Wprowadzenie z dynamicznej optymalizacji

Podobne dokumenty
Ekonomia matematyczna i dynamiczna optymalizacja

Sterowalność liniowych uk ladów sterowania

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.

Sterowanie optymalne

Wyk lad 14 Formy kwadratowe I

Wyk lad 11 1 Wektory i wartości w lasne

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Funkcje wielu zmiennych

1 Pochodne wyższych rzędów

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Funkcje wielu zmiennych

3. Funkcje wielu zmiennych

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja

Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1?

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Funkcje dwóch zmiennych

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

1 Przestrzenie unitarne i przestrzenie Hilberta.

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

2. Definicja pochodnej w R n

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej.

Metody Numeryczne Optymalizacja. Wojciech Szewczuk

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

II. FUNKCJE WIELU ZMIENNYCH

Analiza Matematyczna MAEW101 MAP1067

Rachunek różniczkowy i całkowy w przestrzeniach R n

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Programowanie matematyczne

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Wyk lad 4 Warstwy, dzielniki normalne

Metody optymalizacji. notatki dla studentów matematyki semestr zimowy 2015/2016

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

Rachunek różniczkowy funkcji dwóch zmiennych

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Metoda Karusha-Kuhna-Tuckera

Elementy Modelowania Matematycznego

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

Wyk lad 11 Przekszta lcenia liniowe a macierze

22 Pochodna funkcji definicja

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

Analiza matematyczna 2 zadania z odpowiedziami

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Definicje i przykłady

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Funkcje dwóch zmiennych

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

Ekstrema funkcji wielu zmiennych.

Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim

Wyk lad 3 Wyznaczniki

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Definicja problemu programowania matematycznego

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Optymalne inwestowanie w rozwój firmy. Zastosowanie teorii sterowania.

Programowanie liniowe

Normy wektorów i macierzy

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

Rozwiazywanie układów równań liniowych. Ax = b

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Formy kwadratowe. Rozdział 10

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

Programowanie liniowe

PROGRAMOWANIE NIELINIOWE

Kryptografia - zastosowanie krzywych eliptycznych

1 Funkcje dwóch zmiennych podstawowe pojęcia

Rachunek Różniczkowy

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Dyskretne modele populacji

Transkrypt:

Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2 1.2 O naturze dynamicznej optymalizacji.............. 4 2 Przypadek ciag ly - teoria sterowania optymalnego 5 2.1 Najprostszy problem sterowania optymalnego......... 5 2.2 Hamiltonian i zasada maksimum................ 5 2.3 Problem z wieloma zmiennymi stanu i zmiennymi sterujacymi 6 2.4 Alternatywne warunki końcowe................. 7 2.5 Dyskontowanie i hamiltonian wartości bieżacej........ 7 2.6 Zagadnienie z nieskończonym horyzontem czasowym..... 7 3 Przypadek dyskretny - programowanie dynamiczne 8 3.1 Nieskończony horyzont...................... 8 3.2 Twierdzenie o obwiedni..................... 9 3.3 Schemat.............................. 9 3.4 Skończony horyzont....................... 9 Literatura 9 lukasz.wozny@sgh.waw.pl. 1

1 Optymalizacja statyczna a optymalizacja dynamiczna 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka Rozpatrzmy funkcj e f : X R, gdzie X R n jest zbiorem otwartym, a n N: Definicja 1.1 Mówimy, że funkcja f ma w punkcie x X minimum (maksimum) lokalne wtt., gdy r > 0 x K( x, r) f( x) f(x) (f( x) f(x)) 1, gdzie K( x, r) jest otwarta kula o środku w x i promieniu r. Twierdzenie 1.1 Jeżeli funkcja f ma w otoczeniu punktu x X ciag le pochodne czastkowe drugiego rzedu i f ( x) = 0, to 2 : f ma minimum (maksimum) lokalne w x, gdy macierz f ( x) jest dodatnio (ujemnie) określona, f nie ma ekstremum lokalnego w x, gdy macierz f ( x) jest nieokreślona. Ograniczenia zadane równaniami Definicja 1.2 Niech f, g 1, g 2,..., g m : X R, gdzie X R n jest zbiorem otwartym a n > m. Niech ponadto: G = [g 1, g 2,..., g m ] T, M = {x X : G(x) = 0}. Mówimy, że funkcja f ma w punkcie x M minimum (maksimum) lokalne warunkowe na zbiorze M wtt., gdy: r > 0 x M K( x, r) f( x) f(x) (f( x) f(x)) 3. Poniżej zak ladamy, że funkcje f oraz g i gdzie i = 1,..., m sa różniczkowalne. Definicja 1.3 Punkt x M nazywamy punktem regularnym ograniczeń wtt. rz G ( x) = m a wiec wiersze macierzy G ( x) sa liniowo niezależne. 1 Jeżeli nierówność jest spe lniona dla wszystkich argumentów x X, to x nazywamy minimum (maksimum) globalnym f na X 2 Symbol 0 oznacza wektor [0,..., 0] T o wymiarze 1 n. 3 Jeżeli nierówność jest spe lniona dla każdego x M, to x nazywamy minimum (maksimum) globalnym f na M 2

Definicja 1.4 Funkcja Lagrange a dla problemu ekstremum warunkowego zadanego przez f i G nazywamy funkcje L : X R o wartościach L (x, λ) = f(x) + λ T G(x), gdzie x X R n jest wektorem zmiennych, a λ R m jest wektorem parametrów (mnożników Lagrange a). Twierdzenie 1.2 W problemie zadanym przez różniczkowalne f, g 1, g 2,..., g m funkcja f może mieć ekstremum lokalne na M tylko w takim x, że: x jest punktem nieregularnym w M, x wraz z danym wektorem λ spe lnia uk lad: { L ( x, λ) = 0, G( x) = 0. Twierdzenie 1.3 Jeśli w problemie na ekstremum warunkowe zadanym przez f i G funkcje f, g 1, g 2,..., g m maja ciag le pochodne czastkowe drugiego rzedu, x jest punktem regularnym w M i L ( x, λ) = 0 to: f ma minimum (maksimum) lokalne na M, jeśli forma kwadratowa zadana macierza L ( x, λ) jest dodatnio (ujemnie) określona na C = Ker G ( x), 4 f nie ma ekstremum lokalnego na M, jeśli forma kwadratowa zadana macierza L ( x, λ) jest nieokreślona na C = Ker G ( x) Przypomnijmy: C = Ker G ( x) = {h R n : G ( x)h = 0} a dodatnia (ujemna) określoność L ( x, λ) na jadrze C oznacza, że (L ( x, λ)h h) > (< )0 dla h C \ {0}. Ograniczenia zadane nierównościami Rozpatrzmy nastepuj ace problem: max x X f(x) przy warunkach g i (x) = 0, i = 1,..., m oraz h j (x) 0, j = 1,..., k, gdzie X R n a m, k N oraz n k + m. Zauważmy, gdy m = 0 wtedy mamy tylko ograniczenia zadane nierównościami a gdy k = 0 wtedy mamy tylko ograniczenia zadane równaniami. Niech M R n oznacza zbiór rozwiazań dopuszczalnych, tzn. M = {x R n g i (x) = 0, h j (x) 0, i = 1,..., m, j = 1,..., k}. Zak ladamy, że funkcje f, g i, i = 1,..., m oraz h j, j = 1,..., k sa różniczkowalne. Definicja 1.5 Punkt x M nazywamy punktem regularnym ograniczeń wtt. gdy ograniczenia, które sa spe lnione dla x co do równości sa niezależne tzn. gdy wiersze macierzy D = [G ( x)h ( x)] T gdzie G( x) = [g 1 ( x), g 2 ( x),..., g m ( x)] T, H( x) = [h j ( x), j takich, że h j ( x) = 0] T sa liniowo niezależne. 4 W szczególności, gdy macierz L ( x, λ) jest dodatnio (ujemnie) określona. 3

Twierdzenie 1.4 (Warunki Kuhn a-tucker a) Niech punkt x M be- dzie punktem regularnym ograniczeń. Wtedy istnieja mnożniki λ i R, i = 1,..., m oraz λ j R +, j = 1,..., k, takie, że dla każdego l = 1,..., n zachodzi: oraz f( x) x l = m i=1 λ i g i ( x) x l + k j=1 λ j h j ( x) x l, dla każdego j = 1..., k zachodzi λ j h j ( x) = 0, tzn. λ j = 0 dla każdego ograniczenia j, które nie jest spe lnione co do równości. Twierdzenie 1.5 Niech m = 0 oraz funkcja h j bedzie quasi-wypuk la dla każdego j. Niech ponadto funkcja f spe lnia warunek f (x 1 )(x 2 x 1 ) T > 0 dla każdych x 2, x 1 takich, że f(x 2 ) > f(x 1 ). Jeżeli x bed acy punktem regularnym ograniczeń spe lnia warunki Kuhn a-tucker a wtedy x jest maksimum globalnym funkcji f na zbiorze M. Twierdzenie 1.6 Niech zbiór M bedzie wypuk ly a funkcja f silnie quasiwkles la na M, wtedy istnieje jeden punkt x M rozwiazuj acy problem maksymalizacyjny z ograniczeniami. Przypomnijmy: f jest quasi-wypuk la na zbiorze A wtt. x 1, x 2 A oraz µ [0, 1] zachodzi f(µx 1 + (1 µ)x 2 ) max{f(x 1 ), f(x 2 )}. Funkcja f jest silnie quasi-wypuk la jeżeli nierówność jest ostra dla µ (0, 1) i każdych x 1 x 2. Każda funkcja wypuk la jest także quasi-wypuk la. Funkcja f jest quasi-wkl es la gdy funkcja f jest quasi-wypuk la. 1.2 O naturze dynamicznej optymalizacji Intuicja i przyk lady dla podstawowych poj eć: funkcjona l, zmienne warunki końcowe (pionowa i pozioma linia końcowa, krzywa końcowa), warunek transwersalności. Alternatywne podejścia do dynamicznej optymalizacji: rachunek wariacyjny, teoria optymalnego sterowania, programowanie dynamiczne. 4

Twierdzenie 1.7 (Zasada Leibniza) Rozważmy ca lk e oznaczona: I(x) b a F (t, x)dt, gdzie F x(t, x) jest ciag le na przedziale [a, b] wtedy: di dx = b a F x(t, x)dt, ponadto oznaczajac: J(b, a) b a F (t, x)dt mamy regu ly cz astkowe: J = F (b, x), b J = F (a, x). a 2 Przypadek ciag ly - teoria sterowania optymalnego 2.1 Najprostszy problem sterowania optymalnego max V = T 0 F (t, y, u)dt, przy warunkach ẏ = f(t, y, u), y(0) = A, y(t ) swodobne (A,T - dane) oraz u(t) U dla wszystkich t [0, T ]. Zak ladamy, że funkcje F i f sa ciag le i maja ciag le pochodne pierwszego rzedu wzgledem t i y. Przyjmiemy, iż U = R. 2.2 Hamiltonian i zasada maksimum Definicja 2.1 Funkcj e Hamiltona (hamiltonian) dla problemu (2.1) definiujemy jako: H(t, y, u, λ) F (t, y, u) + λf(t, y, u), gdzie λ jest tzw. zmienna dualna. Twierdzenie 2.1 (Zasada maksimum) Dla problemu (2.1) warunki zasady maksimum sa nastepuj ace: max u H(t, y, u, λ) dla każdego t [0, T ], ẏ = H λ, [równanie ruchu dla y] λ = H y, [równanie ruchu dla λ] λ(t ) = 0 [warunek transwersalności]. Twierdzenie 2.2 (Mangasariana) Dla problemu max u przy warunkach V = T 0 F (t, y, u)dt, ẏ = f(t, y, u), y(0) = y 0 (y 0, T dane). 5

warunki zasady maksimum sa wystarczajace do globalnej maksymalizacji V o ile obie funkcje F i f sa różniczkowalne i wkles le oraz różniczkowalne l acznie wzgledem zmiennych (y, u) oraz jeśli f jest nieliniowe wzgledem y lub u to dla rozwiazania optymalnego zachodzi: λ(t) 0 dla każdego t [0, T ]. Twierdzenie Mangasariana jest szczególnym przypadkiem twierdzenia Arrowa: Twierdzenie 2.3 (Arrowa) Niech u = u (t, y, u) maksymalizuje hamiltonian w każdej chwili, przy danych wartościach zmiennej stanu y i zmiennej dualnej λ. Stwórzmy zmaksymalizowany hamitlonian: H 0 (t, y, u) = F (t, y, u ) + λf(t, y, u ), dla problemu z poprzedniego twierdzenia warunki zasady maksimum sa wystarczajace na globalna maksymalizacje V, o ile zmaksymalizowany hamiltonian H 0 jest wkles ly wzgledem y dla wszystkich t [0, T ] dla danego λ. 2.3 Problem z wieloma zmiennymi stanu i zmiennymi sterujacymi max V = T 0 F (t, y 1, y 2,..., u 1, u 2,..., u m )dt, przy warunkach ẏ j = f j (t, y 1, y 2,..., u 1, u 2,..., u m ), y j (0) = y j0, y j (T ) = y jt, oraz u i (t) U i (i = 1,... m, j = 1,... n). Dla takiego problemu otrzymujemy hamiltonian: H F (t, y 1, y 2,..., u 1, u 2,..., u m ) + zasada maksimum przybiera postać: n λ j f j (t, y 1, y 2,..., u 1, u 2,..., u m ), Twierdzenie 2.4 (Zasada maksimum) Dla problemu wielowymiarowego warunki zasady maksimum sa nastepuj ace: j=1 max u H(t, y, u, λ), ẏ = H, λ λ T = H y gdzie λ T to transpozycja λ, H t=t = 0 (lub λ j (T ) = 0) jeśli T (lub y jt ) jest swobodne, gdzie y = [y 1, y 2,..., y n ] T, u = [u 1, u 2,..., u m ] T i λ = [λ 1, λ 2,..., λ n ] T. 6

2.4 Alternatywne warunki końcowe Wróćmy do problemu jednowymiarowego (2.1). Dla alternatywnych warunków końcowych pierwsze trzy warunki zasady maksimum pozostaja niezmienione, zmianie podlega warunek transwersalności: ustalony punkt końcowy: y(t ) = y T ((T, y T ) - dane), pozioma linia końcowa: [H] t=t = 0, krzywa końcowa postaci y T = φ(t ): [H λφ ] t=t = 0, obci eta pionowa linia końcowa (y T y min, T i y min dane): λ(t ) 0, y T y min, (y T y min )λ(t ) = 0, obci eta pozioma linia końcowa (T T max ): [H] t=t 0, T T max, (T T max )[H] t=t = 0. 2.5 Dyskontowanie i hamiltonian wartości bieżacej Gdy funkcja podca lkowa F zawiera czynnik dyskontujacy e ρt : F (t, y, u) = G(t, y, u)e ρt wtedy hamiltonian można przekszta lcić do postaci hamiltonianu wartości bieżacej: Definicja 2.2 Hamiltonian wartości bieżacej definiujemy jako: H c (t, y, u, λ) He ρt = G(t, y, u) + mf(t, y, u), gdzie m = λe ρt jest tzw. zmienna dualna. Twierdzenie 2.5 (Skorygowana zasada maksimum) Dla problemu z czynnikiem dyskontujacym warunki skorygowanej zasady maksimum sa nastepu- jace: max u H c (t, y, u, λ) dla każdego t [0, T ] ẏ = Hc m [równanie ruchu dla y] ṁ = Hc y + ρm [równanie ruchu dla λ] m(t )e ρt = 0 [warunek transwersalności]. 2.6 Zagadnienie z nieskończonym horyzontem czasowym Uwaga na zbieżność ca lki!! Dalej jak wyżej, zmieniamy tylko warunek transwersalności: lim t λ(t) = 0, lim t λ(t) 0 oraz lim t λ(t)[y(t) y min ] = 0, [dla swobodnego stanu końcowego] [dla ograniczonego stanu końcowego]. 7

3 Przypadek dyskretny - programowanie dynamiczne 3.1 Nieskończony horyzont Rozpatrzmy problem 5 : Zauważmy, że: (SP) max (xt+1 ) t=0 t=0 βt F (x t, x t+1 ) p.w. x t+1 Γ(x t ), t = 0, 1..., i danym x 0 X. Twierdzenie 3.1 Weźmy f : X R oraz g : X Y R. Przyjmijmy, że max y Y {g(x, y)} oraz max (x,y) {f(x) + g(x, y)} istnieja wtedy: max (x,y) {f(x) + g(x, y)} = max{f(x) + max{g(x, y)}}. x y Zadanemu problemowi (SP) optymalizacyjnemu odpowiada równanie funkcyjne postaci: (FE) V (x) = max y Γ(x) {F (x, y) + βv (y)}, x X. Niech Π(x 0 ) = {(x t ) t=0 : x t+1 Γ(x t ), t = 0, 1,...} oznacza zbiór planów dostepnych z x 0 a x = (x 0, x 1,...) oznacza element zbioru Π(x 0 ). Przyjmiemy nastepuj ace za lożenie: Za lożenie 3.1 Zbiór wartości Γ(x) jest niepusty dla każdego x X. Dla każdego x 0 i x Π(x 0 ) granica lim n n t=0 βt F (x t, x t+1 ) istnieje. Dla każdego n N niech u n : Π(x 0 ) R b edzie zadana wzorem: u n (x) = n t=0 βt F (x t, x t+1 ) a u : Π(x 0 ) R b edzie zadane: u(x) = lim n u n (x). Niech V (x 0 ) = max x Π(x0 ) u(x). Twierdzenie 3.2 Niech X, Γ, F, β spe lniaja za lożenie 3.1 wtedy funkcja V spe lnia (FE). Twierdzenie 3.3 Niech X, Γ, F, β spe lniaja za lożenie 3.1 a funkcja V spe lnia (FE) oraz lim n β n V (x n ) = 0 dla każdego x Π(x 0 ) i każdego x 0 X wtedy V = V. Twierdzenie 3.4 Niech X, Γ, F, β spe lniaja za lożenie 3.1 a plan x Π(x 0 ) osiaga maksimum (SP) dla danego x 0. Wtedy V (x 0) = F (x t, x t+1) + βv (x t+1), t. (3.1) Twierdzenie 3.5 Niech X, Γ, F, β spe lniaja za lożenie 3.1 a plan x Π(x 0 ) spe lnia równanie (3.1) i warunek lim max t β n V (x t ) 0. Wtedy x osiaga maksimum w (SP ) dla danego x 0. 5 Dla uproszczenia zak ladamy, że maksimum tego problemu istnieje. 8

3.2 Twierdzenie o obwiedni Twierdzenie 3.6 Weźmy funkcje f(x, α) różniczkowalna po x i α oraz za- lóżmy, że dla każdego α istnieje max x {f(x, α)} wtedy: d dα F (α) = f 2( x(α), α), gdzie F (α) max x {f(x, α)} a x(α) arg max x {f(x, α)} sa różniczkowalne. 3.3 Schemat Schemat: maksymalizacja prawej strony równania Belmanna po zmiennej sterujacej, stosujemy twierdzenie o obwiedni dla równania Belmanna i zmiennej stanu, zapisujemy równanie Eulera, dodajemy warunek transwersalności, rozwiazujemy. 3.4 Skończony horyzont Funkcja celu dla skończonego horyzontu: T t=0 βt F t (x t, x t+1 )+β T +1 F T +1 (x T +1 ). Definicja 3.1 Funkcja wartości V τ (x τ ) nazywamy odwzorowanie przyporzadkowuj ace każdemu stanowi maksymalna możliwa do osiagni ecia wyp late: { T } max (x t+1 ) T t=τ +1 β t τ F t (x t, x t+1 ) + β T +1 τ F T +1 (x T +1 ). t=τ Zinterpretuj: V 0 (x 0 ) i V T +1 (x T +1 ). Twierdzenie 3.7 Równanie Belmanna dla problemu ze skończonym horyzontem: V t (x t ) = max {F t(x t, x t+1 ) + βv t+1 (x t+1 )}. x t+1 Γ(x t) Pami etajmy o warunku transwersalności: V T +1 (x t+1 ) = 0. 9

Literatura [1] Chiang A.C., Elementy dynamicznej optymalizacji, Warszawa 2002. [2] Dubnicki W., J. K lopotowski, T. Szapiro, Analiza matematyczna. Podr ecznik dla ekonomistów, Warszawa 1999. [3] Rockafellar, R.T., Convex analysis, Princeton University Press 1997. [4] Stokey, N., R.E. Lucas i E.C. Prescott, Recursive methods in economic dynamics, Cambridge 1989. 10