Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L"

Transkrypt

1 Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe wiadomości Cyfrowa filtracja sygnału ma na celu wyodrębnienie pożądanej informacji z danego sygnału dyskretnego. Efektem filtracji sygnału wejściowego jest sygnał wyjściowy, przy czym relację między nimi określa deterministyczna funkcja transmitancji filtru. Sygnał wejściowy nazywany jest często pobudzeniem filtru. Natomiast sygnał wyjściowy odpowiedzią filtru. Funkcję transmitancji dla układów analogowych definiuje się za pomocą transformaty Laplace a sygnałów wejściowego i wyjściowego. Narzędzie to umożliwia przekształcenie równań różniczkowych opisujących układy analogowe na równania algebraiczne. Pozwala efektywnie projektować właściwości filtru. Dla układów dyskretnych takim narzędziem jest transformata Z. Zamienia ona dyskretne równania różnicowe na równania algebraiczne, co pozwala projektować właściwości filtrów cyfrowych. Celem ćwiczenia 4 jest opanowanie umiejętności badania właściwości filtrów cyfrowych, oraz umiejętności projektowania pasmowych filtrów o skończonej odpowiedzi impulsowej. Właściwości filtrów analogowych i cyfrowych mogą być określane w dziedzinie czasu i w dziedzinie częstotliwości. Wybór dziedziny definiuje sposób kodowania informacji w sygnale. Na przykład obrazy są przykładem dwuwymiarowych sygnałów, w których informacja kodowana jest w dziedzinie czasu (przestrzeni). Ludzkie oko rejestruje krawędzie obiektów, jasność i kolor poszczególnych elementów obrazu. Inaczej jest w przypadku dźwięku. Tu informacja kodowana jest w dziedzinie częstotliwości. Ucho ludzkie reaguje na częstotliwość fali akustycznej i zawartość składowych harmonicznych. 1.1.Właściwości filtru w dziedzinie czasu W dziedzinie czasu właściwości filtrów cyfrowych określają następujące charakterystyki: odpowiedź impulsowa (rys. 1), czyli odpowiedź na pobudzenie deltą Kroneckera. Poniżej przedstawiono równanie delty Kroneckera 1 dla n 0 δn 0 dla n 0 odpowiedź skokowa (rys. 2), czyli odpowiedź na skok jednostkowy. Poniżej przestawiono równanie skoku jednostkowego. 0 dla n 0 1n 1 dla n 0 Charakterystyki te w całości określają działanie filtru. Jeżeli jednak mamy do czynienia z pewną klasą filtrów (np. filtrów pasmowych), to konieczne jest ustalenie wartości liczbowych pewnych parametrów charakterystyk. Pozwala to ocenić jakość filtru w sposób ilościowy.

2 Rys. 1. Ilustracja odpowiedzi impulsowej filtru i jej najważniejszych parametrów. Jednym z takich parametrów jest np. długość odpowiedzi impulsowej filtru. Dla filtrów cyfrowych definiuje się ją jako ilość niezerowych próbek. Parametr ten w przypadku filtrów o skończonej odpowiedzi impulsowej pozwala ocenić złożoność obliczeń niezbędnych do przeprowadzenia operacji filtracji. Im dłuższa odpowiedź impulsowa filtru, tym więcej obliczeń należy przeprowadzić. Długość odpowiedzi impulsowej wpływa również na opóźnienie odpowiedzi filtru w stosunku do pobudzenia. Innym parametrem jest np. czas narastania odpowiedzi skokowej (rys. 2). Im dłuższy czas narastania, tym większy stopień rozmycia krawędzi sygnałów filtrowanych. Przerzut określa amplitudę oscylacji związanych z efektem Gibbsa. Efekt ten jest spowodowany zbyt gwałtownymi zmianami amplitudy odpowiedzi częstotliwościowej układu. Czas trwania tych oscylacji nazywany jest dzwonieniem. Rys. 2. Ilustracja odpowiedzi skokowej układu i jej najważniejszych parametrów.

3 Rys. 3. Symetria odpowiedzi skokowej, powodująca liniowość fazy odpowiedzi częstotliwościowej filtru Właściwościowości filtru w dziedzinie częstotliwości Właściwości filtrów w dziedzinie częstotliwości określa charakterystyka częstotliwościowa filtru. Dla układów analogowych uzyskuje się ją przez analizę odpowiedzi filtru na pobudzenie sygnałem harmonicznym (sinusoidalnym). Filtry analogowe wpływają na sygnał harmoniczny w taki sposób, że zmieniają jego amplitudę i fazę. Zmiana tych dwóch parametrów zależy od częstotliwości harmonicznego sygnału pobudzającego. Zmiany amplitudy i fazy w funkcji częstotliwości nazywamy odpowiednio częstotliwościową charakterystyką amplitudową i częstotliwościową charakterystyką fazową lub krótko odpowiedzią (charakterystyką) amplitudową i odpowiedzią fazową filtru. Charakterystyka częstotliwościowa filtru jest transformatą Fouriera jego odpowiedzi impulsowej. Fakt ten jest szczególnie istotny dla filtrów cyfrowych. Dzięki niemu można obliczyć odpowiedź częstotliwościową poprzez obliczenie DFT odpowiedzi impulsowej filtru. Jest to zadanie obliczeniowo dużo prostsze od wyznaczania odpowiedzi dla sygnałów harmonicznych o różnych częstotliwościach. Istotny jest jednak pewien szczegół techniczny związany z obliczaniem DFT. Obliczenia należy przeprowadzić z pominięciem czynnika normalizującego 1/N. Równanie rozkładu DFT będzie wtedy wyglądać następująco: X k N 1 n0 x n e Zaimplementowana w środowisku Octave funkcja fft() dokonuje rozkładu zgodnie z tą zależnością. Wówczas widmo amplitudowe DFT dla delty Kroneckera jest dyskretną funkcją stałą o amplitudzie równej 1, a DFT odpowiedzi impulsowej filtru jest jego odpowiedzią częstotliwościową H[k]. Wartości odpowiedzi częstotliwościowej H[k], wyznaczane są dla kfs dyskretnych wartości częstotliwości f k odpowiadających częstotliwościom N składowych DFT. Z tego powodu długość sygnału delty Kroneckera wpływa na dokładność wyznaczania odpowiedzi częstotliwościowej (im większe N, tym mniejsza różnica f k - f k-1 ). Amplitudową charakterystykę częstotliwościową przedstawia się często w skali logarytmicznej, wówczas wartości na osi rzędnych (pionowej) wyrażane są w decybelach: H db k 2kn N 20log H k, gdzie H db [k] zmiana amplitudy w decybelach. Taki sposób prezentacji poprawia odbiór wizualny charakterystyki, która ma duży zakres zmienności (na wykresie dobrze widać zarówno wartości bliskie 1, jak i wartości bliskie zeru np ). Podobnie do odpowiedzi impulsowej i skokowej charakterystyki częstotliwościowe również mają swoje parametry..

4 Dla filtrów pasmowych istotnym parametrem jest podział charakterystyki amplitudowej na pasma przepustowe i pasma zaporowe (rys. 4a). Pasmem przepustowym jest zakres częstotliwości, dla których amplituda się nie zmienia (odpowiedź amplitudowa wynosi 1). Pasmem zaporowym jest zakres częstotliwości, dla których sygnały są całkowicie tłumione (odpowiedź amplitudowa wynosi 0). Przyjętą umownie granicą pasma przepustowego jest częstotliwość, dla której filtr tłumi połowę mocy sygnału harmonicznego (amplituda sygnału harmonicznego maleje 2 razy, tłumienie wynosi około V/V lub -3 db). Granicę tę nazywa się częstotliwością odcięcia lub częstotliwością graniczną. Granica pasma zaporowego nie jest ustandaryzowana i zależy od wymaganego przez projektanta filtru minimalnego tłumienia w paśmie zaporowym. Jeżeli wymagane tłumienie w paśmie zaporowym wynosi 40 db, to właśnie dla tego poziomu wyznacza się granicę pasma zaporowego. Pomiędzy pasmami zaporowymi i przepustowymi występują pasma przejściowe. Ich szerokość wpływa na selektywność filtracji. Jeżeli używamy filtrów do przetwarzania sygnałów, w których informacja kodowana jest w dziedzinie częstotliwości, to zwykle zależy nam na tym, aby pasma przejściowe były jak najwęższe, tłumienia w pasmach zaporowych jak największe. W paśmie przepustowym mogą występować zafalowania, które niekorzystnie wpływają na przenoszone składowe sygnału pobudzającego. Dlatego poziom zafalowań (rys. 4b) jest również istotnym parametrem odpowiedzi częstotliwościowej filtrów pasmowych. Częstotliwościowa charakterystyka fazowa filtrów powinna być liniowa. Nieliniowości pojawiają się w przypadku braku symetrii odpowiedzi skokowej lub impulsowej filtru. Nachylenie charakterystyki fazowej (współczynnik kierunkowy prostej) informuje o opóźnieniu sygnału odpowiedzi względem sygnału pobudzenia. Rys. 4. Ilustracja amplitudowej odpowiedzi częstotliwościowej i jej najważniejszych parametrów:(a) cała charakterystyka amplitudowa, (b) powiększenia pasma przepustowego. 2. Filtry SOI Filtr o skończonej odpowiedzi impulsowej (SOI) (ang. finite impulse response FIR) jest nierekursywnym filtrem cyfrowym. Nierekursywność oznacza, że nie występuje w tym filtrze sprzężenie zwrotne, co m.in. wiąże się z tym, że odpowiedź filtru SOI na skończone w czasie pobudzenie jest również skończona w czasie. Filtr SOI określa się ciągiem współczynników {b n }. Poniższe równanie przedstawia zależność między pobudzeniem x[n] filtru a jego odpowiedzią y[n]. yn b0 xn b`1 xn 1 b`2 xn 2 b` M 1xn M 1. Ilość współczynników filtru SOI stanowi jednocześnie długość jego odpowiedzi impulsowej h[n]=b n. Przedstawiona zależność jest operacją splotu sygnału pobudzenia x[n] i współczynników filtru b n. Operacja filtracji różni się od operacji splotu tym, że długość sygnału pobudzenia musi równać się długości sygnału odpowiedzi. Dodatkowo wartość próbki y[n] odpowiada wartości próbki x[n] pobudzenia. Z tego powodu używając funkcji

5 splotu sig_conv(b, x) z ćwiczenia 3, należy wynik splotu zmodyfikować tak, aby relacje te były spełnione Rodzaje filtrów ze względu na charakterystykę częstotliwościową Ze względu na to, które składowe widma są przez filtr tłumione, a które bez zmian zachowywane, wyróżniamy: filtry dolnoprzepustowe, przez które tłumione są składowe f > fc; filtry górnoprzepustowe, przez które tłumione są składowe f < fc; filtry pasmowoprzepustowe, tłumiące składowe f < fd i f > fg; filtry pasmowozaporowe, tłumiące składowe fd < f < fg. Metody projektowania filtrów SOI skupiają się na projektowaniu filtrów dolnoprzepustowych. Do zaprojektowania pozostałych rodzajów filtrów SOI wykorzystuje sie specjalne łączenie filtrów Filtry działające na zasadzie średniej kroczącej Najprostszą metodą filtracji sygnałów, często zupełnie wystarczającą, jest zastosowanie tzw. średniej kroczącej (ang. moving average). Metoda ta polega na uśrednianiu kilku kolejnych próbek sygnału w myśl zależności: y 1 1 M n xn k, gdzie M jest liczbą uśrednianych próbek. M k0 Filtr ten jest wykorzystywany do filtracji sygnałów, w których informacja kodowana jest w dziedzinie czasu. Częstotliwość odcięcia tego filtru zmienia się wraz z ilością uśrednianych próbek. Filtr charakteryzuje się słabym tłumieniem w paśmie zaporowym. Można je poprawić stosując filtrację wielokrotną. Odpowiada to szeregowemu połączeniu filtrów o takich samych współczynnikach. Wypadkowy ciąg współczynników można uzyskać stosując technikę z rozdziału Filtry oparte na okienkowanej funkcji sinc Filtry dolnoprzepustowe Filtr ruchomej średniej jest filtrem mającym bardzo dobre właściwości w dziedzinie czasu. Natomiast filtry o dobrych właściwości w dziedzinie częstotliwości uzyskuje się za pomocą okienkowanej funkcji sinc. W metodzie tej współczynniki filtru oblicza się z równania: M 1 sin 2f k 2 M 1 wk, dla k bk M 1 2 k 2 M 1 2fwk, dla k 2 f f 0;0,5 jest znormalizowaną częstotliwością graniczną, a f s częstotliwością gdzie f s próbkowania sygnału. M jest długością odpowiedzi impulsowej filtru (liczbą współczynników), w[k] tzw. funkcją okna (indeks k=0.. M-1). Kształt funkcji okna wpływa na szerokość pasma przejściowego i tłumienie w paśmie zaporowym. Najczęściej wykorzystywanymi oknami są:

6 2k 4k okno Blackmana wk 0,42 0,5cos 0,08cos M 1 M 1 2k okno Hamminga wk 0,54 0,46cos M 1 Okno Blackmana zapewnia największe tłumienie w paśmie zaporowym, a okno Hamminga najwęższe pasmo przejściowe filtru. Istnieje jeszcze wiele innych rodzajów okien, które pomagają kontrolować te dwie właściwości. Po obliczeniu w ten sposób współczynników filtru dolnoprzepustowego należy pamiętać o tym, aby go znormalizować. Oznacza to zapewnienie takiego działania filtru, by składowa stała sygnału była po przetworzeniu przez filtr niezmieniona (wzmocnienie filtru dla f = 0 wynosi 1). Aby uzyskać taki efekt, należy podzielić każdy element wektora b przez sumę wszystkich jego elementów: b k b norm k. M 1 b k k Pozostałe rodzaje filtrów Mając do dyspozycji współczynniki filtru dolnoprzepustowego b dp [k], można zaprojektować filtr górnoprzepustowy b gp [k] o takiej samej częstotliwości granicznej, tzn. f d = f g. Aby jednak metoda działała prawidłowo, współczynniki filtru muszą być znormalizowane, ich liczba musi być nieparzysta, a jego odpowiedź musi być symetryczna (faza liniowa). Wówczas współczynniki filtru górnoprzepustowego otrzymujemy z równania: M 1 bgpk k bdpk, 2 w którym jest deltą Kroneckera daną równaniem: 1 dla k 0 k. 0 dla k 0 Pozostałe rodzaje filtrów pasmowych uzyskujemy przez łączenie filtrów dolno i górnoprzepustowych o odpowiednio dobranych częstotliwościach granicznych. Połączenie równoległe filtrów oznacza wykonanie filtracji na tym samym sygnale pobudzenia przez obydwa filtry, a następnie dodanie otrzymanych sygnałów odpowiedzi (y[n]=h 1 [n]*x[n]+h 2 [n]*x[n]). Ten sam efekt można uzyskać przeprowadzając operację filtracji filtrem o współczynnikach uzyskanych w wyniku dodawania współczynników filtrów równoległych z wyrównaniem osi symetrii (patrz pogrubiona wartość). Przykład: h 1 [n]=[ ] h 2 [n]=[ ]; h 12 [n]= [ ]+ [ ]= [ ] Połączenie szeregowe filtrów oznacza przeprowadzenie filtracji najpierw pierwszym filtrem, a następnie drugim. Można podobnie jak poprzednio obliczyć odpowiedź impulsową filtru zastępczego obliczając splot współczynników obu filtrów ( h 12 [n]=h 1 [n]*h 2 [n]). 3. Zadania do realizacji

7 Na zajęciach laboratoryjnych należy rozwiązać 5 podanych poniżej zadań. Za każde zadanie można otrzymać jeden punkt pod warunkiem, że zostanie ono całkowicie poprawnie zrealizowane. Warto przypomnieć, że w zadaniach wskazane jest wykorzystywać funkcje napisane podczas wcześniejszych ćwiczeń. Zadanie nr 1 W zadaniu pierwszym należy napisać funkcję następującej postaci: function [y]=fir_filter(x, b) która wykona filtrację sygnału x filtrem o współczynnikach z tablicy b. Wymagane jest, aby sygnał y miał tyle samo próbek co sygnał x. Efekt filtracji zostanie zaprezentowany przy wizualizacji charakterystyk zaprojektowanych filtrów z zadań 3, 4 lub 5. Zadanie nr 2 W zadaniu drugim należy napisać następujące funkcje: function [y]=step_resp(b,n) obliczającą odpowiedź skokową filtru SOI o współczynnikach podanych w tablicy b. Długość odpowiedzi skokowej (ilość próbek) określa argument N. function [y]=imp_resp(b,n) obliczającą odpowiedź impulsową filtru SOI o współczynnikach podanych w tablicy b. Ilość próbek odpowiedzi impulsowej określa argument N. function [mh,fh, mhdb]=freq_resp(b, N) obliczającą odpowiedź częstotliwościową (mh- odpowiedź amplitudowa liniowa, mhdbodpowiedź amplitudowa w db, fh- odpowiedź fazowa z fazą rozwiniętą) filtru SOI o współczynnikach podanych w tablicy b. Ilość próbek odpowiedzi określa argument N. Do rozwijania fazy można wykorzystać funkcję z ćwiczenia 3. Zadanie nr 3 Zadanie trzecie polega na napisaniu funkcji następującej: function [b]=movavg_filter(m, k)

8 , która obliczy współczynniki filtru ruchomej średniej, w którym ilość uśrednień wynosi M, a k określa ilość wielokrotnych filtracji (k>=1). Należy zaprezentować wszystkie rodzaje charakterystyk filtru dla parametrów podanych przez prowadzącego. Zadanie nr 4 W zadaniu czwartym należy napisać funkcję następującej postaci: function [b]=sinc_filter(fc, M, wnd), która będzie obliczać współczynniki filtru dolnoprzepustowego o długości odpowiedzi impulsowej M i częstotliwości granicznej f c. Dla wnd=0 funkcja ma wykorzystywać okno Blackmana, a dla wnd=1 okno Hamminga. Należy zaprezentować wszystkie rodzaje charakterystyk filtru dla parametrów podanych przez prowadzącego. Zadanie nr 5 Za pomocą opracowanych funkcji należy zaprojektować określony przez prowadzącego filtr pasmowy (pasmowoprzepustowy lub pasmowozaporowy) i zaprezentować dla niego wszystkie rodzaje charakterystyk. Pytania na kartkówkę 1. Przeliczanie wartości ze skali liniowej na logarytmiczną np i odwrotnie np. 20 db. 2. Co należy zrobić, aby poprawić tłumienie w paśmie zaporowym filtru ruchomej średniej? 3. Co należy zrobić, aby zmniejszyć częstotliwość odcięcia filtru ruchomej średniej? 4. Co należy zrobić, aby zmniejszyć szerokość pasma przejściowego filtru okienkowanej funkcji sinc? 5. Przeprojektuj filtr dolnoprzepustowy o odpowiedzi impulsowej h[n]=[ ] na filtr górnoprzepustowy o tej samej częstotliwości odcięcia. 6. Oblicz odpowiedź impulsową filtru równoważnego dla równoległego połączenia filtrów h 1 [n]=[1 1 1] i h 2 [n]=[ ]. 7. Oblicz odpowiedź impulsową filtru równoważnego dla szeregowego połączenia filtrów h 1 [n]=[1 2 1 ] i h 2 [n]=[ ]. 8. Podaj częstotliwości filtrów dolno i górnoprzepustowych, których użyjesz do zaprojektowania filtru pasmowoprzepustowego o paśmie przepustowym od 1 khz do 5 khz. 9. Podaj częstotliwości filtrów dolno i górnoprzepustowych, których użyjesz do zaprojektowania filtru pasmowozaporowego o paśmie zaporowym od 1 khz do 5 khz.

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1 Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości

Bardziej szczegółowo

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. Wprowadzenie Filtr aktywny jest zespołem elementów pasywnych RC i elementów aktywnych (wzmacniających), najczęściej wzmacniaczy operacyjnych. Właściwości wzmacniaczy,

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04

PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04 PROCESORY SYGNAŁOWE - LABORATORIUM Ćwiczenie nr 04 Obsługa buforów kołowych i implementacja filtrów o skończonej i nieskończonej odpowiedzi impulsowej 1. Bufor kołowy w przetwarzaniu sygnałów Struktura

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI 1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Systemy akwizycji i przesyłania informacji

Systemy akwizycji i przesyłania informacji Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne

Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne Filtry cyfrowe Procesory sygnałowe (DSP), układy programowalne x(n) Filtr cyfrowy y(n) h(n) odpowiedź impulsowa x(n) y(n) y(n) = x(n) h(n) 1 Filtry cyfrowe Po co filtrujemy sygnały? Aby uzyskać: redukcję

Bardziej szczegółowo

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43 Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału

Bardziej szczegółowo

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Detekcja zespołów QRS w sygnale elektrokardiograficznym

Detekcja zespołów QRS w sygnale elektrokardiograficznym Detekcja zespołów QRS w sygnale elektrokardiograficznym 1 Wprowadzenie Zadaniem algorytmu detekcji zespołów QRS w sygnale elektrokardiograficznym jest określenie miejsc w sygnale cyfrowym w których znajdują

Bardziej szczegółowo

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową Teoria Sygnałów sprawozdanie z zajęć laboratoryjnych Zajęcia z dnia 07.01.2009 Prowadzący: dr inż. Stanisław Nuckowski Sprawozdanie wykonał: Tomasz Witka Laboratorium nr 4: Porównanie filtrów FIR i IIR

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

Ćwiczenie 6. Transformacje skali szarości obrazów

Ćwiczenie 6. Transformacje skali szarości obrazów Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Filtry aktywne filtr górnoprzepustowy

Filtry aktywne filtr górnoprzepustowy . el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa

Bardziej szczegółowo

Rys. 1. Wzmacniacz odwracający

Rys. 1. Wzmacniacz odwracający Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

A3 : Wzmacniacze operacyjne w układach liniowych

A3 : Wzmacniacze operacyjne w układach liniowych A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

Przetwarzanie sygnałów dyskretnych

Przetwarzanie sygnałów dyskretnych Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik Widmo akustycznych sygnałów dla radia DAB i FM Pomiary widma z wykorzystaniem szybkiej transformacji Fouriera FFT sygnału mierzonego w dziedzinie czasu wykonywane są w skończonym czasie. Inaczej mówiąc

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTRONIKI Ćwiczenie nr 4. Czwórniki bierne - charakterystyki częstotliwościowe

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTRONIKI Ćwiczenie nr 4. Czwórniki bierne - charakterystyki częstotliwościowe . el ćwiczenia elem ćwiczenia jest zapoznanie studentów z podstawowymi pojęciami dotyczącymi czwórników i pomiarem ich charakterystyk czestotliwościowych na przykładzie filtrów elektrycznych. 2. Wprowadzenie

Bardziej szczegółowo

13.2. Filtry cyfrowe

13.2. Filtry cyfrowe Bibliografia: 1. Chassaing Rulph, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience 2005. 2. Borodziewicz W., Jaszczak K., Cyfrowe Przetwarzanie sygnałów, Wydawnictwo

Bardziej szczegółowo

Projekt z Układów Elektronicznych 1

Projekt z Układów Elektronicznych 1 Projekt z Układów Elektronicznych 1 Lista zadań nr 4 (liniowe zastosowanie wzmacniaczy operacyjnych) Zadanie 1 W układzie wzmacniacza z rys.1a (wzmacniacz odwracający) zakładając idealne parametry WO a)

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

H f = U WY f U WE f =A f e j f. 1. Cel ćwiczenia. 2. Wprowadzenie. H f

H f = U WY f U WE f =A f e j f. 1. Cel ćwiczenia. 2. Wprowadzenie. H f . el ćwiczenia elem ćwiczenia jest zapoznanie studentów z podstawowymi pojęciami dotyczącymi czwórników i pomiarem ich charakterystyk czestotliwościowych na przykładzie filtrów elektrycznych. 2. Wprowadzenie

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI

LABORATORIUM ELEKTRONIKI INSTYTUT NAWIGACJI MOSKIEJ ZAKŁD ŁĄCZNOŚCI I CYBENETYKI MOSKIEJ AUTOMATYKI I ELEKTONIKA OKĘTOWA LABOATOIUM ELEKTONIKI Studia dzienne I rok studiów Specjalności: TM, IM, PHiON, AT, PM, MSI ĆWICZENIE N 10

Bardziej szczegółowo

Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień

Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień Laboratorium Inżynierii akustycznej Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień STRONA 1 Wstęp teoretyczny: LABORATORIUM NR1 Przetwarzanie sygnału dźwiękowego wiąże

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania Filtrowanie a sploty idea x=[2222222222] %sygnałstochastycznyodługości5próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x)%zaaplikowaniefiltruhdosygnałux W powyższym przykładzie proszę

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 Zastosowania wzmacniaczy operacyjnych w układach

Bardziej szczegółowo

STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW, SYSTEMÓW I MODULACJI. Filtracja cyfrowa. v.1.0

STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW, SYSTEMÓW I MODULACJI. Filtracja cyfrowa. v.1.0 Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji SUDIA MAGISERSKIE DZIENNE LABORAORIUM SYGNAŁÓW, SYSEMÓW I MODULACJI Filtracja cyfrowa v.1. Opracowanie: dr inż. Wojciech Kazubski,

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Laboratorium Elektroniki

Laboratorium Elektroniki Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Przebieg sygnału w czasie Y(fL

Przebieg sygnału w czasie Y(fL 12.3. y y to układy elektroniczne, które przetwarzają energię źródła przebiegu stałego na energię przebiegu zmiennego wyjściowego (impulsowego lub okresowego). W zależności od kształtu wytwarzanego przebiegu

Bardziej szczegółowo

Przykładowe pytania 1/11

Przykładowe pytania 1/11 Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.

Bardziej szczegółowo

Ćwiczenie - 7. Filtry

Ćwiczenie - 7. Filtry LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy

Bardziej szczegółowo

Temat: Wzmacniacze operacyjne wprowadzenie

Temat: Wzmacniacze operacyjne wprowadzenie Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym

Bardziej szczegółowo

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera cz. 2

Dyskretne przekształcenie Fouriera cz. 2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

Filtry FIR i biblioteka DSPLIB

Filtry FIR i biblioteka DSPLIB Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Filtry FIR i biblioteka DSPLIB Wstęp Na poprzednim wykładzie napisaliśmy algorytm

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 3 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr

Bardziej szczegółowo

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy:

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy: POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 2 Temat: Projektowanie i analiza

Bardziej szczegółowo