ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

Wielkość: px
Rozpocząć pokaz od strony:

Download "ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY"

Transkrypt

1 ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Numer zadania Etapy rozwiązania zadania Liczba punktów Zapisanie dziedziny funkcji f:, Podanie miejsc zerowych funkcji: Naszkicowanie wykresu funkcji y x =, x = Zapisanie zbioru wartości funkcji:, x Uwagi dla egzaminatorów Końce przedziału muszą być poprawnie ustalone Akceptujemy zapisy typu: x,, x Miejsca zerowe mogą być odczytane z wykresu, nie wymagamy zapisu stosownych obliczeń Jeśli dziedzina została poprawnie wyznaczona, to akceptujemy wykres nawet bez wyraźnie oznaczonych końców łamanej Końce przedziału muszą być poprawnie ustalone Akceptujemy zapisy typu: y,, y

2 Obliczenie: Ω= 66 = 6 Obliczenie A, gdzie A jest zdarzeniem, że utworzona liczba jest większa od 5: A = + 6 = 0 Obliczenie prawdopodobieństwa zdarzenia A: II sposób rozwiązania (metoda drzewa): Narysowanie drzewa z zaznaczeniem istotnych gałęzi PA= ( ) = 6 8 Zapisanie prawdopodobieństw na istotnych gałęziach drzewa Obliczenie prawdopodobieństwa zdarzenia A: 5 PA= ( ) + = Zdający może narysować tabelę o wymiarach 6 na 6 i odczytać rozwiązanie Za prawidłową odpowiedź przyznajemy komplet punktów

3 Wykorzystanie związku sinα tg α = w przekształcaniu tożsamości cosα sin α Przekształcenie lewej strony tożsamości do postaci: cosα Wykorzystanie związku sin α + cos α = w przekształcaniu tożsamości Sformułowanie wniosku: Podana równość jest tożsamością lub sformułowanie równoważne Obliczenie sumy początkowych wyrazów ciągu geometrycznego: 9 S ( = + ) = Zapisanie sumy początkowych wyrazów ciągu arytmetycznego + 6r w zależności od r: S = + 6r Ułożenie równania z niewiadomą r: = ( + ) 9 Rozwiązanie równania: r = Punkt przyznajemy za poprawne wymnożenie nawiasów na dowolnym etapie rozwiązania tego zadania Wniosek musi być konsekwencją wykonanych przekształceń ( + ) Wystarczy zapis S = (nie musi być to oddzielny zapis, może występować, np jako jedna ze stron równania w czynności ) Zdający nie musi obliczyć wartości sumy S Nie musi to być oddzielny zapis, może występować, np jako jedna ze stron równania w czynności Może też być: + 6r 9 =

4 5 5 Przekształcenie nierówności do postaci: x ( x ) < 0 5 Rozwiązanie nierówności: ( 0,) x 5 Przedstawienie równania w postaci, np x ( x ) ( x ) = 0 Przedstawienie równania w postaci iloczynu czynników liniowych, x+ 6 x+ x = 0 np ( )( )( ) 55 Wyznaczenie wszystkich rozwiązań równania: x= 6, x=, x= 56 Podanie odpowiedzi: x = Przyznajemy pkt za przedstawienie metody rozwiązania nierówności kwadratowej: np zapisania podanej nierówności w postaci: x < lub narysowanie wykresu funkcji y = ( x ), itp Dopuszczamy przedstawienie zbioru rozwiązań na osi liczbowej, o ile zdający wyraźnie zaznaczy przedział otwarty Lewa strona równania musi mieć postać sumy iloczynów, w których występuje ten sam czynnik Przyznajemy punkty w czynności 5, 5 i 55, gdy zdający podaje wszystkie pierwiastki wielomianu W ( x) = x + 6x x bez jakichkolwiek obliczeń (np przez zastosowanie tw o pierwiastkach wymiernych wielomianu)

5 5 6 6 Zapisanie, które boki trójkąta są równej długości: AC = BC 6 Wyznaczenie równania prostej AB: y = x 5 6 Zapisanie równania rodziny prostych prostopadłych do prostej AB: y = x + b 6 Wyznaczenie równania osi symetrii trójkąta: y = x II sposób rozwiązania: (z własności symetralnej) 6 Oznaczenie dowolnego punktu leżącego na poszukiwanej symetralnej, np P= ( x, y) i zapisanie własności AP = BP Wyznaczenie długości odcinków AP i BP i zapisanie równania: 6 ( x+ ) + ( y+ ) = x + ( y+ 5) 6 Doprowadzenie równania do postaci równania pierwszego stopnia z dwiema niewiadomymi, np 8x+ y+ = 0y+ 5 6 Zapisanie odpowiedzi: y = x 6 III sposób rozwiązania: Zapisanie, które boki trójkąta są równej długości: AC = BC 6 Wyznaczenie współrzędnych środka odcinka AB: D = (, ) 6 Zauważenie, że prosta przechodząca przez punkty C i D jest osią symetrii trójkąta ABC 6 Wyznaczenie równania osi symetrii trójkąta: y = x Przyznajemy punkt, gdy z dalszego toku rozumowania wynika, że zdający poprawnie wybrał równe boki trójkąta Wystarczy, że zdający poda współczynnik kierunkowy prostej AB Wystarczy, że zdający poda współczynnik kierunkowy prostej prostopadłej do prostej AB Przyznajemy punkt, gdy z toku rozumowania wynika, że zdający stosując tę metodę poprawnie wybrał równe boki trójkąta

6 6 8 d H Obliczenie wysokości ostrosłupa: H = Obliczenie długości przekątnej podstawy ostrosłupa: d = albo długości krawędzi podstawy: a = 6 Obliczenie objętości ostrosłupa: V = 6 Oznaczenie długości krawędzi sześcianu, np b i zapisanie równania: b = 6 5 Obliczenie długości krawędzi sześcianu: b = 8 Obliczenie kapitału końcowego: K = 9 09 = 96 Zapisanie równania z niewiadomą K 0 kapitałem początkowym: 8 K = Obliczenie kwoty K 0 : 8000 zł α a Jeśli zdający rozpatruje ostrosłup prawidłowy inny niż czworokątny, to oceniamy czynność, za czynności i nie przyznajemy punktów Pozostałą część rozwiązania tego zadania oceniamy według schematu Zdający może podać wynik w postaci, np b = 6 lub wartość przybliżoną pierwiastka

7 9 9 Wprowadzenie oznaczeń, np takich jak na poniższym rysunku: x = PB, h wysokość odciętego trójkąta C F h A D P x B Wykorzystanie podanej proporcji do wyznaczenia długości odcinków: AD = 6, DB = 9 Zapisanie równania: x h= 8 5 Zapisanie zależności między x i h z wykorzystaniem podobieństwa 9 h 5 5 trójkątów CDB i FPB: x = = 9 Obliczenie długości odcinka PB: PB = 6 cm

8 8 9 II sposób rozwiązania: Wprowadzenie oznaczeń, np takich jak na poniższym rysunku: x = PB, h wysokość odciętego trójkąta A C F h D P x Wykorzystanie podanej proporcji do wyznaczenia długości odcinków: AD = 6, DB = 9 Obliczenie proporcji: PΔ DBC = stąd PΔ DBC = PΔ ABC PΔ ABC Stwierdzenie, że ΔDBC ΔPBF i wykorzystanie twierdzenia o P ΔDBC stosunku pól figur podobnych do zapisania proporcji: = P ΔPBF PB 9 PΔ ABC stąd = P PB ΔABC 9 Obliczenie długości odcinka PB : = PB, PB = 6 B

9 III sposób rozwiązania: (czynności 9 oraz 9) Stwierdzenie, że ΔDBC ΔPBF i wykorzystanie twierdzenia o stosunku pól figur podobnych do zapisania proporcji: P P ΔABC ΔDBC 8 6 k = = = stąd k = P ΔPBF P ΔABC Obliczenie długości odcinka PB: DB k PB = stąd PB = = Zapisanie układu: 00a + 0b = 0 900a + 0b = 90 Wystarczy zapis 0 a = 0 Rozwiązanie układu: b = 0 Zapisanie wzoru funkcji: T ( n) = n + n, 0 n N 0 Zapisanie równania: n + n = Rozwiązanie równania i wyznaczenie liczby kartek : 0 ( ) ( ) T 0 = 0 T 0 = 90 Akceptujemy sam wzór bez podania założenia n N Zdający nie musi wyznaczyć ujemnego rozwiązania równania

10 0 D C E Uzasadnienie, że trójkąty DCF, DAE i EBF są równoramienne (wykorzystanie założenia, że AB = BC = CD = DA i trójkąty AEB oraz BFC są równoboczne) Obliczenie miary kąta DAE lub FCD: DAE = FCD = = 50 Obliczenie miary kąta EBF : EBF = = 50 A B Zapisanie, że trójkąty DCF, DAE i EBF są przystające (z cechy przystawania bkb) i wyciągnięcie wniosku o równości boków trójkąta DEF F

11 Wprowadzenie oznaczeń i zapisanie zależności między liczbą dziewcząt i liczbą chłopców: np x liczba dziewcząt, y liczba chłopców, x 6 = y Zapisanie równania: x = %( x + y) Zapisanie układu równań: 60 Rozwiązanie układu i sformułowanie odpowiedzi: x = 0,6( x+ y) x 6 = y x = 8, y = W klasie jest 0 osób w tym chłopców II sposób rozwiązania: Wprowadzenie oznaczeń : x liczba osób w klasie, 0,6x liczba dziewcząt, 0,x liczba chłopców Zapisanie równania: 0,6x 6 = 0, x Rozwiązanie równania: x = 0 Podanie odpowiedzi: W klasie jest 0 osób w tym chłopców Wystarczy, że zdający poda liczby dziewcząt i chłopców Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie przyznajemy maksymalną liczbę punktów

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Numer zadania Etapy rozwiązania zadania Liczba punktów. Zapisanie dziedziny funkcji f:,.. Podanie miejsc zerowych funkcji: Naszkicowanie wykresu funkcji

Bardziej szczegółowo

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM PODSTAWOWY

OCENIANIE ARKUSZA POZIOM PODSTAWOWY Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania do arkusza I

Model odpowiedzi i schemat oceniania do arkusza I Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej

Bardziej szczegółowo

Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1

Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 Nr zadania Nr czynności. Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR Etapy rozwiązania zadania POZIOM PODSTAWOWY Obliczenie wyróżnika oraz pierwiastków trójmianu

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY Nr zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr Etapy rozwiązania zadania czynności Obliczenie wyróżnika oraz pierwiastków trójmianu

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) x = x. I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

Szanowni Państwo, Nauczyciele poprawiający prace uczniowskie z badania diagnostycznego z matematyki

Szanowni Państwo, Nauczyciele poprawiający prace uczniowskie z badania diagnostycznego z matematyki Szanowni Państwo, Nauczyciele poprawiający prace uczniowskie z badania diagnostycznego z matematyki Poniżej przedstawiamy zasady, dotyczące oceniania arkuszy egzaminacyjnych z matematyki Zasady te są omawiane

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

OCENIANIE ARKUSZA POZIOM ROZSZERZONY OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) =. x x I sposób rozwiązania podpunktu b). Zapisanie

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7

MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7 MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 00 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 00 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od. do 5. podane były

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 4 5 6 7 8 9 0 4 5 6 7 8 9 0 Odpowiedź

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA-POZIOM ROZSZERZONY Zadanie 1. (4 pkt) Rozwiąż równanie: w przedziale. 1 pkt Przekształcenie równania

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17

Bardziej szczegółowo

MATURA probna listopad 2010

MATURA probna listopad 2010 MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log

Bardziej szczegółowo

Próbna matura z WSiP Marzec 2017 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna matura z WSiP Marzec 2017 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń PESEL Kod ucznia Próbna matura z WSiP Marzec 07 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM ROZSZERZONY Katalog zadań poziom rozszerzony

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut MATEMATYKA LUTY 04 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane 4 odpowiedzi: A, B,

Bardziej szczegółowo

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/05 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZE MMA-P SIERPIEŃ 05 Matura z matematyki poziom podstawowy 05

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY GR- Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań inną

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka

Bardziej szczegółowo

PRÓBNA NOWA MATURA z WSiP. Zasady oceniania zadań

PRÓBNA NOWA MATURA z WSiP. Zasady oceniania zadań PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Numer

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015

LUBELSKA PRÓBA PRZED MATURĄ 2015 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania do arkusza II

Model odpowiedzi i schemat oceniania do arkusza II Model odpowiedzi i schemat oceniania do arkusza II Zadanie 12 (3 pkt) Z warunków zadania : 2 AM = MB > > n Wprowadzenie oznaczeń, naprzykład: A = (x, y) i obliczenie współrzędnych wektorów n Obliczenie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY

MATEMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 05/06 FORMUŁA DO 0 ( STARA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 06 Zadanie. ( pkt) Rozwiąż nierówność + 5 + 6

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp) Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1 Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach

Bardziej szczegółowo

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3 Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom rozszzerzony. Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja

Egzamin maturalny z matematyki Poziom rozszzerzony. Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja Zadanie ( pkt) Wyznacz wszystkie rozwiązania równania, π sin 7cos = należące do przedziału Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja cos 7 cos = trygonometryczna

Bardziej szczegółowo

Uzasadnienie tezy. AB + CD = BC + AD 2

Uzasadnienie tezy. AB + CD = BC + AD 2 LUBELSKA PRÓBA PRZED MATURĄ MARZEC 06 ODPOWIEDZI I PROPOZYCJA OCENIANIA ZAMKNIĘTE ODPOWIEDZI Nr zadania 5 Odpowiedź C D C B B ZADANIE Z KODOWANĄ ODPOWIEDZIĄ Zadanie 6 cyfra dziesiątek jedności OTWARTE

Bardziej szczegółowo

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D B B C D C C D D A B D B B A C B C A Zadanie. (0-) Rozwiąż nierówność

Bardziej szczegółowo

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY 5 KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY DATA: 30 MAJA 2017 R. GODZINA ROZPOCZĘCIA: 9:000 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Plik pobrany ze strony www.zadania.pl

Plik pobrany ze strony www.zadania.pl Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań MTEMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) III... Uczeń posługuje się w obliczeniach pierwiastkami i stosuje prawa działań na pierwiastkach. 7 6 6 =

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Instrukcja dla zdającego Czas pracy 180

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOWY

MATEMATYKA POZIOM PODSTAWOWY EGZMIN MTURLNY W ROKU SZKOLNYM 016/017 FORMUŁ OD 015 i DO 014 ( NOW MTUR i STR MTUR ) MTEMTYK POZIOM PODSTWOWY ZSDY OCENINI ROZWIĄZŃ ZDŃ RKUSZ MM-P1 SIERPIEŃ 017 Zadania zamknięte Punkt przyznaje się za

Bardziej szczegółowo

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 205 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142395 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Które z podanych

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA. Schemat odpowiedzi PRÓBNA MATURA Z MATEMATYKI, POZIOM ROZSZERZONY

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA. Schemat odpowiedzi PRÓBNA MATURA Z MATEMATYKI, POZIOM ROZSZERZONY Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA We współpracy Schemat odpowiedzi PRÓBNA MATURA Z MATEMATYKI, POZIOM ROZSZERZONY Marzec 014 Zadanie 1 Wyróżnienie na osi

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2 Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 0 Instrukcja dla zdającego Czas pracy: 80 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

ARKUSZ X

ARKUSZ X www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa

Bardziej szczegółowo

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D. Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92

Bardziej szczegółowo

Ostatnia aktualizacja: 30 stycznia 2015 r.

Ostatnia aktualizacja: 30 stycznia 2015 r. Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,

Bardziej szczegółowo

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r. MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 03 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron (zadania 30).. Arkusz zawiera 0 zadań zamkniętych i 0 zadań

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 011 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2013

LUBELSKA PRÓBA PRZED MATURĄ 2013 LUBELSKA PRÓBA PRZED MATURĄ 03 MATEMATYKA - poziom podstawowy STYCZEŃ 03 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOWY

MATEMATYKA POZIOM PODSTAWOWY EGZAMIN MATURALNY W ROKU SZKOLNYM 07/08 FORMUŁA OD 05 NOWA MATURA i FORMUŁA DO 04 STARA MATURA MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P SIERPIEŃ 08 Egzaminatorze! Oceniaj

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo