Fizyka 1 (mechanika) AF14. Wykład 10

Podobne dokumenty
Fizyka 1 (mechanika) AF14. Wykład 10

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Ruch pod wpływem sił zachowawczych

Zagadnienie dwóch ciał

Obraz Ziemi widzianej z Księżyca

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

Fizyka 1 (mechanika) AF14. Wykład 9

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Ruchy planet. Wykład 29 listopada 2005 roku

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

V.4 Ruch w polach sił zachowawczych

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

FIZYKA-egzamin opracowanie pozostałych pytań

Pęd i moment pędu. dp/dt = F p = const, gdy F = 0 (całka pędu) Jest to zasada zachowania pędu. Moment pędu cząstki P względem O.

PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA. Piotr Nieżurawski.

Dwa przykłady z mechaniki

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

MiBM sem. III Zakres materiału wykładu z fizyki

Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet

Grawitacja - powtórka

Treści dopełniające Uczeń potrafi:

Mechanika. Wykład 2. Paweł Staszel

Prawo to opisuje zarówno spadanie jabłka z drzewa jak i ruchy Księżyca i planet. Grawitacja jest opisywana przez jeden parametr, stałą Newtona:

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

Zasady dynamiki Isaak Newton (1686 r.)

ver grawitacja

Grawitacja. Fizyka I (Mechanika) Wykład XI:

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

Zasady zachowania. Fizyka I (Mechanika) Wykład VI:

Fizyka 11. Janusz Andrzejewski

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Kinematyka: opis ruchu

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Prawa ruchu: dynamika

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Zasada zachowania pędu

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Wstęp do astrofizyki I

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

DYNAMIKA dr Mikolaj Szopa

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Podstawy fizyki sezon 1 III. Praca i energia

MECHANIKA II. Praca i energia punktu materialnego

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Zadanie na egzamin 2011

Pole magnetyczne magnesu w kształcie kuli

Krzywe stożkowe Lekcja V: Elipsa

Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski

1. Kinematyka 8 godzin

MECHANIKA II. Dynamika układu punktów materialnych

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

Równania dla potencjałów zależnych od czasu

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

PF11- Dynamika bryły sztywnej.

Fizyka 10. Janusz Andrzejewski

Zasada zachowania energii

GRAWITACJA. Odddziaływania grawitacyjne zachodzą pomiędzy wszystkimi ciałami posiadającymi masę i są powszechne gdyż zachodzą:

Grawitacja. Wykład 7. Wrocław University of Technology

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

I. DYNAMIKA PUNKTU MATERIALNEGO

2.3. Pierwsza zasada dynamiki Newtona

Równania różniczkowe opisujące ruch fotela z pilotem:

Grawitacja. =2,38 km/s. Promień Księżyca jest równy R=1737km. Zadanie - Pierwsza prędkość kosmiczna fizyka.biz 1

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY

Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

Krzywe stożkowe Lekcja VII: Hiperbola

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Fizyka I. Kolokwium

Transkrypt:

Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Jerzy Łusakowski 12.12.2016

Plan wykładu Grawitacja Wzór Bineta

Grawitacja Oddziaływanie grawitacyjne m 2 m 1 r 12 F 21 F 12 F 12 = G m 1m 2 r 12 r12 2 ; G=6.67 10 11 Nm 2 /kg 2 r 12 F 12 = F 21. F 12 - siła, z jaką na ciało o masie m 1 działa ciało o masie m 2. r 12 - wektor o poczatku w centrum masy m 1 i końcu w centrum masy m 2.

Grawitacja Waga skręceń Michella m 1 m 2 m 2 m 1 Do kwarcowego pręta można przyczepić lusterko i obserwować odbicie promienia lasera.

Grawitacja Doświadczenie Cavendisha (1797-1798) Michell zmarł w 1793 r. i nie dokończył realizowanego projektu. Jego aparaturę przejał Wollaston, a potem - Cavendish. Parametry doświadczenia Cavendisha były następujace. Dwie kule ołowiane o średnicy 2 cali i masie 1.61 funta każda umieszczone na końcach drewnianej beleczki o długości 6 stóp. Beleczka zawieszona w środku ciężkości na drucie. Na niezależnej podstawie, dwie kule ołowiane o śrdenicy 12 cali i masie 348 funtów, umieszczone w odległości około 9 cali od małych kul. Całość zamknięta w drewnianej obudowie o grubości ścianek 2 stopy i wysokosci 10 stóp. Teleskopowa (przez dziurę w ścianie) obserwacja oscylacji beleczki wagi (amplituda 0.16 cala; dokładność: 0.01 cala; okres drgań: ok. 20 min.). Siła oddziaływania kul: 1.74 10 7 N (ciężar ziarnka piasku).

Grawitacja Co wyznaczył Cavendish? Cavendish chciał wyznaczyć gęstość materii tworzącej Ziemię. Posługiwał się, oczywiście, prawem grawitacji Newtona, ale w jego czasach nie było ono wyrażane za pomoca stałej grawitacji G - to nastapiło dopiero kilkadziesiat lat później. Jedno z pierwszych odniesień do stałej grawitacji pochodzi z 1873 r., 75 lat po doświadczeniu Cavendisha. G=g R2 Z M Z = 3g 4πR Z ρ Z. Cavendish wyznaczył wartość ρ Z = 5.448 g/cm 3, co po przeliczeniu na jednostki SI daje G=6.74 10 11 m 3 kg 1 s 2, co różni się o 1% od współcześnie przyjmowanej wartości G=6.7384 10 11 m 3 kg 1 s 2

Grawitacja Grawitacyjna energia potencjalna Jak pamiętamy, zmiana energii potencjalnej ciała o masie m w polu grawitacyjnym wytworzonym przez masę M jest równa pracy, jaką musi wykonać siła zewnętrzna, by przesunać ciało z punktu A do punktu B. W przypadku oddziaływania grawitacyjnego wygodnym punktem odniesienia jest nieskończoność : E p (r ) 0.

Grawitacja Grawitacyjna energia potencjalna M r m F G F zew d r E p (R)= R R F zew d r= G Mm r 2 e r d r UWAGA: d r = dr e r BEZ WZGLEDU NA KIERUNEK RUCHU. E p (R)= R G Mm r 2 dr= GMm R Praca ta jest niezależna od drogi - to samo otrzymamy dla drogi o dowolnym kształcie.

Grawitacja Energia potencjalna układu mas 1. Dana jest masa m 1. 2. Sprowadzamy w jej pobliże masę m 2. E p = G m 1m 2 r 12. 3. Sprowadzamy kolejna masę m 3 E p = G m 1m 2 r 12 G m 1m 3 r 13 G m 2m 3 r 23. r ij - końcowe odległości między środkami mas m i i m j. Energia potencjalna układu mas jest równa sumie energii potencjalnych oddziaływania każdej pary.

Zadanie nazywane Zagadnieniem Keplera polega na znalezieniu ruchu planety w polu grawitacyjnym słońca, a w nieco ogólniejszym sformułowaniu - na znalezieniu ruchu dwóch mas oddziałujacych siłą odwrotnie proporcjonalna do kwadratu ofległości. W obu przypadkach układ jako całość porusza się ze stałą prędkościa środka masy w wybranym układzie inercjalnym, a słońce i planeta poruszaja się wokół środka masy. W pierwszym przypadku (planeta i słońce) można z dobrym przybliżeniem założyć, że ruch planety odbywa się wokół nieruchomego słońca, gdyż środek masy układu pokrywa się z bardzo dobra dokładnościa ze środkiem słońca, co ułatwia wyobrażenie sobie ruchu układu.

Prawa Keplera Prawa Keplera są wnioskami wynikajacymi z rozwiązania Zagadnienia Keplera w przypadku orbit zamkniętych (elipsa i okrąg). Rozwiązanie Zagadnienia Keplera pozwala także na analizę orbit otwartych (parabola, hiperbola). 1. Wszystkie planety poruszaja się po elipsach, w których ognisku znajduje się Słońce. 2. Linia łącząca planetę ze Słońcem zakreśla w jednakowych odstępach czasu jednakowe pola powierzchni w płaszczyźnie orbity, czyli prędkość polowa jest stała. 3. Kwadrat okresu ruchu planety na orbicie jest proporcjonalny do sześcianu wielkiej półosi orbity.

Rozwiązanie zagadnienia Keplera - schemat 1. Wypisujemy równania ruchu w układzie inercjalnym dla mas m 1 i m 2. Zmienne niezależne: r 1 i r 2. Dokonujemy zamiennych zmiennych ( r 1, r 2 ) ( R SM, r= r 2 r 1 ). 2. Znajdujemy ruch środka masy: R SM = R 0 + V SM t. 3. Równanie do rozwiązania ma postać: µ r= α r r 2 r. a) mnożąc wektorowo przez r znajdujemy, że w układzie środka masy ruch jest płaski, a moment pędu - stały: całka momentu pędu. b) mnożąc skalarnie przez r znajdujemy, że w układzie środka masy stała jest energia: całka energii. c) wyrażamy υ 2 przez r,ϕ,l SM i wstawiamy do całki energii, która ma postać równania różniczkowego na r(φ). p d) całkując to równanie otrzymujemy r(φ) = 1+ε cos(ϕ γ). e) znajdujemy związki między p, ε, γ a parameterami orbity, energią i momentem pędu. 4. Analiza otrzymanego rozwiązania pozwala na sformułowanie praw Keplera..

Równania ruchu dla mas m 1 i m 2 ; zamiana zmiennych { m1 r1 = G m 1m 2 r r 2 r (1) m 2 r2 = G m 1m 2 r r 2 r { r = r2 r 1 R SM = m 1 r 1 +m 2 r 2 m 1 +m 2 Dodając stronami otrzymujemy: m 1 r1 + m 2 r2 = 0 R SM = R 0 + V 0 t. Wyrażamy r 1 i r 2 przez R SM i r: r 1 = R SM m 2 m 1 +m 2 r r 2 = R SM + m 1 m 1 +m 2 r r 1 = m 2 m 1 +m r 2 r 2 = (2) m 1 m 1 +m r 2 W układzie środka masy (tzn. względem punktu określonego przez wektor R SM : { r1,sm = m 2 r 2,SM = m 1 +m 2 r m 1 m 1 +m 2 r (3)

Równania ruchu dla mas m 1 i m 2 ; zamiana zmiennych Z postaci (3) widać, że środek masy leży na odcinku łączącym m 1 i m 2 i dzieli go w stosunku r 1 r2 = m 2 m 1. Jeśli zatem m 1 m 2, to r 1 r 2, czyli środek masy pokrywa się (prawie) z położeniem masy m 1. To jest przypadek Słońce + planeta. Możemy z bardzo dobrym przybliżeniem uznać, że układ środka masy, w ktorym jest rozwiązywany problem ruchu względnego jest układem o środku połozonym w środku Słońca. Podstawiajac (2) do (1) otrzymujemy dwa identyczne równania: r= G m 1+ m 2 r r 2 r. Chcielibyśmy po prawej stronie mieć siłę oddziaływania mas G m 1m 2 r 2 Mnożymy zatem prawą stronę przez m 1 m 2 /m 1 m 2 i dostajemy: r= m 1+ m 2 G m 1m 2 r m 1 m 2 r 2 r. r r.

Równania ruchu dla mas m 1 i m 2 ; zamiana zmiennych Wprowadzamy masę zredukowana µ: m 1 + m 2 m 1 m 2 = 1 m 1 + 1 m 2 = 1 µ µ = m 1m 2 m 1 + m 2 Równanie, które należy rozwiązać, żeby znaleźć ruch względny: µ r= α r 2 r r, gdzie α = Gm 1 m 2. Uwaga: ruch środka masy dotyczy CAŁKOWITEJ masy m 1 + m 2, zaś ruch względny - masy ZREDUKOWANEJ. Tylko w przypadku m 1 m 2 (czyli Słońce + planeta) możemy masę zredukowana utożsamić z masą planety.

Ruch środka masy Ruch środka masy R SM = R 0 + V 0 t oznacza, że w układzie inercjalnym, w którym cały problem rozpatrujemy, środek masy przemieszcza się ruchem jednostajnym prostoliniowym. Należało tego oczekiwać, ponieważ w rozpatrywanym problemie na układ nie działaja siły zewnętrzne (a tylko siły wewnętrzne - oddziaływania grawitacyjnego). Ruch ten moglibyśmy utożsamić (w przybliżeniu) z ruchem układu planetarnego wokół centrum Galaktyki. Ale uwaga: taki ruch nie jest prostoliniowy!

Analiza równań ruchu mas m 1 i m 2 w układzie środka masy

Ruch mas m 1 i m 2 w układzie środka masy oraz ruch względny

Całka momentu pędu czyli czyli µ r= α r 2 r r, r µ r= r α r r 2 r = 0, ( d r µ d r ) = r µ r, dt dt ( d r µ d r ) = 0, dt dt r µ d r dt = const. Wynika stąd, że r i d r dt leżą w jednej płaszczyźnie, bo gdyby tak nie było, to ich iloczyn wektorowy nie mógłby być stałym wektorem - ruch WZGLEDNY jest płaski.

Całka momentu pędu Wykażemy, że L MS = r µ d r dt jest momentem pędu dwóch mas względem środka masy. L 1,SM = r 1,SM m 1 r1,sm = µ r m 1 ( µ µ 2 r)= r r m 1 m 1 m 1 L 2,SM = r 2,SM m 2 r2,sm = µ r m 2 ( µ µ 2 r)= r r m 2 m 2 m 2 L SM = L 1,SM + L 2,SM = µ 2 ( 1 m 1 + 1 m 2 ) r r= r µ d r dt.

Wprowadzamy układ biegunowy w płaszczyźnie ruchu względnego, o środku O w punkcie m 1. Czyli, położenie punktu m 2 będzie określone przez r i ϕ. Prędkość względna υ = r= ṙ e r + r dϕ dt e ϕ. L SM = r µ r=µr 2 dϕ dt e z = const. L SM = µr 2 dϕ dt = const.

Całka energii Wracamy do równania µ r= α r r 2 r i mnożymy je skalarnie przez υ: Lewa strona jest równa Prawa strona jest równa α d r dt e r r 2 = α µ υ υ = α r 2 υ r r. ( ) d 1 dt 2 µ υ2 ( dr dt e r+ r dϕ dt e ϕ ) e r r dt( 2 = d α ), r czyli ( d 1 dt 2 µ υ2 α ) = 0. r

Całka energii Wykażemy, że µυ 2 /2 jest energia kinetyczna w układzie środka masy, a α/r - energia potencjalna. E k,sm = 1 2 m 1 r 2 1,SM + 1 2 m 2 r 2 2,SM = m 1 2 µ 2 m 2 1 E p,sm = α r. υ 2 + m 2 2 µ 2 m 2 2 υ 2 = 1 2 µυ2.

Równanie różniczkowe na r(ϕ) υ 2 = ( dr dt dϕ dt dr dt = dr dϕ ( dr ( ) dr 2 = L2 SM dt E SM = 1 2 L 2 SM µ µ 2 [ ( d dϕ ) 2 ( ) dϕ 2 + r 2. dt = L SM µr 2, dϕ = dr L SM dt dϕ µr 2 ) 1 2 ( ) dϕ r 2 = L2 SM d 1 2 µ 2. dt r ) ] 1 2 + 1 r r 2 α r = const.

Równanie różniczkowe na r(ϕ) Całkujac to równanie, dostajemy r(ϕ)= p 1+ε cos(ϕ). ε = p= L2 SM αµ 1+ 2E SML 2 SM αµ Jest to równanie krzywej stożkowej, zapisane w układzie biegunowym.

Krzywe stożkowe Hiperbola Parabola Okrag Elipsa Krzywa stożkowa: zbiór punktów płaszczyzny, dla których stosunek odległości od wybranego punktu (zwanego ogniskiem) i wybranej prostej (zwanej kierownica) jest stały. Stosunek ten nazywamy mimośrodem, ε.

Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Elipsa F 2 C F 1 ϕ A B ε = AF 1 AB p=f 1 C

Krzywe stożkowe W zależności od wartości ε krzywa stożkowa jest: okręgiem dla ε = 0; elipsa dla 0<ε < 1; parabola dla ε = 1; hiperbola dla ε > 1.

Związek ε z energią i momentem pędu ε = 1+ 2E SML SM α 2 µ Ponieważ E SM = µυ 2 /2 α/r, to gdy α < 0 (odpychanie) zawsze E SM > 0, czyli ε > 1 i tor jest hiperbola. Gdy α > 0, E SM może być dowolnego znaku: E SM > 0 ε > 1 - tor jest hiperbola E SM = 0 ε = 1 - tor jest parabola E SM < 0 ε < 1 - tor jest elipsa

Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Tory eliptyczne W tych trzech przypadkach energia całkowita jest taka sama - elipsy mają duża półoś o jednakowej długości. Różnice w kształcie toru wynikaja z różnych wartości momentu pędu - dla okręgu jest największa. p= L2 SM αµ

Prawa Keplera Dla siły grawitacyjnej α = Gm 1 m 2 > 0, czyli otrzymujemy I prawo Keplera: ruch ciała m 2 odbywa się po elipsie (w granicznym przypadku - okręgu), w której ognisku znajduje się ciało m 1. Ponieważ moment pędu jest stały, zatem prędkość polowa jest stała, czyli otrzymujemy II prawo Keplera, które głosi, że prędkość polowa jest stała.

Prawa Keplera W celu wyprowadzenia III prawa Keplera zauważmy, że dotyczy ono tylko orbit zamkniętych, czyli eliptycznych. Półosie elipsy są dane przez: a= p p 1 ε2, b=. 1 ε 2 Stąd a= L2 SM αµ 1 1 1 2E SML 2 SM α 2 µ = α 2E SM. b=l SM a α Wynika stąd, że energia zależy tylko od wielkiej półosi elipsy.

Obliczmy okres T. Ponieważ prędkość polowa jest stała i równa L SM /(2µ), więc Stąd czyli T L SM 2µ = πab. T 2 = 4µπ2 a 3, α T 2 a 3.

Efektywna energia potencjalna W przypadku ruchu w polu siły zachowawczej (a taką jest siła centralna, np. siła grawitacji) mamy spełniona zasadę zachowania energii mechanicznej: oraz zasadę zachowania momentu pędu: We współrzędnych biegunowych: oraz co daje E= m 2 E= mυ2 2 + E p = const L=m r υ = const. υ = dr dt e r+ r dϕ dt e ϕ ( ) L=mr 2 dϕ, dt ( ) dr 2 + L2 dt 2mr 2 + E p = m 2 ( ) dr 2 + Ep eff dt (r).

Efektywna energia potencjalna Ponieważ energia kinetyczna nie może być ujemna, to musi być spełniona zależność: E k = E E eff p > 0, co oznacza, że moment pędu wpływa na zakres przestrzenny ruchu.

Efektywna energia potencjalna L 2 2mr 2 E p E eff p r E 1 E 2 E 3 E 1 - ciało zbliża się z nieskończoności do centrum siły na pewną odległość, a następnie oddala się do nieskończoności - orbita otwarta E 2 - ciało porusza się w ogranicznym obszarze przestrzeni, między minimalna a maksymalna odległościa od centrum siły - orbita jest zamknięta o ile E p (r) r 1 albo E p (r) r 2. E 3 - ciało porusza się po orbicie kołowej. Dla energii mniejszych niż E 3 ruch jest niemożliwy.

Prędkości kosmiczne I prędkość kosmiczna - prędkość satelity na orbicie kołowej o promieniu R z : GM v I = 7.91 km/s R Z II prędkość kosmiczna - prędkość umożliwiajaca ucieczkę z pola grawitacyjnego Ziemi: 2GM V II = 11.19 km/s R Z

Wzór Bineta Wzór Bineta Wzór Bineta jest wyrażeniem, za pomoca którego możemy wyznaczyć postać siły centralnej, gdy znamy równanie toru. Najwygodniej rozpatrywać zagadnienie we współrzędnych biegunowych. Oznacza to, że znamy zależność r(ϕ). Siłą centralna ma tylko składowa radialna: ( d 2 ( ) ) r dϕ 2 F r = ma r = m dt 2 r. dt W celu obliczenia d 2 r/dt 2 wyrazimy najpierw υ r = dr/dt przez dr/dϕ.

Wzór Bineta Wzór Bineta υ r = dr dt = dr dϕ dϕ dt, natomiast dϕ/dt wyznaczamy na podstawie wartości momnetu pędu, który jest stały dla ruchu w polu siły centralnej: Zatem, L=mr 2 dϕ dt dϕ dt = L mr 2. υ r = dr dt = dr L dϕ mr 2 = L ( ) d 1. m dϕ r

Wzór Bineta Wzór Bineta Druga pochodna: dυ r dt = d dt ( ) dr = d dt dϕ ( ) dr dϕ = d dt dt dϕ = L2 m 2 r 2 d 2 d 2 ϕ 2 ( 1 r A drugi wyraz w wyrażeniu na F r wynosi: ( ) dϕ 2 L 2 r dt m 2 r 3. Otrzymujemy zatem: F = F r = L2 mr 2 ( d 2 dϕ 2 ( L ). m ( ) 1 + 1 ). r r ( )) d 1 L dϕ r mr 2 =

Wzór Bineta Wzór Bineta - przykład Punkt o masie m porusza się pod wpływem siły centralnej po okręgu o promieniu R, który przechodzi przez centrum siły. Jak zależy wartość siły od odległości od centrum, jeśli wartość momentu pędu wynosi L? W tym przypadku r= 2Rcosϕ. Podstawienie do wzoru Bineta daje: F = 8L2 R 2 mr 5. Energia potencjalna dla takiej siły (centralnej, wiec wiemy, że potencjalnej) wynosi: E p (r)= r F(s) ds= 2L2 R 2 mr 4, przy założeniu, że energia potencjalna w nieskończoności jest równa zero.

Wzór Bineta Wzór Bineta - przykład Eenrgia całkowita jest równa: E= m 2 ( ) dr 2 + L2 dt 2mr 2 2L2 R 2 mr 4, zaś efektywna energia potencjalna ( ) E p,eff (r)= L2 1 2m r 2 4R2 r 4 ma maksimum dla r=2 2R, co leży poza orbita. Maksymalna wartość E p,eff na orbicie jest osiagana dla r=2r i wynosi zero. Ponieważ dla r= 2R prędkość radialna dr/dt = 0, to wnioskujemy, że całkowita energia ruchu jest równa 0.

Wzór Bineta Wzór Bineta - przykład Warto zauważyć, że w przypadku tego potencjału cząstka spada na centrum. Pytanie, czy wykonuje ruch cykliczny? Ponieważ moment pędu jest stały, więc możemy obliczyć okres tego ruchu, podobnie jak w przypadku trzeciego prawa Keplera: pole powierzchni zakreślone w ciągu okresu jest równe πr 2 z jednej strony, a TL/2m - z drugiej: πr 2 = T L 2m, co daje T = 2πmR 2 /L. Wynik ten można otrzymać nie odwołujac się do stałości prędkości kątowej, całkujac równanie L=mr 2 dϕ/dt: 2π [ 1 LT = 2mR 2 cos 2 ϕdϕ = 2mR 2 4 sin2ϕ+ 1 ] 2π 2 ϕ = 2mR 2 π. 0 0