Sterowanie silnikami, robotem.

Podobne dokumenty
Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.

Regulator P (proporcjonalny)

7.2.2 Zadania rozwiązane

Regulatory o działaniu ciągłym P, I, PI, PD, PID

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa.

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

1. Regulatory ciągłe liniowe.

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

2. Wyznaczenie parametrów dynamicznych obiektu na podstawie odpowiedzi na skok jednostkowy, przy wykorzystaniu metody Küpfmüllera.

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Transmitancje układów ciągłych

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

Laboratorium z podstaw automatyki

Regulator PID w sterownikach programowalnych GE Fanuc

Regulacja dwupołożeniowa.

SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e

PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI

PRZEWODNIK PO PRZEDMIOCIE

Ćwiczenie 4 - Badanie charakterystyk skokowych regulatora PID.

1. Opis teoretyczny regulatora i obiektu z opóźnieniem.

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

Podstawy inżynierii sterowania Ćwiczenia laboratoryjne

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki

Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem:

Informatyczne Systemy Sterowania

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

PRZEWODNIK PO PRZEDMIOCIE

Wydział Fizyki i Informatyki Stosowanej

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Regulator PID w sterownikach programowalnych GE Fanuc

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

Automatyka i robotyka

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji

Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora)

4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()

Wzmacniacze, wzmacniacze operacyjne

Regulacja prędkości posuwu belki na prowadnicach pionowych przy wykorzystaniu sterownika Versa Max

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Automatyka i sterowania

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Laboratorium z podstaw automatyki

O co chodzi z tym MATLAB'em?!

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

Inteligentnych Systemów Sterowania

Definicja pochodnej cząstkowej

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

Regulacja dwupołożeniowa (dwustawna)

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

AKADEMIA GÓRNICZO HUTNICZA Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Symulacja pracy silnika prądu stałego

11. Dobór rodzaju, algorytmu i nastaw regulatora

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

REGULATOR PI W SIŁOWNIKU 2XI

Ćwiczenie PA5. Badanie serwomechanizmu połoŝenia z regulatorem PID

Cel ćwiczenia: Podstawy teoretyczne:

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Podział sieci na podsieci wytłumaczenie

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Sposoby modelowania układów dynamicznych. Pytania

Badanie układu regulacji prędkości obrotowej silnika DC

układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:

Automatyka i robotyka

LAB-EL LB-760A: regulacja PID i procedura samostrojenia

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

lim = lim lim Pochodne i róŝniczki funkcji jednej zmiennej.

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu

UWAGA 2. Wszystkie wyniki zapisywać na dysku Dane E: (dotyczy symulacji i pomiarów rzeczywistych)

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej.

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH

3. Macierze i Układy Równań Liniowych

Dokąd on zmierza? Przemieszczenie i prędkość jako wektory

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej

STEROWANIE MASZYN I URZĄDZEŃ I. Laboratorium. 8. Układy ciągłe. Regulator PID

ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

Elementy rachunku różniczkowego i całkowego

Realizacje regulatorów PID w sterownikach PLC Siemens S7-1200

Transkrypt:

Sterowanie silnikami, robotem. W artykule tym przedstawię sposoby regulacji silników stosowanych w robotach (reg. PID). 1. Wstęp: Artykuł dla portalu www.dioda.com.pl W kaŝdym robocie trzeba zastosować silnik, jest to sprawa oczywista. Niestety sprawą oczywistą nie jest w jaki sposób sterować tym silnikiem, a jeśli jest są to silniki napędzające koła robota, a robot jest typu fallow the line istotne jest, aby uzyskać maksymalną prędkość robota i aby koła się nie ślizgały po trasie. Wiele czynników wpływa na to, od materiałów stosowanych jako ogumienie koła, od materiału planszy, cięŝaru robota, środka cięŝkość, a najistotniejsze jest poprawne sterowanie silnikami które to koła te napędzają. Jak wiemy lub nie mamy kilka opcji do wyboru, pierwszym i najczęściej stosowany jest sterowanie silnikiem za pomocą regulacji jedź i stój, nie posiada Ŝadnej pętli sprzęŝenia zwrotnego, nie musimy znać parametrów obiektu ( zachwalę o tym będzie ) znaczy robota, właściwie nic nie trzeba mieć Ŝadnej wiedzy, aby zastosować te sterowanie. Bądź zastosowanie z któregoś regulatora P, PI, PD, PID, a co tak właściwie znaczą te literki: P człon proporcjonalny D człon róŝniczkujący I człon całkujący jeśli ktoś nie zna matematyki wyŝszej to tak właściwie nic mu nie mówi róŝniczka i całka, a rzadko w którym liceum są prowadzone róŝniczki na matematyce. Bez zbędnej matematyki i w zastosowaniach cyfrowych ( dyskretnych ), całka jest to suma, a róŝniczka to róŝnica, ale o tym później jak będziemy się zastanawiać nad algorytmem. Nie chcę wprowadzać do artykułu wielkiej matematyki i wgłębiać się w automatykę, ale jakąś teorię i symulacje pokarzę. 2. Obiekt regulacji: Obiektem naszej regulacji jest ogólnie pojęty robot, a dokładniej jest to silnik ( wraz z układem sterującym silnika np. H-mostek). MoŜna przyjąć załoŝenie, Ŝe silnik jest obiektem liniowym inercyjnym 2 rzędu, niektórzy się podrapią w głowię i powiedzą sobie i co to znaczy, to znaczy tyle, Ŝe sam silnik nie potrafi w tej samej chwili po załączeniu napięcia się rozkręcić do prędkości wynikającej z napięcia (mocy), jest to spowodowane tym, Ŝe nie jesteśmy w stanie dostarczyć do układu nieskończonej mocy, szczególnie jak do dyspozycji mamy zasilanie bateryjne. Przedstawię to na wykresie dla obiektu 1 rzędu i dla obiektu 2 rzędu.

2 Daniel Brol Rys1. Odpowiedź na skok obiektu 1 i 2 rzędu. I co z tego moŝna wywnioskować? otóŝ, Ŝe silnik ( z załoŝeniami uproszczeniowymi) nie reaguje na podane napięcie natychmiastowo, dodatkowo obiekt 2 rzędu ma pewien etap na początku pracy, Ŝe powoli prędkość narasta. Jeśli dodatkowo będzie zbyt szybko narastać koła mogą nie złapać przyczepności i kręcić się w miejscu, co dodatkowo wydłuŝa czas dojścia do prędkości ustalonej. Ogólne równanie obiektu liniowego inercyjnego 2 rzędu: Gdzie: k K ( s) = ( T1 s + 1)( T2s + 1) K(s) transmitancja obiektu T 1 pierwsza stała czasowa obiektu T 2 druga stała czasowa obiektu s operator MoŜe teraz coś o tym operatorze, jest to operator Laplace`a, przejście z dziedziny czasu do dziedziny zespolonej: f (t) f (s), s = c + jω poco? po to aby łatwiej się liczyło anologowo na kartce papieru, chodzi oto aby całki i pochodne które same w sobie trudno się liczy zamienić na s i liczyć je tak jak algebra nakazuje. Równania róŝniczkowe zamieniamy na równania w najgorszym wypadku wielomianowe (typu funkcja kwadratowa). Zamiana czasu na s, obliczenia, i ponowna zamiana s na czas, wymaga duŝo mniej wiedzy, czasu i kartek papieru niŝ obliczenie w dziedzinie czasu (róŝniczek, a wszystko w przyrodzie jest nie liniowe).

Sterowanie silnikami, robotem. 3 Transmitancja (K(s)) układu jest to co otrzymamy od układu przez to co do niego dostarczymy: K ( s) = Y ( s) X ( s) Rys2. Transmitancja obiektu. Dlatego, nie moŝemy pomierzyć bezpośrednio K(s), musimy obliczyć go w powyŝszy sposób. X(s) bo będzie napięcie, Y(s) moŝe to być prędkość obrotowa silnika, prędkość przemieszczenia robota. T 1 i T 2 są to stałe czasowe obiektu, przewaŝnie jedna z nich dominuje, druga ma mniejszą wartość, moŝe je znaleźć na rys1, ale o tym później jak dojedziemy do identyfikacji obiektu. 3. Regulatory Zajmijmy się na początku, co kaŝdy człon P, I, D, regulatora robi. Człon P proporcjonalny, jest to nic innego jak wzmocnienie uchybu regulacji, układ elektroniczny reprezentujący ten człon wygląda jak wzmacniacz ( i jest nim). Człon całkujący I - intergrator, w wielkim skrócie powoduje, Ŝe uchyb regulacji osiąga zero, czyli jeśli nastawimy prędkość 57,8% to tą prędkość osiągnie ( na razie nie mówimy tutaj o czasie osiągnięcia tej prędkości). Człon róŝniczkujący D differentior odpowiada na szybkie zmiany sterowania, np. na uchybu regulacji, jeśli np. chcemy ruszyć z miejsca od 0% mocy do 50% mocy to ten człon regulatora odpowiada, aby z jak największym przyśpieszeniem ruszyć lub jeśli robot trafi na ścianę ( czyli się zatrzyma ), a układ sterowania ma ustawioną moc 100% to regulator róŝniczkujący odpowiada, z swoją całą stanowczością. Równanie regulatora idealnego PID: Gdzie: k p wzmocnienie proporcjonalne T i czas zdwojenia T d czas wyprzedzenia K 1 ( s) = k p (1 + Td s) T s pid + i Jeśli ktoś by chciał wykonać symulacje w matlabie to przedstawiam jeszcze jego budowę, gdzie te trójkąciki to odpowiednie wartości nastaw regulatora:

4 Daniel Brol 4. Układ Regulacji: Rys3. Schemat blokowy regulatora PID Po przez układ regulacji rozumiemy regulator, obiekt i pętle sprzęŝenia zwrotnego. O pętli sprzęŝenia zwrotnego jeszcze nic nie było, a więc najpierw zobaczmy na rys poglądowy: Gdzie: Rys4. Układ regulacji z sprzęŝeniem ujemnym zwrotnym. u jest sygnałem sterującym regulatora y sygnał wyjściowy e e =y-w, jest to uchyb regulacji w sygnał/moc jaką chcemy osiągnąć z zasilanie układu Pętla ujemnego sprzęŝenia zwrotnego powoduje, Ŝe układ wie w jakim miejscu się znajduje i za pomocą uchybu regulacji wie ile brakuje do ustalonego poziomu. Pętla sprzęŝenia zwrotnego czasem moŝe powodować, Ŝe układ będzie niestabilny, ale dlaczego i jakie są warunki stabilności odsyłam do literatury. Układ regulacji z rysunku 4 działa następująco, ustalamy pewną wartość w ( np. % moc/prędkość ), jeśli układ stoi, to uchyb regulacji wynosi w, regulator wypracowuję sygnał sterujący, sygnał sterujący razem z zasilaniem układu daje na obiekt sygnał wejściowy np. napięcie. W następnym kroku wszystko się powtarza, z tym, Ŝe obiekt ma juŝ pewną prędkość 5. Pętla sprzęŝenia zwrotnego: Jest najbardziej skomplikowanym i najdroŝszy element obiektu, musi to być urządzenie zdolne do stwierdzenia z jaką prędkością porusza się nasz robot, a by wypracować razem z regulatorem sygnał sterujący. Z mojej strony będą to tylko rzucone hasła, bo to nie jest temat artykułu, pierwszym pewnym rozwiązaniem moŝe być akcelerometr wraz z układem całkującym. MoŜe być układ optyczny z myszki. śadne enkodery nie pomogą, bo potrzebujemy znać prędkość robota, a nie prędkość obrotową kuł. MoŜna próbować

Sterowanie silnikami, robotem. 5 wykonywać jakieś dalmierze optyczne, ewentualnie mały system radiowy z 3 nadajnikami, temat bardzo trudny, ale wykonywalny. 6. Identyfikacja obiektu: Pamiętacie jeszcze z początku równanie obiektu liniowego inercyjnego 2 stopnia? Jeśli nie to jeszcze raz dla przypomnienia: k K ( s) = ( T1 s + 1)( T2s + 1) Przedstawię jedną z wielu metod identyfikacji obiektu, a po co wykonywać identyfikację będzie później. Zakładam, Ŝe niewymagany wysokiej precyzji odwzorowania robota do symulacji, stąd załoŝenie, Ŝe robot jest obiektem liniowym inercyjnym 2 stopnia. OtóŜ najprostszym sposobem identyfikacji jest sprawdzenie jak robot odpowiada na skok jednostkowy Hevisaida, czytać na podanie np. 75% napięcia(dowolna wartość), przypominacie sobie rys1.? Nie, to właśnie jest coś takiego, mając taki wykres prędkości po zadaniu pewnego napięcia. Ok. mamy przed sobą taki rysunek i co z nim zrobić, aby otrzymać k, T 1 i T 2. Szukamy punktu przegięcia wykresu, rysujemy styczną do tego punktu: Rys5. Styczna w punkcie przegięcia Następnie według rysunka5 szczytujemy z osi następujące wartości T 1, T 2, kr, kw, z tym Ŝe wzmocnienie k jest stosunkiem wartości sygnału wyjściowego ( prędkości ) ustalonego, do wartości napięcia zadanej. kw k = kr Jak wynika z wykresu T 1 ~0.4, T 2 ~1.8, k=1 Jak pisałem jest to jedna z wielu metod, moŝe jest ona nie dokładna bo musimy ręcznie wyznaczyć punkt przecięcia, i odczytać wartości z osi, ale za to jest metodą bardzo prostą ( nie uwzględniłem w obiekcie opóźnienia, to było kolejne załoŝenie upraszczające).

6 Daniel Brol 7. Nastawy regulatora PID Po to nam było potrzebna identyfikacja obiektu/robota aby muc wyliczyć nastawy regulatora PID. Mała ciekawostka w całej automatyce świata szacuje się, Ŝe 85% wszystkich regulatorów to są regulatory PID, z czego tylko 40% z nich ma poprawne nastawy regulatora, dlatego tak waŝne jest poprawne wyliczenie nastaw regulatora. Jak jesteśmy przy ciekawostkach, to nie wiem czy wiecie, Ŝe regulator PID jest technologią wojskową, miał za zadanie naprowadzać działa na szybko poruszające się cele takie jak samoloty. Wracając do nastaw regulatora PID to są 2 grupy metod jedna inŝynierska, druga magisterska. KaŜda z nich wymaga innego poziomu wiedzy. A, Ŝe nie wszyscy wiedzą to pokaŝe pewną tabelkę z której oblicza się nastawy, z wcześniej obliczonego obiektu: Gdzie: Przeregulowanie ~0% Typ Minimum czasu regulacji regulatora K p T i T d P 0.3/a - - PI 0.6/a 0,8T 0 +0,5T - PID 0.95/a 2,4T 0 0,4T 0 Tabela1. Dobór nastaw regulatora. a kt 0 /T T 0 w naszym przypadku jak wcześniej go zaznaczyłem T 2 T jest T 1, ta mniejsza stała czasowa. A więc dla naszego obiektu przedstawionego na rysunku 5, nastawy regulatora będą wynosić: Kp=4.275, 1/Ti=0.231, Td=0.72, Rys6. Wykres przedstawia obiekt bez regulacji i z regulacją PID.

Sterowanie silnikami, robotem. 7 Jak widzimy na rys6. regulator PID nie ma poprawnych nastaw, co w tym przypadku nikogo nie dziwi, metody przedstawione przeze mnie nie są idealne, i z załoŝenia nie miały być, są za to bardzo proste, naleŝy teraz eksperymentalnie dobierać wartości regulatora PID, tak aŝ będą poprawne. Wystąpiło przeregulowanie, ale moŝna teŝ zauwaŝyć, Ŝe układ ma większą dynamikę. Po kilku symulacjach i zwiększeniu/zmniejszeniu nastaw otrzymujemy: Rys7. Wykres regulacji PID, z poprawnymi wartościami. Czas regulacji się zmniejszył, nie występują przeregulowania. Zobaczmy co się stanie jak zaczniemy szybko zmieniać sterowaniem robota: Rys8. Wykres sterowania obiektem z Reg. PID i bez.

8 Daniel Brol Jak widzimy na rys8. Jeśli będziemy szybko zmieniać sterowanie prędkością robota to sam silnik moŝe się nie rozpędzić, w tak krótkim czasie do ustalonego poziomu, regulator PID znacznie poprawia dynamikę samego robota. 8. Wady reg. PID Jak do tej pory widzieliśmy same zalety regulacji PID, a jednak ma pewne wady. Jak wcześniej wspomniałem trzeba wykonać pętle sprzęŝenia zwrotnego z tym będzie wiele zabawy, rozwiązania są trudne i kosztowne, jeśli je przezwycięŝymy, trafimy na kolejny problem jakim jest, zapas mocy powinniśmy w swoim robocie posiadać duŝy większą moc niŝ to wynika z sumy mocy nominalnej silników. Zobaczmy dlaczego tak się dzieje, rzut oka na sygnał sterujący silnikami: Rys9. Wykres syg. sterującego PID (war. bezwzględna) Rys9. Prezentuje moc jaką trzeba dostarczyć do silników aby zachowywał się tak jak to wynika z sterowania. Jedynka na osi y reprezentuje moc nominalną silnika, syg. czerwony jest to sygnał jakiej mocy naleŝy dostarczyć do silnika, aby otrzymać przebieg prędkości (zielony sygnał), ewentualnie hamujemy przełączając silnik na odwrotny kierunek, aby obiekt zmniejszył prędkość. W tym wypadku musimy dysponować mocą prawie 5 razy większą niŝ moc nominalna silnika. 9. Algorytm na uc Spróbuję podjąć pewną próbę napisania równania które po implementacji do up, będzie symulowało pracę regulatora PID. Przypomnijmy sobie równanie regulatora PID: K 1 ( s) = k p (1 + Td s) T s pid + i

Sterowanie silnikami, robotem. 9 Pamiętając bez zbędnych wywodów i matematyki, Ŝe: 1/s = całka, a całka do sumowanie, i s = pochodna, czyli odejmowanie. Przymnijmy, Ŝe przed uruchomieniem układ był w spoczynku. Nazwijmy sobie kolejne wartości przychodzące do up z uchybu regulacji X n, a następna będzie X n+1, to dla elementu całkującego będzie X n +X n+1, a dla układu róŝniczkującego X n+1 -X n, te wartości mnoŝymy przez ich współczynniki, a następnie dodajemy 1 i mnoŝymy przez k p. A więc ogólne równanie będzie wyglądało następująco: 1 K pid = k p ( 1+ ( X n + X n+ 1) + Td ( X n+ 1 X n )) Ti Następnie K pid naleŝy przetworzyć na sygnał sterowania silnikiem, najlepiej PWM, lub jak kto woli po Polsku MSI(modulacja szerokością impulsu), aby płynnie regulować całym robotem. 10. Podsumowanie Jeśli dysponujemy odpowiednią wiedzą, czasem i pieniędzmi, jesteśmy w stanie wykonać robota z regulatorem PID. Jest wiele przeszkód i trudności, ale za to moŝemy wycisnąć maksymalną prędkość z robota, a na zawodach na czas, czas się liczy, a czas to prędkość. Mam nadzieję, Ŝe nikogo nie zniechęciłem tylko rozjaśniłem, jakie są problemy z regulatorem PID, czym on faktycznie jest, jak go moŝna symulować, jak go moŝna ugryź i od czego zacząć. Niechciałem nikogo uczyć wyŝszej matematyki i część rzeczy jest napisane prosto, niektórzy mogą krzywo spojrzeć, bo jest zbyt prosto, to samo z automatyką teŝ nie chciałem robić wykładów tylko przybliŝyć problem. 11. Literatura [1]. Wykłady z Podstaw Automatyki, prof. Jan Zakrzewski, PolŚl [2]. Wykłady z Automatyki dr inŝ Henryk Urzędniczok, PolŚl [3]. Wykłady z Dynamiki i Indyfikacji obiektów dr inŝ. Henryk Urzędniczok, PolŚl [4]. Laboratorium z Podstaw Automatyki i z Automatyki, PolŚl [5]. Podstawy Automatyki dr inŝ. Marek śelazny // akurat ten podręcznik miałem pod ręką.