1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy
|
|
- Monika Bednarczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 1 Grupy 1.1 Grupy Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa Niech G będzie taką grupa, że istnieje liczba całkowita n taka, że (ab) n = a n b n, (ab) n+1 = a n+1 b n+1 i (ab) n+2 = a n+2 b n+2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa Niech G będzie taką grupą, że a 2 = 1 dla dowolnego a G. Udowodnić, że grupa G jest abelowa. 1.2 Podgrupy Niech H będzie niepustym i skończonym podzbiorem grupy G takim, że jeśli a, b H, to ab H. Udowodnić, że H jest podgrupą grupy G. 1.3 Dzielniki normalne Niech N będzie podgrupą grupy G taką, że [G : N] = 2. Udowodnić, że N jest dzielnikiem normalnym grupy G Niech M i N będą dzielnikami normalnymi grupy G. Udowodnić, że M N jest dzielnikiem normalnym grupy G. 1.4 Homomorfizmy Udowodnić, że grupa G jest abelowa wtedy i tylko wtedy, gdy funkcja G a a 1 G jest automorfizmem Niech f : G H będzie homomorfizmem oraz K < G. Udowodnić, że f 1 (f(k)) = K Ker f. Wywnioskować stąd, że f 1 (f(k)) = K wtedy i tylko wtedy, gdy Ker f K Niech f : G H będzie homomorfizmem grup. Jeśli K jest podgrupą grupy G taką, że K <, to f(k) < oraz f(k) dzieli K Niech N będzie dzielnikiem normalnym grupy G takim, że [G : N] <. Jeśli H jest podgrupą grupy G taką, że H < oraz ([G : N], H ) = 1, to H N. 1
2 Niech N będzie dzielnikiem normalnym grupy G taki, że N <. Jeśli H jest podgrupą grupy G, to [HN : H] < oraz [HN : H] dzieli N Niech N będzie dzielnikiem normalnym grupy G takim, że N <. Jeśli H jest podgrupą grupy G taką, że [G : H] < oraz ( N, [G : H]) = 1, to N H. 1.5 Grupy cykliczne Niech p będzie liczbą pierwszą. Udowodnić, że każda grupą rzędu p jest cykliczna Niech G będzie grupą. Udowodnić następujące równości. (1) a 1 = a dla dowolnego a G. (2) ab = ba dla dowolnych a, b G. (3) bab 1 = a dla dowolnych a, b G Niech G będzie grupą oraz a G. Jeśli a <, to a k = a ( a,k) dla k Z Niech G będzie grupą abelową rzędu mn taką, że (m, n) = 1. Udowodnić, że jeśli w grupie G istnieją elementy rzędu m i n, to grupa G jest cykliczna Udowodnić, że jeśli G jest grupą cykliczną oraz f : G H jest epimorfizmem, to H jest grupą cykliczną Niech f : G H będzie homomorfizmem grup oraz a G. Jeśli a <, to f(a) < oraz a dzieli f(a) Udowodnić, że jeśli H jest podgrupą grupy cyklicznej G, to H jest grupą cykliczną Udowodnić, że grupa, która ma tylko skończoną ilość podgrup, jest skończona Niech G będzie grupą abelową oraz H będzie zbiorem wszystkich element grupy G, których rząd jest skończony. Udowodnić, że H jest podgrupą grupy G Niech G będzie grupą cykliczną generowaną przez element a rzędu m. Udowodnić, że a k jest generatorem grupy G wtedy i tylko wtedy, gdy (k, m) = 1. Znaleźć wszystkie generatory grup Z m, m = 2,..., 10. 2
3 Niech G będzie grupą cykliczną generowaną przez element a. Udowodnić, że jeśli f, g : G H są takimi homomorfizmami, że f(a) = g(a), to f = g Niech G będzie grupą cykliczną generowaną przez element a. Udowodnić, że dla dowolnego b G istnieje dokładnie jeden homomorfizm f : G H taki, że f(a) = b. Pokazać, że f jest automorfizmem wtedy i tylko wtedy, gdy b jest generatorem grupy G. Wyliczyć Aut Z oraz Aut Z m, m = 2,..., Niech H będzie cykliczną podgrupą grupy G, która jest dzielnikiem normalnym grupy G. Udowodnić, że każda podgrupa grupy H jest dzielnikiem normalnym grupy G. 1.6 Działania grup na zbiorze Niech A będzie abelowym dzielnikiem normalnym grupy G. Udowodnić, że definicja G/A A(aA, b) aba 1 A, a G, b A, jest poprawna oraz definiuje działanie grupy G/A na A Niech H i K będą podgrupami grupy G takimi, że H jest dzielnikiem normalnym grupy K. Udowodnić, że K N G (H) Niech a i b będą takimi dwoma elementami grupy G, że a b, istnieje c G takie, że cac 1 = b oraz dad 1 {a, b} dla każdego d G. Udowodnić, że N = a, b jest dzielnikiem normalnym grupy G taki, że N {1} oraz N G Niech H będzie podgrupą grupy G. Centralizatorem podgrupy H w grupie G nazywamy zbiór tych g G, dla których gh = hg dla wszystkich h H. Centralizator podgrupy H w grupie G oznaczamy C G (H). Udowodnić, że C G (H) N G (H). Pokazać, że grupa N G (H)/C G (H) jest izomorficzna z pewną podgrupą grupy Aut H Niech G będzie grupą działającą na zbiorze S, S 2. Załóżmy, że działanie grupy G na S jest tranzytywne, tzn. dla dowolnych x, y S istnieje a G taki, że ax = y. Udowodnić, że grupy G x oraz G y są sprzężone dla dowolnych x, y S Niech G będzie grupą. Udowodnić, że Inn G Aut G. 3
4 Podać przykład automorfizmu grupy Z 6, który nie jest automorfizmem wewnętrznym Udowodnić, że jeśli grupa G/C(G) jest cykliczna, to grupa G jest abelowa Niech G będzie grupą taka, że istnieje element a G taki, że a 2 1. Udowodnić, że grupa G posiada automorfizm różny od identyczności Udowodnić, że każda grupa skończona jest izomorficzna z pewną podgrupą grupy A n Udowodnić, że jeśli grupa G zawiera podgrupę H taką, że H G i [G : H] <, to grupa G zawiera dzielnik normalny N taki, że N G oraz [G : N] < Niech G będzie grupą rzędu pn, gdzie p jest liczbą pierwszą oraz 0 < n < p. Udowodnić, że jeśli H jest podgrupą grupy G rzędu p, to H G. 1.7 Twierdzenia Sylowa Niech G będzie grupą rzędu p n, gdzie p będzie liczbą pierwszą oraz n 1. Udowodnić, że jeśli N jest dzielnikiem normalnym grupy G rzędu p, wtedy N C(G) Niech p będzie liczbą pierwszą oraz N będzie takim dzielnikiem normalnym grupy G, że N oraz G/N są p-grupami. Udowodnić, że G jest p- grupą Niech p będzie liczbą pierwszą oraz G skończoną p-grupą. Udowodnić, że jeśli H G oraz H {1}, to H C(G) {1}. W szczególności, jeśli G {1}, to C(G) {1} Niech G będzie grupą rzędu p n, gdzie p będzie liczbą pierwszą oraz n 1. Udowodnić, że dla każdego k = 0,..., n istnieje podgrupa normalna grupy G rzędu p k Niech p będzie liczbą pierwszą oraz niech P będzie p-pogrupą Sylowa grupy skończonej G taką, że P G. Udowodnić, że f(p ) P dla dowolnego endomorfizmu f : G G grupy G Niech H będzie dzielnikiem normalnym grupy skończonej G. Udowodnić, że jeśli rząd grupy G jest potęgą liczby pierwszej p, to H jest zawarta w każdej p-podgrupie Sylowa grupy G. 4
5 Niech p i q będą liczbami pierwszymi takimi, że p > q. Jeśli G jest grupą rzędu p n q, n 1, to G zawiera jedyny dzielnik normalny rzędu p n Udowodnić, że każda grupa G rzędu 12 (28, 56, 200) posiada dzielnik normalny różny od {1} oraz G Niech p będzie liczbą pierwszą. Udowodnić, że każda grupa rzędu p 2 jest abelowa. 1.8 Grupy rozwiązalne Niech H i K będą podgrupami grupy G. Niech [H, K] będzie podgrupą generowaną przez wszystkie elementy postaci [a, b], gdzie a H i b K. Udowodnić, że jeśli H G wtedy i tylko wtedy, gdy [H, G] H. 1.9 Grupy symetryczne Udowodnić, że jeśli cykle τ = (i 1,..., i k ) oraz σ = (j 1,..., j l ) są rozłączne, tzn. {i 1,..., i k } {j 1,..., j l } =, to τσ = στ Udowodnić, że rząd cyklu długości r jest równy r Niech τ 1,..., τ k będą parami rozłącznymi cyklami. Udowodnić, że rząd τ 1 τ k jest równy najmniejszej wspólnej wielokrotności rzędów cykli τ 1,..., τ k Udowodnić, że każda permutacja może być przedstawiona w postaci iloczynu następujących transpozycji (1, 2), (1, 3),..., (1, n) Udowodnić, że każda permutacja może być przedstawiona w postaci iloczynu następujących transpozycji (1, 2), (2, 3),..., (n 1, n) Udowodnić, że każda permutacja może być przedstawiona w postaci iloczynu transpozycji (1, 2) oraz cyklu (1, 2,..., n) Udowodnić, że każda permutacja parzysta może być przedstawiona w postaci iloczynu cykli długości Udowodnić, że A n jest jedyną podgrupą H grupy S n taką, że [S n : H] = 2. (Wskazówka: Udowodnić, że jeśli H < S n i [S n : H] = 2 oraz σ jest cyklem długości 3, to σ H) Niech N = {Id I4, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4), (2, 3)}. Udowodnić, że N S 4, N A 4 oraz S 4 /N S 3 i A 4 /N Z 3. 5
6 Niech N = {Id I4, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4), (2, 3)}. Udowodnić, że N = [A 4, A 4 ] Udowodnić, że A 4 nie ma podgrupy rzędu Udowodnić, że C(S 4 ) = {1} Znaleźć wszystkie 2-podgrupy oraz 3-podgrupy Sylowa grup S 3, S 4 i S Udowodnić, że [S 4, S 4 ] = A Udowodnić, że grupy S 2, S 3, S 4 są rozwiązalne. 2 Pierścienie 2.1 Podstawowe definicje Niech S będzie zbiorem wszystkich podzbiorów ustalonego zbioru U. W S definiujemy działania + i wzorami A + B = (A B) (B A) oraz A B = A B. Udowodnić, że S z powyższymi działaniami jest pierścieniem (przemiennym z jedynką) Niech R będzie takim pierścieniem, że a 2 = a dla dowolnego a R. Udowodnić, że a + a = 0 dla dowolnego a R Element a pierścienia R nazywamy nilpotentem, jeśli istnieje n 0 takie, że a n = 0. Udowodnić, że jeśli elementy a i b są nilpotentami, to a + b też jest elementem nilpotentem Udowodnić, że wszystkie nilpotenty pierścienia R tworzą ideał Niech N będzie ideałem nilpotentów pierścienia R. Udowodnić, że w pierścieniu R/N nie ma nilpotentów różnych od Udowodnić, że jeśli w pierścieniu nie istnieje element a różny od 0 taki, że a 2 = 0, to w pierścieniu nie ma nilpotentów różnych od Niech f, g : Q R będą dwoma homomorfizmami pierścieni takimi, że f(k) = g(k) dla wszystkich k Z. Udowodnić, że f = g. 6
7 2.2 Ideały Niech I będzie ideałem w pierścieniu R. Udowodnić, że zbiór J = {a R a n I dla pewnego n 0} jest ideałem. Ideał J nazywamy radykałem ideału I Niech X będzie podzbiorem pierścienia R. Udowodnić, że zbiór J = {a R ax = 0 dla każdego x X} jest ideałem. Ideał J nazywamy anihilatorem zbioru X Niech I będzie ideałem pierścienia R. Udowodnić, że zbiór J = {a R ab I dla każdego b R} jest ideałem Niech f : R S będzie epimorfizmem pierścieni. Udowodnić, że jeśli I jest ideałem pierwszym pierścienia R takim, że Ker f I, to f(i) jest ideałem pierwszym pierścienia S Niech f : R S będzie homomorfizmem pierścieni. Udowodnić, że jeśli I jest ideałem pierwszym pierścienia S, to f 1 (I) jest ideałem pierwszym pierścienia S Niech R będzie skończonym pierścieniem, w którym 0 1. Udowodnić, że jeśli R jest dziedziną, to R jest ciałem Niech R będzie pierścieniem, w którym 0 1 oraz dla każdego elementu a R różnego od 0 istnieje dokładnie jeden element b R taki, że aba = a. Udowodnić, że R jest ciałem Udowodnić, że Z jest pierścieniem ideałów głównych Udowodnić, że jeśli f : R S jest epimorfizmem pierścieni oraz R jest pierścieniem ideałów głównych, to S też jest pierścieniem ideałów głównych Niech R będzie pierścieniem, w którym 0 1. Udowodnić, że R jest ciałem wtedy i tylko wtedy, gdy jedynym ideałami pierścienia R są {0} i R. 2.3 Faktoryzacja Niech R będzie dziedziną ideałów głównych oraz I {0} ideałem. Udowodnić, że ideał I jest maksymalny wtedy i tylko wtedy, gdy jest pierwszy Wyznaczyć wszystkie elementy odwracalne w pierścieniu Z[i] = {a + bi a, b Z}. 7
Ćwiczenia 1 - Pojęcie grupy i rzędu elementu
Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające
1 Grupy. 1.1 Grupy. (2) dla działania istnieje element neutralny, tzn. istnieje e G taki, że ae = a = ea dla dowolnego a G;
1 Grupy 1.1 Grupy Definicja. Grupą nazywamy niepusty zbiór G z działaniem : G G G, (a, b) ab, spełniającym warunki: (1) działanie jest łączne, tzn. a(bc) = (ab)c dla dowolnych a, b, c G; (2) dla działania
Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1
Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Matematyka dyskretna
Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),
Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)
Teoria ciała stałego Cz. I
Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3
2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16
DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi
Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1
4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy
Zadania z algebry liniowej - sem. I Struktury algebraiczne
Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,
1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
1. Elementy (abstrakcyjnej) teorii grup
1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1
Zadania do wykładu Algebra DALG 201 Lato prof. Wojciech Gajda
Zadania do wykładu Algebra DALG 201 Lato 2015 prof. Wojciech Gajda Zadanie 1. Znaleźć rzędy wszystkich elementów w grupie G jeżeli: (a) G=Z/16 (b) G=(Z/36) (c) G=Q 8 (d) G=D 5 (e) G=Z/2 Z/8 (f) G=S 4.
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech
Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:
1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu
= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
Grupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych.
5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych. Przeprowadzimy obecnie skróconą klasyfikację skończonych grup prostych. 5.1.
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9
Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek
Uniwersytet w Białymstoku. Wykład monograficzny
Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr
Projekt matematyczny
Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32 Wielkie twierdzenie
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Algebra Abstrakcyjna i Kodowanie Lista zadań
Algebra Abstrakcyjna i Kodowanie Lista zadań Jacek Cichoń, WPPT PWr, Wrocław 2016/17 1 Grupy Zadanie 1 Pokaż, że jeśli grupy G i H są abelowe, to grupa G H też jest abelowa. Zadanie 2 Niech X będzie niepustym
1. Zadania z Algebry I
1 Zadania z Algebry I Z 11 Znaleźć podgrupy grup Z 12, Z 8, D 6 i D 12 i narysować graf zawierań mie dzy nimi Z 12 Niech Q 8 := j, k GL(2, C), gdzie j, k sa macierzami: j = ( ) i 0 0 i k = ( 0 ) 1 1 0
(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ;
10. Wykład 10: Homomorfizmy pierścieni, ideały pierścieni. Ideały generowane przez zbiory. 10.1. Homomorfizmy pierścieni, ideały pierścieni. Definicja 10.1. Niech P, R będą pierścieniami. (1) Odwzorowanie
opracował Maciej Grzesiak Grupy
opracował Maciej Grzesiak Grupy 1. Określenie i przykłady grup Definicja 1. Zbiór G z określonym na nim działaniem dwuargumentowym nazywamy grupą, gdy: G1. x,y,z G (x y z = x (y z; G2. e G x G e x = x
Algebra I. Grzegorz Bobiński. wykład z ćwiczeniami dla studentów II roku matematyki. Wydział Matematyki i Informatyki UMK w Toruniu
Algebra I wykład z ćwiczeniami dla studentów II roku matematyki Grzegorz Bobiński Wydział Matematyki i Informatyki UMK w Toruniu Toruń 2005 Spis treści Rozdział I. Pierścienie 3 1.1. Działania w zbiorach
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Podciała, podciała generowane przez zbiór, rozszerzenia ciał.
Podciała, podciała generowane przez zbiór, rozszerzenia ciał. Definicja Niech F będzie ciałem. Podzbiór L H zbioru F nazywamy podciałem ciała F (piszemy L ă F ), gdy pl, `æ LˆL, æ LˆL q jest ciałem. Jeżeli
Definicje- Algebra III
Definicje- Algebra III Opracowane na podstawie notatek z wykładu w semetrze zimowym roku 2007r. (mocno niekompletne- umieszczono kilka pierwszych wykładów) 21.11.2007r. Algebry Definicja1(K-algebra)- Przestrzeń
Podstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
O centralizatorach skończonych podgrup
O centralizatorach skończonych podgrup GL(n, Z) Rafał Lutowski Instytut Matematyki Uniwersytetu Gdańskiego III Północne Spotkania Geometryczne Olsztyn, 22-23 czerwca 2009 1 Wprowadzenie Grupy podstawowe
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu.
61 7. Wyk ad 7: Homomorfizmy pierúcieni, idea y pierúcieni. Idea y generowane przez zbiory. PierúcieÒ ilorazowy, twierdzenie o homomorfizmie. Idea y pierwsze i maksymalne. 7.1. Homomorfizmy pierúcieni,
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
WYKŁADY Z ALGEBRY OGÓLNEJ
WYKŁADY Z ALGEBRY OGÓLNEJ II UNIWERSYTET w BIAŁYMSTOKU Instytut Matematyki Ryszard R. Andruszkiewicz WYKŁADY Z ALGEBRY OGÓLNEJ II Białystok 2007 Copyright c Uniwersytet w Białymstoku, Białystok 2005 ISBN
1 Grupy - wiadomości wstępne
1 Grupy - wiadomości wstępne 1.1. Sporządzić tabelę działań dla grupy D 2n izometrii n-kąta foremnego na płaszczyźnie. 1.2. Udowodnić, że wśród grup: Z +, R +, Q + żadne dwie nie są izomorficzne. Udowodnić,
Wyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
Grupy. Rozdział 1. 1.1 Grupy, podgrupy, homomorfizmy. 1.1.1 Definicja i przykłady grup
Rozdział 1 Grupy Ostatnie zmiany 24.10.2005 r. 1.1 Grupy, podgrupy, homomorfizmy Rozpoczniemy od przypomnienia podstawowych pojęć i faktów z teorii grup, występujących w kursowym uniwersyteckim wykładzie
Algebra liniowa nad pierścieniami
Algebra liniowa nad pierścieniami Wykład monograficzny Kazimierz Szymiczek Przedmowa Linear algebra, like motherhood, has become a sacred cow. Irving Kaplansky Niniejszy skrypt jest zapisem wykładu monograficznego
Grupy generowane przez mep-pary
Grupy generowane przez mep-pary Witold Tomaszewski (przy współudziale Zbigniewa Szaszkowskiego i Marka Żabki) Zakład Algebry Instytut Matematyki Politechnika Śląska e-mail: Witold.Tomaszewski@polsl.pl
Twierdzenie 5.1 Definicja i uwaga 5.1. relacjami zadana za pomocą zbioru generatorów i zbioru relacji kodem genetycz- nym
5. Wykład 5: Generatory i relacje. Kod genetyczny grupy. Twierdzenie Nielsena-Schreiera. Głównym celem dzisiejszego wykładu jest następujący rezultat: Twierdzenie 5.1 (Nielsena-Schreiera). Podgrupa grupy
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
4. Dzia lanie grupy na zbiorze
17 4. Dzia lanie grupy na zbiorze Znaczna cze ść poznanych przez nas przyk ladów grup, to podgrupy grupy bijekcji jakiegoś zbioru. Cze sto taka podgrupa sk lada sie z bijekcji, które zachowuja dodatkowa
Rzędy Elementów Grupy Abelowej Andrzej Nowicki 16 września 2015, wersja rz-15
Materiały Dydaktyczne 2015 Rzędy Elementów Grupy Abelowej Andrzej Nowicki 16 września 2015, wersja rz-15 Niech G będzie grupą z elementem neutralnym e i niech a G. Załóżmy, że istnieje co najmniej jedna
Dzia lanie grupy na zbiorze. Twierdzenie Sylowa
Dzia lanie grupy na zbiorze. Twierdzenie Sylowa Niech G be dzie dowolna grupa, zaś X zbiorem. 1. Definicja. Dzia laniem grupy G na zbiorze X nazywamy funkcje µ: G X X, µ(g, x) = g x, spe lniaja ca dwa
5. Podgrupy normalne i grupy ilorazowe
22 5 Podgrupy normalne i grupy ilorazowe Niech ϕ : G H be dzie homomorfizmem Rozpatrzmy zbiór warstw lewostronnych G/ ker ϕ grupy G wzgle dem podgrupy ker ϕ Latwo zauważyć, że ϕ(x) = ϕ(y) x 1 y ker ϕ x
Algebra. Wykłady dla Studiów Doktoranckich. Kazimierz Szymiczek
Algebra Wykłady dla Studiów Doktoranckich Kazimierz Szymiczek 29.11.2010 Spis treści Przedmowa v 1 Grupy 1 1.1 Grupy, podgrupy, homomorfizmy.................... 1 1.1.1 Definicja i przykłady grup....................
O ROZMAITOŚCIACH TORYCZNYCH
O ROZMAITOŚCIACH TORYCZNYCH NA PODSTAWIE REFERATU NGUYEN QUANG LOCA Przez cały referat K oznaczać będzie ustalone ciało algebraicznie domknięte. 1. Przez cały referat N oznaczać będzie ustaloną kratę izomorficzną
ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY
ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
1 Znaleźć wszystkie możliwe tabelki dzia lań grupowych na zbiorze 4-elementowym.
Algebra I Bardzo dobrym źród lem zadań (ze wskazówkami do rozwia zań) jest M Bryński, J Jurkiewicz - Zbiór zadań z algebry, doste pny w bibliotece Moje zadania dla studentów z *: https://wwwmimuwedupl/%7eaweber/zadania/algebra2014/grupyzadpdf
13. Cia la. Rozszerzenia cia l.
59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja
2 Algebra 2 zarys wykładu Szymon Brzostowski Element b G spełniający warunek G3 dla danego a G i e G nazywamy elementem odwrotnym do a i oznaczamy prz
Algebra abstrakcyjna zarys wykładu Szymon Brzostowski 3. października 2018 r. Umowy. Wszędzie poniżej skrót gddy oznaczać będzie wtedy i tylko wtedy, gdy. Znak := ma na celu przypisanie nazwie od strony
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1.
Algebra II Wykład 1 0. Przypomnienie Zbiór R z działaniami +, : R R R, wyróżnionymi elementami 0, 1 R i operacją : R R nazywamy pierścieniem, jeśli spełnione są następujące warunki: (1) a, b, c R : a +
Zadania o grupach Zadania zawieraja
Zadania o grupach 18112014 Zadania zawieraja odsy lacze do podre czników [BT] A Bojanowska, P Traczyk, Algebra I (skrypt) http://wwwmimuwedupl/%7eaboj/algebra/algfinv1pdf [Br] J Browkin, Teoria cia, BiblMat49,
1 Pierścienie i ich homomorfizmy. Ideał, pierścień ilorazowy. Ideały pierwsze i maksymalne, dziedziny i ciała - definicje i przykłady
Tekst ten jest dostępny na stronie http://www-usersmatumkpl/ cstefan/ W razie potrzeby tam będą znajdowały się ewentualne poprawki i uzupełnienia 1 Pierścienie i ich homomorfizmy Ideał, pierścień ilorazowy
Definicja1.2.Niech Abędzieniepustymzbiorem,a i działaniamiwa. (1)Mówimy,że jestłączne,jeżeli. x,y,z A[x (y z) = (x y) z].
1. Wykład 1: Grupy i izomorfizmy grup. Definicja 1.1. Niech A będzie niepustym zbiorem. Działaniem wewnętrznym(lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym
Pojęcie pierścienia.
Pojęcie pierścienia. Definicja: Niech R będzie zbiorem niepustym. 1. Algebrę pr, `, q nazywamy pierścieniem, gdy pr, `q jest grupą abelową, działanie jest łaczne oraz rozdzielne względem działania `, to
Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
ALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH
ALGEBRA Z GEOMETRIĄ 1/10 CIAŁO FUNKCJI WYMIERNYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 7, 13.11.2013 Typeset by Jakub Szczepanik. Ułamki pierścienia całkowitego Cel: Wprowadzenie pojęcia funkcji
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe
Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Topologia Algebraiczna 2 Zadania egzaminacyjne
Topologia Algebraiczna 2 Zadania egzaminacyjne Agnieszka Bojanowska, Stefan Jackowski 9 czerwca 2013 1 Kompleksy łańcuchowe Zad. 1. Niech I będzie odcinkiem w kategorii kompleksów łańcuchowych, czyli kompleksem
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
0.1 Pierścienie wielomianów
0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn
Prostota grup A n. Pokażemy, że grupy A n sa. proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem.
Prostota grup A n. Pokażemy, że grupy A n sa proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem. 1 2 0. Twierdzenie Schura Zassenhausa W tym rozdziale zajmiemy sie bardzo użytecznym twierdzeniem,
Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)
Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,
Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
Grupy i matematyka szkolna
Jest to tekst związany z odczytem wygłoszonym na XLVIII Szkole Matematyki Poglądowej, Skojarzenia i analogie, Otwock Śródborów, styczeń 01. Grupy i matematyka szkolna Kamila MURASZKOWSKA, Edmund PUCZYŁOWSKI,
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Algebra liniowa 3. Kazimierz Szymiczek
Algebra liniowa 3 2008 2009 Kazimierz Szymiczek 2 Spis treści Przedmowa 5 1 Przestrzenie wektorowe 1 1.1 Podstawowe pojęcia............................... 1 1.2 Homomorfizmy.................................
KARTA KURSU. Kod Punktacja ECTS* 6. Znajomość podstaw logiki, teorii mnogości i algebry liniowej.
KARTA KURSU Nazwa Nazwa w j. ang. Algebra abstrakcyjna Abstract algebra Kod Punktacja ECTS* 6 Koordynator Prof. dr hab. Kamil Rusek Zespół dydaktyczny: Dr Antoni Chronowski Opis kursu (cele kształcenia)
Wniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu.
11. Wykład 11: Pierścień ilorazowy, twierdzenie o homomorfizmie. Ideały pierwsze i maksymalne. 11.1. Pierścień ilorazowy, twierdzenie o homomorfizmie. Definicja i Uwaga 11.1. Niech R będzie pierścieniem,
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
Algebraiczna Teoria Liczb
Algebraiczna Teoria Liczb Opracowane na podstawie notatek z wykładu w semetrze letnim roku 2008r. (niekompletne- pominięto ostatnie wykłady o szeregach Diricheta) 08.05.2008r. W tej części rozważań wszystkie
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Spektrum pierścienia i topologia Zariskiego
Uniwersytet Warmińsko Mazurski w Olsztynie Wydział Matematyki i Informatyki Kierunek: Matematyka Anna Michałek Spektrum pierścienia i topologia Zariskiego Praca magisterska wykonana w zakładzie Algebry
Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/
Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,