Właściwości sygnałów i splot. Krzysztof Patan

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Właściwości sygnałów i splot. Krzysztof Patan"

Transkrypt

1 Właściwości sygnałów i splot Krzysztof Patan

2 Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ τ τ τ x(t)dt τ E x = lim x(t) dt τ τ moc sygnału P x = lim τ τ τ τ x(t) dt

3 znak wartości bezwzględnej jest istotny w przypadku sygnałów o wartościach zespolonych np, energia wydzielana na oporze τ E = lim u(t)i(t)dt = lim τ τ τ R τ τ τ u (t)dt = lim R i (t)dt τ jeśli R = Ω, to E = E x, zaś u(t) lub i(t) odgrywa rolę sygnału x(t) jest sygnałem o ograniczonej energii jeśli 0 < E x < x(t) jest sygnałem o ograniczonej mocy jeśli 0 < P x < prawdziwe są implikacje: τ E x (0, ) P x = 0, P x (0, ) E x = klasy sygnałów o ograniczonej energii i ograniczonej mocy są rozłączne; sygnał może należeć tylko do jednej z tych klas

4 Dla sygnału dyskretnego x[n] można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału moc sygnału x sr = lim N E x = lim P x = lim N N + N N n= N N + N n= N x[n] N n= N x[n] x[n]

5 Sygnał x(t) (x[n]) ma skończony czas trwania jeżeli przybiera wartości niezerowe w przedziale o skończonej długości Sygnały o skończonym czasie trwania sygnały impulsowe Sygnał x(t) (x[n]) na ograniczoną wartość (jest sygnałem ograniczonym) jeżeli istnieje taka stała M o skończonej wartości, że lub t (, + ) < n < + x(t) M x[n] M Uwaga! Każdy sygnał ograniczony o skończonym czasie trwania ma ograniczoną energię

6 Sygnały występujące w przyrodzie zawsze pochodzą ze źródeł o ograniczonej energii Sygnały o ograniczonej mocy nie mają fizycznych odpowiedników, ale są wygodnymi modelami teoretycznymi, zwłaszcza przy analizie sygnałów okresowych Nie można uzasadnić celowości stosowania sygnałów o nieskończonej mocy Sygnały o zerowej energii są mało interesujące i nie są stosowane nawet teoretycznie

7 Przykład Wyznaczyć wartość średnią, energię i moc sygnału x(t) = sin(t) + cos(t) + Wyznaczyć wartość średnią, energię i moc impulsu prostokątnego dla n 5 x[n] = 0 dla n > 5 Uwaga! Wykorzystać zależności: sin (x) = ( cos(x)) cos (x) = ( + cos(x)) sin(x) cos(x) = sin(x)

8 Proste przekształcenia sygnałów Przesunięcie w czasie przejście sygnału x(t) przez układ (oprócz innych zniekształceń) powoduje jego opóźnienie opóźnienie sygnału jest spowodowane występowaniem w układzie elementów magazynujących energię, np. indukcyjności i pojemności jeżeli przesunięcie czasowe T > 0 to opóźniona wersja sygnału x(t) jest równa x(t T ) rozpatruje się także wyprzedzanie sygnału x(t + T ) jest to operacja nierealizowalna w świecie fizycznym (możliwość przewidywania przyszłości) operację wyprzedzenia można zastosować w przypadku, gdy dysponuje się uprzednio zmierzonym sygnałem operacje opóźnienia dla sygnałów dyskretnych wyprowadza się w podobny sposób

9 Zmiana skali czasu załóżmy a > 0, sygnał x(at) jest przeskalowaną wersją x(t) gdy a > sygnał zostaje przyspieszony gdy a < sygnał zostaje spowolniony rozpatrzmy nagranie muzyczne ( ) t gdy x nagranie jest odtwarzane z prędkością dwukrotnie mniejszą gdy x(t) nagranie jest odtwarzane z prędkością dwukrotnie większą Inwersja czasu inwersja sygnału x(t) to sygnał x( t) inwersja czasu nie jest operacją realizowalną fizycznie dla nagrania muzycznego to proces odtwarzania nagrania do tyłu

10 Przykład Narysować sygnały x(t) = (t) + (t T ) + (t T ) 3 (t 3T ) x(t) = r(t) r(t a) gdzie r(t) = t dla t 0 3 x[n] = [n + ] + [n 4] 4 dany jest sygnał cos(t) dla π t π x(t) = 0 w innych przypadkach dokonać opóźnienia sygnału o 5 jednostek czasu, a następnie dokonać jego inwersji

11 Składowe sygnału sygnał x(t) (x[n]) ma symetrię parzystą jeśli x(t) = x( t) lub x[n] = x[ n] sygnał x(t) (x[n]) ma symetrię nieparzystą jeśli x(t) = x( t) lub x[n] = x[ n] każdy sygnał można zdekomponować na zmienną parzystą x p (t) i nieparzystą x n (t) x(t) + x( t) składowa parzysta x p (t) = x(t) x( t) składowa nieparzysta x n (t) = Przykład 3 Wyznaczyć składowe parzystą i nieparzystą sygnału sinusoidalnego

12 Składowe sygnału sygnał x(t) (x[n]) ma symetrię parzystą jeśli x(t) = x( t) lub x[n] = x[ n] sygnał x(t) (x[n]) ma symetrię nieparzystą jeśli x(t) = x( t) lub x[n] = x[ n] każdy sygnał można zdekomponować na zmienną parzystą x p (t) i nieparzystą x n (t) x(t) + x( t) składowa parzysta x p (t) = x(t) x( t) składowa nieparzysta x n (t) = Przykład 3 Wyznaczyć składowe parzystą i nieparzystą sygnału sinusoidalnego

13 Sygnały okresowe Sygnały okresowe tworzą ważną klasę sygnałów Sygnał nazywa się okresowym o okresie T jeśli T > 0, t R x(t) = x(t + T ) W każdej chwili czasu t przesunięcie na osi czasu o okres lub jego wielokrotność nie zmienia wartości sygnału Liczbę T nazywa się okresem podstawowym sygnału

14 Własności sygnałów okresowych wartość średnia x sr = T T T x(t)dt lub x sr = T <T > x(t)dt Wartość średnia sygnału okresowego jest równa wartości średniej w jednym okresie T energia sygnału T E x = lim ne x(t ), E x (T ) = x(t) dt n T Jeżeli energia sygnału przypadająca na podedynczy okres E x (T ) jest różna od zera, to całkowita energia sygnału E x jest nieskończona

15 moc sygnału P x = T T t x(t) dt lub T <T > x(t) dt Moc średnia sygnału okresowego jest równa mocy średniej w jednym okresie T wartość skuteczna x sk = P x Wartość skuteczna jest często wykorzystywana w analizie obwodów elektrycznych

16 Dystrybucja Diraca (delta Diraca, impuls jednostkowy) Dystrybucja Diraca impuls o nieskończenie krótkim czasie trwania, nieskończonej amplitudzie i polu równym jedności Sygnał spełnia warunki δ(t) = 0 dla t 0 Stosując przesunięcie w czasie δ(t)dt = δ(t t 0 ) = 0 dla t t 0 δ(t t 0 )dt =

17 Właściwości dystrybucji Diraca kδ(t)dt = k 0δ(t) = 0 Całka dystrybucji Diraca x(t)δ(t t 0 ) = x(t 0 )δ(t t 0 ) t δ(τ)dτ = (t), czyli d (t) = δ(t) dt

18 Reprezentacja sygnału ciągłego Sygnał ciągły x(t) można zaproksymować za pomocą sumy przesuniętych przeskalowanych impulsów x(t) ˆx(t) 0 t ˆx(t) = x(k ), k < t < (k + )

19 impuls jednostkowy δ (t) δ (t) pole powierzchni = 0 t x(k )δ (t k ) x(k ) k (k+) t ˆx(t) = x(k )δ (t k ) w granicy, gdy 0 x(t) = x(τ)δ(t τ)dτ

20 δ(t) impuls jednostkowy impuls jednostkowy jest sygnałem, który podany na wejście dowolnego liniowego układu stacjonarnego powoduje wygenerowanie odpowiedzi równej odpowiedzi impulsowej tego układu: δ(t) h(t) = h(t) h(t) gdzie h(t) odpowiedź impulsowa

21 x(t) System ciągły δ (t) h (t) y(t) ˆx(t) = x(k )δ (t k ) ŷ(t) = x(k )h (t k ) k= k= Odpowiedź impulsowa δ(t) h(t) w granicy, gdy 0 x(t) = x(τ)δ(t τ)dτ y(t) = x(τ)h(t τ)dτ } {{ } splot

22 Operowanie splotem w czasie ciągłym h(τ) Przykład 4 odwróć y(t) = x(t) h(t) = h( τ) pomnóż x(τ)h(t τ) x(τ)h(t τ)dτ przesuń h(t τ) scałkuj x(τ)h(t τ)dτ x(t) * h(t) x(τ) 3 t - - h(t τ) t 3 τ t+ t+ τ

23 Operowanie splotem w czasie ciągłym h(τ) Przykład 4 odwróć y(t) = x(t) h(t) = h( τ) pomnóż x(τ)h(t τ) x(τ)h(t τ)dτ przesuń h(t τ) scałkuj x(τ)h(t τ)dτ x(t) * h(t) x(τ) 3 t - - h(t τ) t 3 τ t+ t+ τ

24 Przykład 4 cd Przedział x(τ) h(t τ) Wyjście t < 0 y(t) = 0 < t < 0 t+ y(t) = (t + ) 0 < t < t+ y(t) = < t < t+ t+ y(t) = (t ) t+ 3 t+ t > 0 y(t) = 0 Pytanie: Jak wygląda y(t) w całej dziedzinie?

25 Właściwości splotu w czasie ciągłym Przemienność: x(t) h(t) = h(t) x(t) Łączność: x(t) (v(t) w(t)) = (x(t) v(t)) w(t) 3 Rozdzielność względem dodawania: x(t) (v(t) + w(t)) = x(t) v(t) + x(t) w(t) 4 Przesunięcie w dziedzinie czasu: y(t t 0 ) = x(t t 0 ) h(t) = x(t) h(t t 0 ) 5 Splot z impulsem jednostkowym: x(t) = x(t) δ(t), x(t) δ(t t 0 ) = x(t t 0 )

26 6 Pochodna splotu: d dx(t) (x(t) v(t)) = v(t) dt dt założenia: (i) funkcja x(t) jest różniczkowalna, (ii) splot x(t) v(t) istnieje i jest różniczkowalny 7 Całka splotu: t x(τ) v(τ)dτ = t t x(τ)dτ v(τ) = x(τ) v(τ)dτ

27 Próbkowanie Sygnał dyskretny (spróbkowany) otrzymujemy z ciągłego (próbkowanego) poprzez próbkowanie Do próbkowania wykorzystuje się sygnał próbkujący Jako sygnału próbkującego wykorzystuje się sygnał impulsowy o okresie T s δts(t) = δ(t nt s ) () n= sygnał () nosi nazwę okresowego sygnału impulsowego lub sygnału grzebieniowego Sygnał spróbkowany ma postać x s (t) = x(t) δ(t nt s ) = x(t)δ(t nt s ) = x(nt s )δ(t nt s ) n= n= n= Sygnał spróbkowany jest równy zeru z wyjątkiem dyskretnych chwil czasowych, w których jest reprezentowany przez impulsy δ o polu równym x(nt s )

28 -.5 x(t).5.0 δ Ts (t) t t x s(t) x(t) x s (t) δ Ts (t) t

29 Reprezentacja sygnału dyskretnego Sygnał dyskretny można reprezentować jako kombinację liniową przesuniętych sygnałów δ[n] - x[ ] x[0] x[] 0 x[] x[n] n x[] x[]δ[n ] x[0] x[0]δ[n] n 0 n - x[ ] x[] x[]δ[n ] n x[ ]δ[n+] n

30 Sposób formalny x[n] = +x[ ]δ[n+]+x[ ]δ[n+]+x[0]δ[n]+x[]δ[n ]+... czyli gdzie x[n] = x[k]δ[n k] k= x[k] współczynniki, δ[n k] sygnały bazowe

31 x[n] System dyskretny y[n] Załóżmy, że system jest liniowy Zdefiniujmy h k [n] jako odpowiedź na sygnał δ[n k] δ[n k] h k [n] Z zasady superpozycji otrzymujemy x[n] = x[k]δ[n k] y[n] = x[k]h k [n] k= k=

32 Odpowiedź impulsowa Załóżmy, że system jest liniowy i niezmienny w czasie δ[n] h[n] Z zasady niezmienności w czasie otrzymujemy Ostatecznie x[n] = k= δ[n k] h[n k] x[k]δ[n k] y[n] = x[k]h[n k] } k= {{ } splot

33 Operowanie splotem w czasie dyskretnym Interpretacja y[n] = x[n] h[n] = x[k]h[n k] k= δ[n] h[n] 0 n 0 n x[k]δ[n k] x[k]h[n k] k n k n sumujemy po wszystkich k

34 Przykład 5 x[n] h[n] 0 - n n 0 h[n k] - - x[k] k - n k y[n] = 0, dla n < y[ ] = x[0]h[ ] = = y[0] = x[0]h[0] + x[]h[ ] = + 0 = y[] = x[0]h[] + x[]h[0] + x[]h[ ] = [ ] [ ] = y[] = x[0]h[] + x[]h[] + x[]h[0] = [ ] + 0 [ ] + [ ] = 3 y[3] =x[]h[]+x[]h[] = 0 [ ]+[ ] [ ] = y[4] = x[]h[] = [ ] [ ] = y[n] = 0, dla n > 4

35 Schemat obliczeniowy splotu w czasie dyskretnym h[0] h[] h[] h[3] x[0] x[0]h[0] x[0]h[] x[0]h[] x[0]h[3] x[] x[]h[0] x[]h[] x[]h[] x[]h[3] x[] x[]h[0] x[]h[] x[]h[] x[]h[3] x[3] x[3]h[0] x[3]h[] x[3]h[] x[3]h[3]

36 Właściwości splotu w czasie dyskretnym Przemienność: x[n] h[n] = h[n] x[n] Łączność: x[n] (v[n] w[n]) = (x[n] v[n]) w[n] 3 Rozdzielność względem dodawania: x[n] (v[n] + w[n]) = x[n] v[n] + x[n] w[n] 4 Przesunięcie w dziedzinie czasu: y[n k] = x[n k] h[n] = x[n] h[n k] 5 Splot z impulsem jednostkowym: x[n] δ[n n 0 ]=x[n n 0 ] (x[n] δ[n]=x[n])

37 6 Sumator: y[n] = n k= x[k] jeśli x[n] = δ[n] to h[n] = n k= gdzie u[n] skok jednostkowy, czyli δ[k] = u[n] y[n] = x[n] h[n] = x[n] u[n] = 7 Odpowiedź na skok jednostkowy: s[n] = u[n] h[n] = h[n] u[n] = n k= n k= x[k] h[k]

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l

Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l Prof. dr hab. Wojciech Moczulski Politechnika Ślaska, Wydział Mechaniczny Technologiczny Katedra Podstaw Konstrukcji Maszyn 19 października 2008

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW, SYSTEMÓW I MODULACJI. Filtracja cyfrowa. v.1.0

STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW, SYSTEMÓW I MODULACJI. Filtracja cyfrowa. v.1.0 Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji SUDIA MAGISERSKIE DZIENNE LABORAORIUM SYGNAŁÓW, SYSEMÓW I MODULACJI Filtracja cyfrowa v.1. Opracowanie: dr inż. Wojciech Kazubski,

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Teoria przetwarzania A/C i C/A.

Teoria przetwarzania A/C i C/A. Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Macierz A nazywamy macierzą systemu, a B macierzą wejścia.

Macierz A nazywamy macierzą systemu, a B macierzą wejścia. Dwiczenia 3 Automatyka i robotyka Równaniem stanu. Macierz A nazywamy macierzą systemu, a B macierzą wejścia. Równaniem wyjścia. Do opisu układu możemy użyd jednocześnie równania stanu i równania wyjścia

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n. Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 3 Politechnika Gdaoska, 20 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 21 lutego 2011 Eksperyment fizyczny, Czwórniki,

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

SZEREGI LICZBOWE I FUNKCYJNE

SZEREGI LICZBOWE I FUNKCYJNE Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu: Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej

Bardziej szczegółowo

Transformata Fouriera. Krzysztof Patan

Transformata Fouriera. Krzysztof Patan Transformata Fouriera Krzysztof Patan Aproksymacja sygnałów Aproksymacja sygnału x(t) za pomocą rozwinięcia o skończonej długości polega na znalezieniu funkcji ˆx n (t) = c 1 x 1 (t) + + c k x k (t) +

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha

LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.

Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego. 1 DWICZENIE 2 PRZENOSZENIE IMPULSÓW PRZEZ CZWÓRNIKI LINIOWE 2.1. Cel dwiczenia Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

ELEKTRONIKA. dla Mechaników

ELEKTRONIKA. dla Mechaników ELEKTRONIKA dla Mechaników dr inż. Waldemar Jendernalik Politechnika Gdańska Wydział ETI Katedra Systemów Mikroelektronicznych p. 309, waldi@ue.eti.pg.gda.pl www.ue.eti.pg.gda.pl/~waldi Po co to Wam? Elektronika

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Wstęp do ćwiczeń na pracowni elektronicznej

Wstęp do ćwiczeń na pracowni elektronicznej Wstęp do ćwiczeń na pracowni elektronicznej Katarzyna Grzelak listopad 2011 K.Grzelak (IFD UW) listopad 2011 1 / 25 Zajęcia na pracowni elektronicznej Na kolejnych zajęciach spotykamy się na pracowni elektronicznej

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

Całki krzywoliniowe wiadomości wstępne

Całki krzywoliniowe wiadomości wstępne Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Odpowiedzi czasowe ciągłych i dyskretnych systemów dynamicznych Zadania do ćwiczeń laboratoryjnych

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Pomiar parametrów sygnałów sieci elektroenergetycznej dr inż.

Bardziej szczegółowo

Zgłoszenie ogłoszono: Twórcy wynalazku: Waldemar Kempski, Florian Krasucki, Marek Gelner

Zgłoszenie ogłoszono: Twórcy wynalazku: Waldemar Kempski, Florian Krasucki, Marek Gelner RZECZPOSPOLITA OPIS PATENTOWY 155 345 POLSKA Patent dodatkowy mm do patentu n r --------- Int. Cl.5 H02P 7/62 Uf Zgłoszono: 87 10 26 /P. 268469/ Pierwszeństwo URZĄD PATENTOWY Zgłoszenie ogłoszono: 89 05

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Dyskretne układy LTI Definicja analogiczna do tej, która podano dla sygnałów analogowych Opis transmisyjny:

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA 1. POJĘCIA PODSAWOWE ELEKROECHNIKI. SYGNAŁY ELEKRYCZNE I ICH KLASYIKACJA 1.1. WPROWADZENIE WIELKOŚĆ (MIERZALNA) - cecha zjawiska, ciała lub substancji, którą można wyrazić jakościowo i wyznaczyć ilościowo.

Bardziej szczegółowo

Obwody prądu przemiennego bez liczb zespolonych

Obwody prądu przemiennego bez liczb zespolonych FOTON 94, Jesień 6 45 Obwody prądu przeiennego bez liczb zespolonych Jerzy Ginter Wydział Fizyki Uniwersytetu Warszawskiego Kiedy prowadziłe zajęcia z elektroagnetyzu na Studiu Podyploowy, usiałe oówić

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Transformacje Fouriera * podstawowe własności

Transformacje Fouriera * podstawowe własności Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 2 - Modelowanie w dziedzinie częstotliwości Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 64 Plan wykładu Transformata Laplace

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e

MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e Nośna: MODULACJE ANALOGOWE c(t) = Y 0 cos(ωt + ϕ 0 ) Sygnał analityczny sygnału zmodulowanego y(t): z y (t) = m(t)z c (t), z c (t) = Y 0 e jωt Funkcja modulująca zależna od sygnału modulującego: j arg

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Zastosowania pochodnych

Zastosowania pochodnych Zastosowania pochodnych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 SZACOWANIE NIEPEWNOŚCI POMIAROWEJ Przykład: objętość kuli Kulka z łożyska tocznego ma średnicę 2,3 mm, co oznacza, że objętość

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

Systemy przetwarzania sygnałów

Systemy przetwarzania sygnałów Systemy przetwarzania sygnałów x(t) y(t)? x(t) System przetwarzania sygnałów y(t) 23 P. Strumiłło 1 Systemy przetwarzania sygnałów sygnał cigły x(t) y(t)=h(x(t)) System czasu cigłego y(t) np. megafon -

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH PODSTAWY SYGNAŁÓW POMIAROWYCH I METROLOGII WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH WSTĘP TEORETYCZNY Sygnałem nazywamy przebieg dowolnej wielkości fizycznej mogącej być nośnikiem informacji Opis

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

LINIOWE UKŁADY DYSKRETNE

LINIOWE UKŁADY DYSKRETNE LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:. Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

Analityczne metody detekcji uszkodzeń

Analityczne metody detekcji uszkodzeń Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo