: 17.05.2018 (51) Int.Cl. G01R 21/00 (2006.01)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego
Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność
Załącznik nr 1 do Standardu technicznego nr 3/DMN/2014 dla układów elektroenergetycznej automatyki zabezpieczeniowej w TAURON Dystrybucja S.A.
Załącznik nr 1 do Standardu technicznego nr 3/DMN/2014 dla układów elektroenergetycznej automatyki zabezpieczeniowej w TAURON Dystrybucja S.A. Przepisy i normy związane Obowiązuje od 15 lipca 2014 roku
Filtry aktywne filtr środkowoprzepustowy
Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Przetwarzanie analogowocyfrowe
Przewarzanie analogowocyfrowe Z. Serweciński 05-03-2011 Przewarzanie u analogowego na cyfrowy Proces przewarzania u analogowego (ciągłego) na cyfrowy składa się z rzech podsawowych operacji: 1. Próbkowanie
Podstawy akwizycji i cyfrowego przetwarzania sygnałów
AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego
XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej. XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej
Zestaw pytań finałowych numer : 1 1. Wzmacniacz prądu stałego: własności, podstawowe rozwiązania układowe 2. Cyfrowy układ sekwencyjny - schemat blokowy, sygnały wejściowe i wyjściowe, zasady syntezy 3.
Dyskretne przekształcenie Fouriera cz. 2
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie
A3 : Wzmacniacze operacyjne w układach liniowych
A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra Elektrotechniki Teoretycznej i Inormatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich umer ćwiczenia: 7 Temat: Wprowadzenie do Signal Processing Toolbox 1. PRÓBKOWAIE
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
WZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych
Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników
ANALIZA JAKOŚCI ENERGII ELEKTRYCZNEJ ANALIZA WARUNKÓW ZASILANIA
ANALIZA JAKOŚCI ENERGII ELEKTRYCZNEJ ANALIZA WARUNKÓW ZASILANIA dr inż. Andrzej Firlit LABORATORIUM JAKOŚĆ ENERGII ELEKTRYCZNEJ 2018/2019 SEM. LETNI, 27.03.2019 prąd stały DC??? 1 Rejestracja oscyloskopowa
(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.
MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 3 Analiza częstotliwościowa sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
POMIARY I ANALIZA WSKAŹNIKÓW JAKOŚCI ENERGII ELEKTRYCZNEJ
wartość wartość POMIARY I ANALIZA WSKAŹNIKÓW JAKOŚCI ENERGII ELEKTRYCZNEJ ANALIZA WARUNKÓW ZASILANIA (05) dr inż. Andrzej Firlit andrzej.firlit@keiaspe.agh.edu.pl Laboratorium JAKOŚCI ENERGII ELEKTRYCZNE
CYFROWE PRZETWARZANIE SYGNAŁÓW
Cyfrowe przetwarzanie sygnałów -1-2003 CYFROWE PRZETWARZANIE SYGNAŁÓW tematy wykładowe: ( 28 godz. +2godz. kolokwium, test?) 1. Sygnały i systemy dyskretne (LTI, SLS) 1.1. Systemy LTI ( SLS ) (definicje
ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ
Laboratorium Podstaw Telekomunikacji Ćw. 4 WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ 1. Zapoznać się z zestawem do demonstracji wpływu zakłóceń na transmisję sygnałów cyfrowych. 2. Przy użyciu oscyloskopu cyfrowego
Szereg i transformata Fouriera
Analiza danych środowiskowych III rok OŚ Wykład 3 Andrzej Leśniak KGIS, GGiOŚ AGH Szereg i transformata Fouriera Cel wykładu: Wykrywanie i analiza okresowości w szeregach czasowych Przepływ wody w rzece
Przetwarzanie AC i CA
1 Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Przetwarzanie AC i CA Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 1. Cel ćwiczenia 2 Celem ćwiczenia jest
POLITECHNIKA POZNAŃSKA
POLIECHNIKA POZNAŃSKA INSYU ELEKROECHNIKI I ELEKRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki eoretycznej i Stosowanej Laboratorium Podstaw elekomunikacji Ćwiczenie nr 1 emat: Pomiar widma częstotliwościowego
ELEKTRONIKA. dla Mechaników
ELEKTRONIKA dla Mechaników dr inż. Waldemar Jendernalik Politechnika Gdańska Wydział ETI Katedra Systemów Mikroelektronicznych p. 309, waldi@ue.eti.pg.gda.pl www.ue.eti.pg.gda.pl/~waldi Po co to Wam? Elektronika
Właściwości sygnałów i splot. Krzysztof Patan
Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ
Parametryzacja przetworników analogowocyfrowych
Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Filtry cyfrowe procesory sygnałowe
Filtry cyfrowe procesory sygnałowe Rozwój wirtualnych przyrządów pomiarowych Algorytmy CPS działające na platformie TMX 320C5515e ZDSP USB STICK realizowane w laboratorium FCiPS Rozszerzenie ćwiczeń o
CZAZ GT BIBLIOTEKA FUNKCJI PRZEKAŹNIKI, LOGIKA, POMIARY. DODATKOWE ELEMENTY FUNKCJONALNE DSP v.2
CZAZ GT CYFROWY ZESPÓŁ AUTOMATYKI ZABEZPIECZENIOWEJ GENERATORA / BLOKU GENERATOR -TRANSFORMATOR BIBLIOTEKA FUNKCJI PRZEKAŹNIKI, LOGIKA, POMIARY DODATKOWE ELEMENTY FUNKCJONALNE DSP v.2 Modyfikacje funkcjonalne
Rozdział 5. Przetwarzanie analogowo-cyfrowe (A C)
5. 0. W p r ow adzen ie 1 2 1 Rozdział 5 Przetwarzanie analogowo-cyfrowe (A C) sygnał przetwarzanie A/C sygnał analogowy cyfrowy ciągły dyskretny próbkowanie: zamiana sygnału ciągłego na dyskretny konwersja
Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe
Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu
Podstawy transmisji sygnałów
Podstawy transmisji sygnałów 1 Sygnał elektromagnetyczny Jest funkcją czasu Może być również wyrażony jako funkcja częstotliwości Sygnał składa się ze składowych o róznych częstotliwościach 2 Koncepcja
Analiza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
6. Transmisja i generacja sygnałów okresowych
24 6. Transmisja i generacja sygnałów okresowych Cele ćwiczenia Zapoznanie ze środowiskiem programistycznym Code Composer Studio. Zapoznanie z urządzeniem TMX320C5515 ezdsp. Zapoznanie z podstawami programowania
mgr inż. Dariusz Borkowski Estymacja częstotliwościowych parametrów systemu elektroenergetycznego z zastosowaniem koherentnego repróbkowania
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Metrologii mgr inż. Dariusz Borkowski Estymacja częstotliwościowych
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.