Grawitacja. Fizyka I (Mechanika) Wykład XI:
|
|
- Janusz Wieczorek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Grawitacja Fizyka I (Mechanika) Wykład XI: Prawo powszechnego ciażenia Ruch w polu siły centralnej Prawa Kepplera Pole odpychajace Doświadczenie Rutherforda Masa zredukowana
2 Prawo powszechnego ciażenia Prawo powszechnego ciażenia Newtona (1687): m F r F M F = G m M r 2 Opisuje zarówno spadanie jabłka z drzewa jak i ruchy Księżyca i planet. Grawitacja jest opisywana przez jeden parametr, stała Newtona: G Nm 2 kg 2 W warunkach laboratoryjnych potwierdzona przez doświadczenie Cavendisha (1798), w którym zmierzył oddziaływanie kul ołowianych masach m = 0.73 kg i M = 158 kg. A.F.Żarnecki Wykład XI 1
3 Prawo powszechnego ciażenia Prawo powszechnego ciażenia sformułowane zostało dla mas punktowych. Ale stosuje się także dla ddziaływań ciał sferycznie symetrycznych F = G m M r 2 m F F M r Siła ciażenia dla ciała przy powierzchni Ziemi: F = G m M Z R 2 Z g m g = G M Z R 2 Z A.F.Żarnecki Wykład XI 2
4 Ruch satelity Satelita na orbicie kołowej o promieniu R. Siła grawitacji R Z F V F = G m M Z R 2 jest siła dośrodkowa, konieczna do utrzymania satelity na orbicie: G m M Z R 2 = m V 2 R R V = G MZ Pierwsza prędkość kosmiczna (R = R Z ): R V 1 = 7.91 km/s prędkość pozioma konieczna do oderwania od Ziemi (zaniedbujac jej ruch wirowy) A.F.Żarnecki Wykład XI 3
5 Ruch satelity Okres obiegu dookoła Ziemi: R Z F V T = 2πR V Podstawiajac wyrażenie na prędkość: T = 2πR R = 2πR3/2 G M Z G MZ R Im wyższa orbita tym dłuższy okres obiegu... Odwracajac ta zależność: R = 3 G M Z T 2 4π 2 = 3 g RZ 2 T2 4π 2 Dla okresu obiegu równego okresowi obrotu Ziemi (23 h 56 m 4.09 s ): R = km Ø Ð Ø Ó Ø ÓÒ ÖÒÝ A.F.Żarnecki Wykład XI 4
6 Prawo powszechnego ciażenia Siła grawitacji (jak każda siła centralna) jest zachowawcza: W AB = B A F( r) d r = r B r A F(r) dr = E p E p = r B r A G M m r 2 dr = [ G M m r Energia potencjalna masy m w polu grawitacyjnym masy M: E p (r) = G M m r określona z dokladnościa do stałej. + C Zwyczajowo przyjmuje się C = 0, co jest równoważne ustaleniu E p ( ) = 0 ] rb r A A.F.Żarnecki Wykład XI 5
7 Siła centralna Rozważmy przypadek ogólny ruchu punktu materialnego o masie m w polu centralnej siły zachowawczej F = F(r) i r zasada zachowania energii: E = mv2 2 + E p (r) = const zasada zachowania momentu pędu: L = m r v = const Zachowanie momentu pędu ruch płaski (w płaszczyźnie r i v) v = i r dr dt + i θ r dθ dt v 2 = L = m r 2 ω v 2 = Wstawiajac do wyrażenia na energię kinetyczna ( ) dr 2 + r 2 ω 2 dt ( dr dt ) 2 + ( ) L 2 mr E = E k + E p = m ( ) dr 2 + L2 2 dt 2 m r 2 + E p(r) = m ( ) dr 2 + Ep eff (r) 2 dt równanie różniczkowe dla składowej radialnej problem jednowymiarowy A.F.Żarnecki Wykład XI 6
8 Ò Ö Ó ÖÓ ÓÛ Siła centralna Energia efektywna Efektywna energia potencjalna w polu siły centralnej: E eff p (r) = L 2 2 m r 2 + E p(r) Jeśli L 0 to zasada zachowania momentu pędu przeciwstawia się zbliżeniu ciała do źródła siły (r = 0). bariera centryfugalna energia odśrodkowa siła odśrodkowa F o = d dr ( L 2 2 m r 2 ) = L2 m r 3 = m r ω2 = m r ( dθ dt ) 2 A.F.Żarnecki Wykład XI 7
9 Siła centralna Ruch radialny Jednowymiarowe zagadnienie ruchu radialnego: dr = dt t = 2 r m ( E E eff p (r)) dr ( r 2 eff E E p (r ) ) m E eff p (r) = L2 2 m r 2 + E p(r) Ruch może się odbywać tylko w obszarze E E eff p (r) 0 dla L 0 istnieje ograniczenie na odległość najmiejszego zbliżenia: r r min teoretycznie można wymyśleć siłę centralna silniejsza od siły odśrodkowej jeśli E < E eff p ( ) to ciało nie może dowolnie oddalić się od centrum siły: r r max ruch w ograniczonym obszarze A.F.Żarnecki Wykład XI 8
10 Ruch katowy Siła centralna Zachowany moment pędu: L = m r 2 ω ω = dθ dt θ θ = = L m r 2 t 0 L m r 2 dt Możemy wyprowadzić równanie na tor ciała porównujac zależności od czasu: dt = 2 m dr ( eff E E p (r) ) = θ θ = m r 2 L dθ m r 2 2 m L dr ( eff E E p (r) ) równanie toru we współrzędnych biegunowych A.F.Żarnecki Wykład XI 9
11 Ruch katowy Siła centralna Zmiana kata biegunowego przy przejściu ciała od r min do r max θ = r max r min m r 2 2 m L dr ( eff E E p (r) ) Θ Tor będzie krzywa zamknięta, jeśli θ = 2π m n m, n - liczby całkowite Warunek ten spełniony jest tylko dla dwóch pól: (niezależnie od warunków poczatkowych) E p (r) 1 r - siła grawitacyjna, siła kulombowska ( θ = π) E p (r) r 2 - siły sprężystości ( θ = π 2 ) A.F.Żarnecki Wykład XI 10
12 Ruch w polu grawitacyjnym energia efektywna E (r) p Pole grawitacyjne Ogólne wyrażenie na energię potencjalna: eff ods. Ε 1 E p (r) = k r k > 0 siła przyciagaj aca wybieramy E p ( ) = 0 r graw. Ε 2 Ε 3 Charakter ruch zależy od energii całkowitej: E 1 > 0 - tor otwarty E 2 < 0 - tor zamknięty E 3 = E min - ruch po okręgu A.F.Żarnecki Wykład XI 11
13 Ruch w polu grawitacyjnym Model Dwuwymiarowy ruch ciała po zakrzywionej powierzchni. Profil wysokości odpowiada energii potencjalnej pola: h(x, y) E p (r) A.F.Żarnecki Wykład XI 12
14 Ruch w polu grawitacyjnym Równanie toru Rozwiazujemy: θ θ = = m r 2 2 m d ( 1 r ) L dr ( eff E E p (r) ) = 2mE L 2 + 2mk L 2 ( 1r ) ( 1r ) 2 = 2m L 2 Gdzie wprowadziliśmy parametry: p = mk L2 oraz ε = 1 + 2EL2 mk 2 Otrzymaliśmy całkę postaci: dr r 2 ( E + k r ) d ( 1 r 1 p ε 2 p 2 ( 1 r 1 p ) L2 2mr 2 dx = arccos(x) = r = p 1 x ε cos(θ θ ) ) 2 A.F.Żarnecki Wykład XI 13
15 Równanie toru Otrzymaliśmy równanie krzywej stożkowej (we współrzędnych biegunowych) r(θ) = ε - mimośród orbity ε = 1 + 2EL2 mk 2 Ruch w polu grawitacyjnym p 1 + ε cos(θ θ ) p = L2 mk ε = 0 - ruch po okręgu o promieniu p ε < 1 - ruch po elipsie E < 0 ε = 1 - ruch po paraboli E = 0 ε > 1 - ruch po hiperboli E > 0 Osie elipsy: 2a = 2p 1 ε 2 = k 2 E - zależy tylko od energii 2b = 2p 1 ε 2 = L 2m E - zależy także od momentu pędu A.F.Żarnecki Wykład XI 14
16 Ruch w polu grawitacyjnym Ruch po okręgu E (r) p Przypadek szczególny: ε = 0 r r E = E min = m k2 2 L 2 minimalna energia całkowita przy ustalonym L Ε 3 y x Inny przypadek szczególny: Dla L = 0 mamy ruch po odcinku o długości 2a = k 2 E ;b = 0 A.F.Żarnecki Wykład XI 15
17 Ruch w polu grawitacyjnym Ruch po elipsie Warunek: E min < E < 0 E (r) p r min rmax Ε 2 r Ruch ograniczony do: r min < r < r max Ep eff (r min ) = Ep eff (r max ) = E Źródło siły znajduje się w jednym z ognisk elipsy. Długa półoś zależy wyłacznie od energii; spłaszczenie zależy od momentu pędu y x A.F.Żarnecki Wykład XI 16
18 Ruch w polu grawitacyjnym Prawa Keplera I. Każda planeta kraży po elipsie ze Słońcem w jednym z jej ognisk II. Promień wodzacy każdej planety zakreśla równe pola w równych czasach III. Kwadrat okresu obiegu każdej planety wokół Słońca jest proporcjonalny do sześcianu półosi wielkiej elipsy Okres obiegu możemy wyznaczyć z prędkości polowej Podnoszac do kwadratu T = ( S ) ds = π a b L dt 2m = πk T 2 = π2 k 2 m 2 E 3 = 4π2 m k ds dt = L 2m, 2a = k 2 E, 2b = m 2 E 3 a 3 L 2m E A.F.Żarnecki Wykład XI 17
19 Ruch w polu grawitacyjnym Ruch po paraboli E (r) p Przypadek szczególny: E = 0 y r min Ε 1 r Ruch jest nieskończony, ciało nie jest zwiazane przez centrum siły. Jednak oddalajac sie do nieskończoności ciało będzie poruszać się coraz wolniej. Asymptotycznie zatrzyma się. x A.F.Żarnecki Wykład XI 18
20 Ruch w polu grawitacyjnym Ruch po hiperboli E (r) p Dla E > 0 Ε 1 Ruch jest nieskończony. r min r Asymptpotycznie prędkość ciała daży do v = 2E m > 0 y x orbity komet nieperiodycznych Im mniejsze L tym mniejsza odległość zbliżenia r min A.F.Żarnecki Wykład XI 19
21 Ruch w polu grawitacyjnym Rodzaje orbit Kształt orbity zależy od energii całkowitej E i momentu pędu ciała L ε = 1 + 2EL2 mk 2 E = 0 E < 0 E > 0 Orbity o tej samej wartości L, lecz o różnych wartościach E A.F.Żarnecki Wykład XI 20
22 Ruch satelity Jak powinien się zachować kosmonauta w rakiecie na orbicie kołowej, jeśli chce zbliżyć się do powierzchni Ziemi? B V Odpalenie silników w kierunku Ziemi daje efekt przeciwny do zamierzonego! L = const, E rośnie Średnia odległość od Ziemi rośnie! F E (r) p ods. A eff r B A graw. A.F.Żarnecki Wykład XI 21
23 Ruch satelity Lepszym sposobem na przejście na niższa orbitę jest właczenie silników hamujacych L maleje, E maleje Średnia odległość od Ziemi maleje B E (r) p V F B A r C C graw. A Powtórne hamowanie po połowie obiegu umożliwia przejście na niższa orbitę kołowa. A.F.Żarnecki Wykład XI 22
24 Ruch w polu sił Potencjał odpychajacy E p (r) = + k r k > 0 A.F.Żarnecki Wykład XI 23
25 Ruch w polu sił Potencjał odpychajac E (r) p eff Ε Uzyskane rozwiazanie pozostaje słuszne, z dokładnościa do zmiany znaku k zmiana znaku p ods. graw. r(θ) = p ε cos(θ θ ) 1 r min r Jak porzednio ε = 1 + 2EL2 mk 2 y Teraz jednak zawsze E > 0 x Im większe ε, tym większy kat rozwarcia hiperboli A.F.Żarnecki Wykład XI 24
26 Doświadczenie Rutherforda Model Thomson Po odkryciu elektronu (1897), J.J.Thomson zaproponował model atomu w postaci ciastka z rodzynkami. Cała objętość atomu była jednorodnie naładowana dodatnio ( ciastko ), a wewnatrz pływały elektrony ( rodzynki ). α Ponieważ ładunek był rozłożony równomiernie w dużej objętości, nie powinien silnie zakłócać ruchu przechodzacy czastek α. Oczekujemy jedynie niewielkich odchyleń toru... E Wpływ elektronów można zaniedbać ze względu na mała masę. R A.F.Żarnecki Wykład XI 25
27 Doświadczenie Rutherforda W modelu Thomsona można było oszacować maksymalny kat rozproszenia czastki α i był on mały θ max π. Doświadczenie Rutherforda Rozpraszanie czastek α na cienkiej złotej folii Odpowiada to sytuacji rozproszenia pocisku na dużo lżejszej tarczy. Masa przypadajaca na jednostkę rozmytego ładunku atomu wynosiła ok. 8 1 masy czastki α. Obserwowano błyski wywoływane przez padajace czastki na ekranie scyntylacyjnym A.F.Żarnecki Wykład XI 26
28 Doświadczenie Rutherforda Pokaz Przed wsunięciem tarczy czastki α obserwujemy tylko dla Θ 0. Wiazka czastek ze źródła jest dobrze skolimowana. zrodlo α Au Oddziaływanie z strumień czastek tarcza lecacych zmniejsza do przodu (Θ 0) detektor Θ Rozproszone czastki α obserwujemy w szerokim zakresie katów rozproszenia, także dla θ π 2 A.F.Żarnecki Wykład XI 27
29 Doświadczenie Rutherforda Wyniki pomiarów Przeprowadzonych przez H.Geigera i E.Marsdena (1911): Oczekiwane Uzyskane A.F.Żarnecki Wykład XI 28
30 Doświadczenie Rutherforda Wyniki pomiarów Przeprowadzonych przez H.Geigera i E.Marsdena: Zliczenia 4 10 Zaobserwowano rozproszenia czastek α pod bardzo dużymi katami, θ θth max, czego nie można było wyjaśnić w modelu Thomsona To było tak jakbyście wystrzelili piętnastocalowy pocisk w kierunku kawałka bibułki, a on odbił się i was uderzył º ÊÙØ Ö ÓÖ Θ [ ] A.F.Żarnecki Wykład XI 29
31 Doświadczenie Rutherforda Model Rutherforda α E Rutherford zaproponował jadrowy model atomu. Cały dodatni ładunek atomu (10 10 m) skupiony jest w praktycznie punktowym (10 14 m) jadrze Przechodzaca czastka zawsze czuje cały ładunek dodatni katy rozproszenia sa dużo większe. R A.F.Żarnecki Wykład XI 30
32 Doświadczenie Rutherforda Model Rutherforda Ponieważ czastka α rozprasza się na jadrze jako całości, a masa jadra M Au M α brak ograniczeń na kat rozproszenia czastki α możliwe nawet (choć mało prawdopodobne) rozproszenie o θ > π/2. Rozkład katowy Obserwowany rozkład katowy rozproszonych czastek α proporcjonalna do tzw. rózniczkowego przekroju czynnego dσ dω N(θ) dσ dω = Z 2 α 2 4E 2 sin 4 2 θ Wzór Rutherforda Skończone prawdopodobieństwo rozproszenia θ = π! Θ [ ] A.F.Żarnecki Wykład XI 31
33 Ruch względny Oddziaływanie dwóch ciał Dotychczasowe rozważania prowadziliśmy przyjmujac, że centrum siły jest nieruchome. Odpowiada to założeniu, że M Slonca M Ziemi ÐÙ M Ziemi M Satelity Układ izolowany + III zasada dynamiki m 1 a 1 = m 2 a 2 Względne położenie (np. ciała 2 względem 1): v 1 r 12 = r 2 r 1 F 12 F 21 v 2 Srodek masy Względna prędkość: v 12 = v 2 v 1 = d r 12 dt Przyspieszenie względne: a 12 = d v 12 dt = a 2 a 1 = a 2 + m 2 m 1 a 2 A.F.Żarnecki Wykład XI 32
34 Masa zredukowana Przyspieszenie w ruchu względnym: Oddziaływanie dwóch ciał a 12 = m 1 + m 2 m 1 a 2 = m 1 + m 2 m 1 F 12 m 2 Możemy sprowadzić równania ruchu do postaci: µ a 12 = µ d2 r 12 dt 2 = F 12 ( r12 ) gdzie µ = m 1 m 2 - masa zredukowana ( 1 m 1 + m 2 µ = ) m 1 m 2 Problem względnego ruchu dwóch oddziałujacych ciał możemy sprowadzić do problemu ruchu jednego ciała o masie µ w polu siły F 12 ( r 12 ) Ścisłe w przypadku klasycznym (nierelatywistycznym) dla układu izolowanego. Prawa Kepplera pozostaja słuszne także gdy nie zaniedbujemy masy planety/satelity! A.F.Żarnecki Wykład XI 33
35 Oddziaływanie dwóch ciał Przykład Układ Ziemia-Księżyc m K : m Z 1 : 81 µ m K Ziemia i Księżyc kraż a wokół wspólnego środka masy, który znajduje się ok km od środka Ziemi. mk Częstość obiegu jest raza większa niż gdyby Ziemia była nieruchoma (0.6%) µ przy danych masach i odległości Ziemia-Księżyc : µ ω 2 r 12 = F(r 12 ) Ruch Ziemi dookoła Słońca: m Z : m S 1 : A.F.Żarnecki Wykład XI 34
36 Projekt Fizyka wobec wyzwań XXI w. współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Ruch pod wpływem sił zachowawczych
Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej
Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda
Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3
Prawo to opisuje zarówno spadanie jabłka z drzewa jak i ruchy Księżyca i planet. Grawitacja jest opisywana przez jeden parametr, stałą Newtona:
Grawitacja Prawo powszechnego ciążenia Prawo powszechnego ciążenia Newtona (1687) mówi, że siła przyciągania grawitacyjnego między dwoma ciałami jest proporcjonalna do iloczynu ich mas i odwrotnie proporcjonalna
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III
Struktura protonu Elementy fizyki czastek elementarnych Wykład III kinematyka rozpraszania doświadczenie Rutherforda rozpraszanie nieelastyczne partony i kwarki struktura protonu Kinematyka Rozpraszanie
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest
Zasady zachowania. Fizyka I (Mechanika) Wykład VI:
Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Pęd i moment pędu. dp/dt = F p = const, gdy F = 0 (całka pędu) Jest to zasada zachowania pędu. Moment pędu cząstki P względem O.
Zasady zachowania Pęd i moment pędu Praca, moc, energia Ruch pod działaniem sił zachowawczych Pęd i energia przy prędkościach bliskich prędkości światła Pęd i moment pędu dp/dt = F p = const, gdy F = 0
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Obraz Ziemi widzianej z Księżyca
Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
Fizyka 1 (mechanika) AF14. Wykład 10
Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Jerzy Łusakowski 12.12.2016 Plan wykładu Grawitacja Wzór Bineta Grawitacja Oddziaływanie grawitacyjne m 2 m 1 r 12 F 21 F 12 F 12 = G m 1m 2 r 12 r12 2 ; G=6.67
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Ruchy planet. Wykład 29 listopada 2005 roku
Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Zasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca
GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.
MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Fizyka 1 (mechanika) AF14. Wykład 10
Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Jerzy Łusakowski 04.12.2017 Plan wykładu Grawitacja Wzór Bineta Grawitacja Oddziaływanie grawitacyjne m 2 m 1 r 12 F 21 F 12 F 12 = G m 1m 2 r 12 r12 2 ; G=6.67
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.
Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Zasada zachowania pędu
Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy
Zasada zachowania energii
Zasada zachowania energii Fizyka I (Mechanika) Wykład VI: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne Układ środka masy Praca i energia
Fizyka I. Kolokwium
Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Ziemia przyciąga Ciebie Planety przyciągają Księżyce Słońce przyciąga Ziemię i inne planety Gwiazdy
Zadanie na egzamin 2011
Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,
Wykład Budowa atomu 1
Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia
Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski
Satelity Ziemi Ruch w polu grawitacyjnym dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Satellites Satelity można podzielić na: naturalne (planety dla słońca/ gwiazd, księżyce dla planet) oraz sztuczne
Kinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
Zagadnienie dwóch ciał
Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem
4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1
1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Zasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F Praca i energia Praca
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład IX: Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada dynamiki Siły
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.
I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności
Dynamika Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Fizyka I (Mechanika) Prawa ruchu w układzie obracajacym się siła odśrodkowa siła Coriolissa Zasada zachowania pędu Zasada zachowania
Fizyka 10. Janusz Andrzejewski
Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony
Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet
Wykład 9 3.5.4.1 Prawa Keplera 3.5.4. Wyznaczenie stałej grawitacji 3.5.4.3 Równania opisujące ruch planet 008-11-01 Reinhard Kulessa 1 3.5.4.1 Prawa Keplera W roku 140 n.e. Claudius Ptolemeus zaproponował
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie
Mechanika ruchu obrotowego
Mechanika ruchu obrotowego Fizyka I (Mechanika) Wykład X: Przypomnienie, ruch po okręgu Oscylator harmoniczny, wahadło Ruch w jednorodnym polu elektrycznym i magnetycznym Prawa ruchu w układzie obracajacym
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Aktualizacja, maj 2008 rok
1 00015 Mechanika nieba C Dane osobowe właściciela arkusza 00015 Mechanika nieba C Arkusz I i II Czas pracy 120/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
ver grawitacja
ver-7.11.11 grawitacja początki Galileusz 1564-164 układ słoneczny http://www.arachnoid.com/gravitation/small.html prawa Keplera 1. orbity planet krążących wokół słońca są elipsami ze słońcem w ognisku
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
Zasada zachowania pędu
Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20
Grawitacja. Wykład 7. Wrocław University of Technology
Wykład 7 Wrocław University of Technology 1 Droga mleczna Droga Mleczna galaktyka spiralna z poprzeczką, w której znajduje się m.in. nasz Układ Słoneczny. Galaktyka zawiera od 100 do 400 miliardów gwiazd.
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Reakcje jądrowe. kanał wyjściowy
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Treści dopełniające Uczeń potrafi:
P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć
Dwa przykłady z mechaniki
Rozdział 6 Dwa przykłady z mechaniki W rozdziale tym przedstawimy proste przykłady rozwiązań równań mechaniki Newtona. Mechanika Newtona zajmuje się badaniem ruchu układu punktów materialnych w przestrzeni
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy
Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE
Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji. Imię i nazwisko, klasa.. data Czas rozwiązywania testu: 40 minut. ZADANIA ZAMKNIĘTE W zadaniach od 1-4 wybierz i zapisz czytelnie jedną
2.3. Pierwsza zasada dynamiki Newtona
Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować
1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
V.4 Ruch w polach sił zachowawczych
r. akad. 5/ 6 V.4 Ruch w polach sił zachowawczych. Ruch cząstki w potencjale jednowyiarowy. Ruch w polu siły centralnej. Wzór Bineta 3. Przykład: całkowanie wzoru Bineta dla siły /r Dodatek: całkowanie
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
Elektrostatyczna energia potencjalna. Potencjał elektryczny
Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi
Atom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Podstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony
14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY
Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA
Wiadomości wstępne. Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji
Wiadomości wstępne Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji Historia fizyki cząstek w pigułce 1930 1940 1950 1960 1970 1980 1990 000 Bevatron PS AGS
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.
Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia
Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha
Dynamika Newtonowska trzy zasady dynamiki
Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada