Działanie grupy na zbiorze



Podobne dokumenty
Działanie grupy na zbiorze

Wyk lad 4 Warstwy, dzielniki normalne

domykanie relacji, relacja równoważności, rozkłady zbiorów

Skończone rozszerzenia ciał

Wyk lad 2 Podgrupa grupy

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Zbiory, relacje i funkcje

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Teoria ciała stałego Cz. I

Zasada indukcji matematycznej

F t+ := s>t. F s = F t.

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Dzia lanie grupy na zbiorze. Twierdzenie Sylowa

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

1 Określenie pierścienia

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k [a n,b n ] kn =(a 1 b 1 a 1

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe

Indukcja matematyczna

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

1. Wykład NWD, NWW i algorytm Euklidesa.

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

4. Dzia lanie grupy na zbiorze

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Wyk lad 14 Formy kwadratowe I

7 Twierdzenie Fubiniego

Matematyka dyskretna. 1. Relacje

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Przestrzenie liniowe

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Przykładowe zadania z teorii liczb

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Algebry skończonego typu i formy kwadratowe

Definicja: alfabetem. słowem długością słowa

Kombinacje liniowe wektorów.

opracował Maciej Grzesiak Grupy

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi

LX Olimpiada Matematyczna

ZALICZENIE WYKŁADU: 30.I.2019

FUNKCJE. (odwzorowania) Funkcje 1

Analiza matematyczna. 1. Ciągi

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Układy równań i nierówności liniowych

Twierdzenie spektralne

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Algebra abstrakcyjna

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1 Działania na zbiorach

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.

Podstawowe struktury algebraiczne

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

Ciała skończone. 1. Ciała: podstawy

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

9 Przekształcenia liniowe

Wykład z równań różnicowych

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.

Topologia I Wykład 4.

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Prostota grup A n. Pokażemy, że grupy A n sa. proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem.

O pewnych związkach teorii modeli z teorią reprezentacji

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

2. Definicja pochodnej w R n

Teoria automatów i języków formalnych. Określenie relacji

1. Elementy (abstrakcyjnej) teorii grup

Wyk lad 9 Baza i wymiar przestrzeni liniowej

5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych.

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Informacja o przestrzeniach Sobolewa

Sumy kwadratów. Twierdzenie Fermata-Eulera. Lemat Minkowskiego

Twierdzenie 5.1 Definicja i uwaga 5.1. relacjami zadana za pomocą zbioru generatorów i zbioru relacji kodem genetycz- nym

Definicja. Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G,

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

Teoria miary i całki

Kolorowanie płaszczyzny, prostych i okręgów

Matematyka dyskretna dla informatyków

Transkrypt:

Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione: ( x X) e x = x, ( g, h G)( x X) (g h) x = g (h x). Tak jak w przypadku grup, zamiast pisać g x, zastosujemy notację gx albo rzadziej g x. Przykład 0.1 Niech (G, ) bedzie grupą i X dowolnym niepustym zbiorem. Wtedy odwzorowanie dane wzorem jest działaniem G na X. G X (g, x) x X Przykład 0.2 Grupa działa na samej sobie tak g x = g x dla dowolnych elementów g, x G. Innym przykładem działania jest działanie grupy poprzez automorfizmy wewnętrzne: gla g, x G mamy g x = gxg 1. Definicja 0.2 (Orbita elementu) Niech grupa G dziala na zbiorze X i niech x X będzie jego elementem, to zbiór Gx = G{x} = {gx X : g G} bedziemy nazywać orbitą elemtu x. Ogólniej, dla A P (X) \ { } nazywamy orbitą zbioru A. GA = {gx X : (g, x) G A} Fakt 0.1 Niech grupa G działa na zbiorze X, to wtedy mamy każda orbita jest niepusta, każde dwie orbity Gx, Gy są albo rozłączne albo są sobie równe, X = {Gx : x X} (X jest więc rozłączną sumą wszystkich parami różnych orbit). 1

Dowȯd. Wprowadźmy następującą relację równoważności na zbiorze X: ( x, y X)x y ( g G) y = gx. Zwrotność: niech x X- dowolny element X, więc x = ex, stąd x x. Symetria, niech x y, to dla pewnego g G mamy y = gx więc x = ex = (g 1 g)x = g 1(gx) = g 1 y, więc y x. Przechodniość: niech x y i y z, to dla pewnych g, h G mamy y = gx i z = hy, stąd mamy z = hy = h(gx) = (hg)x x y. Następnie, policzmy klasę abstrakcji elemntu x X: [x] ={y X : x y} = {y X : ( g G)y = gx} ={gx X : g G} = Gx. Korzystając z twierdzenia o klasach abstrakcji relacji równoważności: dla każdego x X, [x] = Gx, ( x, y X)[x] [y] [x] = [y], X = X/ = {[x] : x X} = {Gx : x X}. mamy tezę naszego faktu. Definicja 0.3 (Stabilizator) Niech G działa na zbiorze X oraz x X będzie dowolnym elementem zbioru X, to wtedy stabilizatorem elementu x nazywamy G x = {g G : gx = x}. Łatwo sprawdzić że stabilizator dowolnego elementu x X jest podgrupą grupy G (to znaczy G x G). Zachodzi następujący fakt. Fakt 0.2 Niech grupa G działa na zbiorze X. to dla dowolnego elementu x X orbita Gx jest równoliczna z przestrzenią ilorazową G/G x. Dowȯd. Pokażemy, że odwzorowanie F : Gx G/G x dane wzorem F (gx) = gg x = {gh : h G x } jest dobrze zdefiniowaną bijekcją pomiędzy Gx a G/G x. Jeśli element orbity z Gx ma dwa przedstawnienia z = gx oraz z = g x, to wtedy x = g 1 z = g 1 (g x) = (g 1 g )x g 1 g G x gg x = g G x. 2

Teraz jednoznaczność: niech F (gx) = F (g x), to wtedy gg x = g G x a stad mamy g 1 g G x a stąd g 1 g x = x co daje nam gx = g x. Następnie surjekcja odwzowrowania F : dla dowolnej warstwy τ G/G x istnieje g G, dla którego mamy τ = gg x = F (gx). Wniosek 0.1 Jeżeli grupa skończona G działa na zbiorze X i s jest ustaloną orbitą pewnego elementu zbioru X, to dla każdych x, y S stabilizatory G x, G y mają taką samą moc jak i również G/G x, G/G y, s są równoliczne. Dowȯd. Niech x, y s, to wówczas Gx = s = Gy, więc na mocy Faktu 0.1 mamy G/G x = Gx = s = Gy = G/G y oraz G x = G G/G x = G G/G y = G y. Pokażemy zastowanie działania grupy na zbiorze w następującym twierdzeniu. Twierdzenie 0.1 (Cauchy ego) Jezeli liczba pierwsza p dzieli rząd grupy skonczonej H, to istnieje element grupy H, którego rząd równa się p. Dowȯd. Zdefiniujmy następujący zbiór: X = {(x 1,..., x p ) H p : p x i = e}. i=1 Określmy działanie grupy cyklicznej G = τ rzędu p na X nastęlująco: τ(x 1,..., x p ) = (x p, x 1,..., x p 1 ). Działanie jest poprawnie zdefiniowane, ponieważ mamy: x 1... x p = e x 1... x p 1 = x 1 p x p x 1... x p 1 = e. Zauważmy że jeżeli x = (x,..., x) X dla pewnego x H, to orbita G x jest jednoelemntowa. Natomiast jeśli x X ciągiem, w którym istnieją przynajmniej dwa różne elemnty grupy H, to na mocy Faktu 0.2 G x = G/G x. Z drugiej strony istnieje k Z p \ {0}, takie że τ k (x i ) x i+k (a więc τ k x x). Więc rząd stabilizatora G x jest mniejszy od p = G i oczywiście G x G = p a stąd 3

G x jest jednoelementową podgrupą grupy G. Ostatecznie orbita G x ma p- elementów. Na mocy Faktu 0.1 o orbitach mamy: H p 1 = X = s = 1 + p, gdzie Orb = {Gx : x X}. Więc s {: s =1} s {: s =p} H p 1 = X = {s Orb : s = 1} + p {s Orb : s = p}, skąd wynika podzielność {s Orb : s = 1} przez p i oczywiście {(e,..., e)} {s Orb : s = 1}. Stąd istnieje element x H \ {e}, taki że x p = e. Nadmienię tutaj, że Cauchy udowdnił to twierdzenie w przypadku grup abelowych. Następne twierdzenie odgrywa ważną rolę w kombinatoryce skończonej. Twierdzenie 0.2 (Lemat Burnside a) Niech skończona grupa G działa na zbiorze X o skończonej mocy. Wtedy liczba wszystkich orbit jest zadana równością: l orbit = 1 χ(g), G g G gdzie χ(g) = {x X : gx = x} jest charakterem elementu g. Dowȯd. Obliczmy moc następującego zbioru W = {(g, x) G X : gx = x} na dwa sposoby. Z jednej strony mamy: W = x X W x = x X {g G : gx = x} = x X G x Niech Orb = {Gx : x X} będzie zbiorem wszystkich orbit, wtedy ostatnią sumę można zapisać następująco: G x = G x G/G x G/G x X x s x = G 1 G/G x s x = G 1 1 = G s 4 T w Lagrange a = x s W n z F aktu 0.1 = G G G/G x 1 s x s 1 = G Orb.

Z drugiej strony W = g G {x X : gx = x} = g G χ(g). Więc ostatecznie mamy G Orb = g G χ(g), co daje wzór, który chcieliśmy udowodnić. Przykład 0.3 Niech będą dane dodatnie liczby naturalne m, n N, takie że m n. Rozważmy naszyjnik m-kolorowy z n paciorkami. oczywiście wszystkich takich naszyjników jest m n. Powiemy, że dwa takie naszyjniki są identyczne, jeśli po pewnym obrocie (o kąt 2kπ, k Z n n) jeden przechodzi w drugi. Niech więc grupa cykliczna (Z n, + n ) działa na zbiorze X = {0, 1,..., m 1} n w sposób następujący k (x 0,..., x n 1 ) = (x 0+nk,..., x n 1+nk) dla dowolnego k Z n. Wszystkie naszyjniki równoważne stanowią orbitę pewnego elementu zbioru X, tak więc liczba nierównoważnych naszyjników jest rowna liczbie wszystkich parami różnych orbit. W cely wyznaczenia tej liczby wystarczy wyznaczyć wszystkie charaktery grupy Z n, tj. χ(g) = {x X : g x = x} dla kazdego g Z n. Weźmy dowolne k Z n, wtedy wybrany naszyjnik obracamy o kąt 2kπ więc x n 0 = x k, x 1 = x 1+nk,..., x n 1 = x n 1+nk. W takim razie paciorki oddalone od siebie o d = NW D(k, n) miejsc muszą mieć ten sam kolor, co więcej taki naszyjnik jest wyznaczony przez pierwsze x 0, x 1,..., x d 1 paciorki, które przesuwamy cyklicznie o d miejsc w prawo i d ostatnich paciorków przejdzie na pierwszych d w ten sposób, że kolory będą takie same. Aby to wjasnic wystarczy zauważyć, że istnieją liczby całkowite a, b Z dla których spełnione jest równanie ak + bn = d. Stąd a-razy stosując przesuniecie w naszyjniku wszystkich paciorków o k miejsc (jesli a < 0, to przesuwamy paciorki w naszyjniku w przeciwną stronę, wtedy jesli będziemy obracać naszyjnik o n k paciorków a razy, to 0 paciorek przesunie sie na miejsce x d i viceversa), to 0-wy paciorek po wykonaniu pełnych b obrotów znajdzie sie w miejscu paciorka x d, więc x 0 = x d, x 0 = x 2d,... x 0 = x ld, gdzie l jest możliwie najwiekszą liczba, dla której ld < n a ponieważ d n, wiec (l + 1)d = n i wtedy x ld przejdzie na x 0 po przesunieciu 5

NW D(k,n) wszystkich paciorków naszego naszyjnika o d miejsc. Więc χ(k) = m dla k Z i ostatecznie liczba orbit (nierównoważnych naszyjników) jest równa 1 χ(g) = 1 m NW D(k,n). G n g G k Z n W przypadku, gdy n = p jest liczbą pierwszą mamy l orbit = 1 p (mp + (p 1)m 1 ) = mp + (p 1)m p. Niech teraz n = 6, m = 3, wtedy nierównoważnych naszyjników jest 1 6 (36 + 3 1 + 3 2 + 3 3 + 3 2 + 3 1 ) = 780 6 = 130. Robert Rałowski 6