ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram
Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie elementu Znak umieszczamy pod wykresem Wartości określamy w punktach charakterystycznych* *Wartość ustalamy z lewej i prawej strony punktu charakterystycznego w następujących przypadkach 1. gdy w danym punkcie na danym kierunku przyłożona jest siła skupiona, lub 2. jeśli w tych punkcie schodzą się wiecej niż dwa pręty, lub 3. jeśli schodzą się dwa pręty pod różnym kątem.
Wykres M nie umieszczamy znaku wykres rysujemy po stronie włókien rozciąganych! Wartości określamy w punktach charakterystycznych* *Wartość ustalamy z lewej i prawej strony punktu charakterystycznego w następujących przypadkach 1. gdy w danym punkcie przyłożony jest moment skupiony, lub 2. jeśli w tych punkcie schodzą się wiecej niż dwa pręty. Na każdym elemencie ramy rysujemy wykres jak na elemencie belkowym.
dq q dx = dm Q dx = + dn n dx = + n składowa obciążenia ciągłego równoległa do osi x układu związanego z osią elementu ramowego (kierunek podłużny) q składowa obciążenia ciągłego prostopadła do osi x układu związanego z osią elementu ramowego (kierunek poprzeczny) Postać funkcji sił przekrojowych wynika z obciążenia w przedziale charakterystycznym ( obowiązują związki różniczkowe )
( 1) = + + E = E= ( ) = 0 5 2 3 1.5 2 + 2 + 3 2 = 0 = 0.6 M 0 0 2 3 1.5 2 2 3 7 R 5 0 R 2.4 kn M C R R kn A X = 0 2 3 R = 0 R = 6 kn Sprawdzenie: Y = 0 0.6 + 2.4 3 = 0 F F A
Układy własne w punktach charakterystycznych cosα = 0.6 sinα = 0.8
Obliczenia pomocnicze do wykresu sił podłużnych N ( ) = cos = 0.36 N A R α A ( L ) = cosα = 0.6 cosα 2 3 sinα = 5.16 N B R W A II
( P N B ) = 6 ( L N C ) = 6 ( P ) 6 ( D N C ) = 2.4 ( G ) ( D N D N D) 2.4 N C = N ( F ) = 6 = = N ( E ) = 2.4
( ) 0.36 N A = ( L N B ) = 5.16 ( P N B ) = 6 ( L N C ) = 6 ( P ) 6 ( D N C ) = 2.4 ( G ) ( D N D N D) 2.4 N C = N ( F ) = 6 WYKRES N = = N ( E ) = 2.4
Obliczenia pomocnicze do wykresu sił poprzecznych Q ( ) = sin = 0.48 Q A R α A ( L ) = sinα = 0.6 sinα 2 3 cosα = 3.12 Q B R W A
( P Q B) = R A = 0.6 ( L Q C ) = R E + 3 = 0.6 ( P Q C ) = 3 Q( F ) = 3 ( D Q C ) = 0 ( G ) ( D Q D Q D) 0 = = Q( E ) = 0
( ) 0.48 WYKRES Q Q A = ( L Q B ) = 3.12 ( P ) = = 0.6 ( L Q C ) = 0.6 ( P ) 3 ( D Q C ) = 0 ( G ) ( D Q D Q D) 0 Q B R A Q C = Q( F ) = 3 = = Q( E ) = 0
Sprawdzenie poprawności wykresów N i Q (łącznie) Wycinamy węzeł wraz z działającym obciążeniem!!! Zastępujemy przecięcia ukłądami własnymi, na których z wykresów nanosimy wartości sił przekrojowych a znaki uwzględniamy w zwrocie sił (+ zgodny z układem własnym, -przeciwny do wersora układu własnego. Sprawdzamy równowagę węzła X = 0, Y = 0 Sprawdzenie dotyczy warunku koniecznego, a nie wystarczającego.
Węzeł B Węzeł C
Węzeł B Węzeł C X = 0 3.12 cos α + 5.16 sin α 6 = 0 X = 0 6 6 = 0 Y = 0 5.16 cos α 3.12 sin α 0.6 = 0 Y = 0 0.6 3+ 2.4 = 0
Obliczenia pomocnicze do wykresu momentów M
M ( A ) = 0 M ( F ) = 0 M ( E ) = 0 ( L M B) = RA 4 W 1.5 = 6.6 ( P M B) = R E 1 2 3 3 = 8.6 ( L M C ) = 2 3 2 = 8 ( P M C ) = 3 2 = 6 ( D M C ) = 2 ( G ) 2 M D = ( D M D ) = 0
M ( A ) = 0 ( ) 0 M F = ( L M B ) = 6.6 ( P M B ) = 8.6 ( L M C ) = 8 ( P M C ) = 6 ( D M C ) = 2 ( G M D ) = 2 ( D M D ) = 0 M ( E ) = 0
Sprawdzenie poprawności wykresu M Wycinamy węzeł wraz z działającym obciążeniem!!! Zastępujemy przecięcia ukłądami własnymi, na których z wykresów nanosimy wartości momentów po stronie włókien rozciąganych. Sprawdzamy równowagę węzła M = 0 Sprawdzenie dotyczy warunku koniecznego, a nie wystarczającego.
Węzeł B Węzeł C M ( B ) = 0 2 + 6.6 8.6 = 0 M ( C ) = 0 6.0 + 2 8.0 = 0
Przykłady na kartkówkę 1)
2)
Wykres momentów W każdym węźle schodzą się 2 pręty i nie ma momentów skupionych. Wynika z tego że nie ma potrzeby rozróżniania prawostronnego i lewostronnego otoczenia punktu. Jednak do obliczenia wartości momentu trzeba wybrać jedno z otoczeń i narysować w nim układ własny jak np.na rysunku poniżej (gdyż w samych punktach B, C, D nie ma zdefiniowanego układu własnego). W celu przypisania znaku momentów i następnie odniesienia do wyróznionych włókien, musimy zdecydować, które włókna wyróżniamy. Rezultat jest obiektywny tzn. nie zależy od wyboru tych włókien (wybór pełni tu pomocniczą rolę)
Zapis zgodny z oznaczeniami na rysunku: M ( A ) = 0 M ( B) M ( D ) = P l M ( E) = + P l M ( C) = P l = + P l Obliczone wartości odnosimy na wykresie tam gdzie rysowane były układy własne
Na niebiesko A następnie przenosimy na drugie otoczenie.
Wewnątrz naroża węzły B, C na zewnątrz węzeł D Uwaga : takiego przeniesienia nie da się zastosować do wykresów N i Q Teraz możliwe jest narysowanie wykresu
PRZYKŁADY Z PODANYMI WYKRESAMI Przykład 1 Uwaga: * obciążenie ciągłe działa na tą część, na którą spada jak śnieg i tam się zatrzymuje, nie spadając na części leżąc poniżej. (z tego wynika,że obciążenie ciągłe dotyczy poziomego elementu, a nie dotyczy ukośnej prawej części belki leżącej poniżej. Dotyczy natomiast lewej części ukośnej ) ** przecięcie na dwie rozłączne części przechodzi przez tylko jeden punkt konstrukcji
Przykład 2
Przykład 3
Przykład 4