ANALIZA SZEREGÓW CZASOWYCH

Podobne dokumenty
ANALIZA SZEREGÓW CZASOWYCH

Wykład 6. Badanie dynamiki zjawisk

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK

Wykład 6. Badanie dynamiki zjawisk

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Cechy szeregów czasowych

Wygładzanie metodą średnich ruchomych w procesach stałych

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

Prognozowanie i symulacje

MODEL TENDENCJI ROZWOJOWEJ

dy dx stąd w przybliżeniu: y

Procedura normalizacji


Analiza szeregów czasowych uwagi dodatkowe

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego

Weryfikacja hipotez dla wielu populacji

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Wykład 6. Badanie dynamiki zjawisk



ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego

Stanisław Cichocki Natalia Nehrebecka. Wykład 2


Matematyka ubezpieczeń majątkowych r.

Natalia Nehrebecka. Wykład 2

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

Ekonometryczne modele nieliniowe

Kier. MTR Programowanie w MATLABie Laboratorium

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Ekonometria I materiały do ćwiczeń data lp wykładu temat Wykład dr Dorota Ciołek Ćwiczenia mgr inż. Marta Chylińska

formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych

Statystyka. Zmienne losowe

STATYSTYKA MATEMATYCZNA

licencjat Pytania teoretyczne:

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH







Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

Optymalizacja funkcji

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych











Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów

DYNAMIKA KONSTRUKCJI

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński

Finansowe szeregi czasowe wykład 7

Funkcje i charakterystyki zmiennych losowych

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. Strona 1

METODY ANALIZY OBWODÓW LINIOWYCH

Arytmetyka finansowa Wykład z dnia

SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

RACHUNEK NIEPEWNOŚCI POMIARU

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Dyskretny proces Markowa

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

Analiza danych OGÓLNY SCHEMAT. Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe

Ekonometria I materiały do ćwiczeń

Natalia Nehrebecka. Dariusz Szymański

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1)

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej

Pobieranie próby. Rozkład χ 2

METODY ANALIZY OBWODÓW LINIOWYCH

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Regulamin. udzielania pomocy materialnej o charakterze socjalnym dla uczniów zamieszkaùych na terenie Gminy Wolbórz

FINANSOWE SZEREGI CZASOWE WYKŁAD 3

PROGNOZOWANIE I SYMULACJE - zadania powtórzeniowe

Elementy i Obwody Elektryczne

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Podstawowe algorytmy indeksów giełdowych

Transkrypt:

ANALIZA ZEREGÓW CZAWYCH zereg czasow zbór warosc baanej cech lub warosc baanego zjawska zaobserwowanch w róznch momenach czasu uporzakowan chronologczne. klank szeregu czasowego:. enencja rozwojowa (ren) 2. wahana okresowa 3. wahana konunkuralne 4. wahana przpakowe Najprossza meoa analz szeregów czasowch jes wrównwane szeregu prowazace o welmnowana z szeregu wahan przpakowch a prz opowenm posepowanu okresowch. Mozna akze okonac pomaru wahan okresowch poprzez porównane perwonego szeregu czasowego z szeregem wrównanm (wskaznk okresowosc). WYRÓWNYWANIE ZEREGU CZAWEG Jena z meo wrównwana szeregu czasowego jes oblczene srench ruchomch zasapene nm perwonch wrazów szeregu czasowego. rene ruchome mozna polczc na posawe: ) neparzsej lczb pookresów w pelnm cklu wahan: = q + r (, 2,..., ) 2q + = q+ q+ n q r= q (la q= orzmujem wzór na srene ruchome rzokresowe, la q=2 wzór na srene ruchome pecookresowe,.). zereg zlozon z ak oblczonch srench ruchomch jes krósz o perwonego szeregu o 2q wrazów.

2) parzsej lczb pookresów w pelnm cklu wahan zw. srene ruchome scenrowane (np. wahana pólroczne, kwaralne, meseczne) q = q + + r + + q ( = q+, q+ 2,..., n q) 2q 2 r= q 2 Przkla: 45 40 35 30 25 20 5 0 5 0 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 Czas szereg newrównan srene ruchome 3-okresowe srene ruchome 5-okresowe PMIAR WAHAN KREWYCH: Pomaru wahan okresowch okonuje se za pomoca wskaznków okresowosc. posób konsrukcj wskaznków zalez o ego, cz w baanm szeregu wsepuje ren oraz cz wahana okresowe naklaaja se na ren w sposób awn cz mulplkawn. zereg czasow awn szereg czasow, kórego poszczególne elemen sumuja se a funkcja renu jes lnowa. Wahana okresowe cechuje u w przblzenu sala amplua wahan. zereg czasow mulplkawn szereg czasow, kórego poszczególne elemen naklaaja se na ren w sposób mnoznkow a funkcja renu jes nelnowa. Amplua wahan okresowch jes u proporcjonalna o pozomu zjawska.

Wskaznk wahan okresowch la szeregu czasowego bez renu Welkosc wahan okresla se porównujac srene warosc baanej zmennej oblczone la poszczególnch pookresów cklu ze srena warosca ej zmennej oblczona na posawe wszskch obserwacj.. mulplkawne = (=,2,...,) gze: n lczba elemenów szeregu czasowego lczba pookresów numer pookresu w cklu N zbór numerów obserwacj, kóre ocza -ego pookresu w cklu () = - srena warosc baanej zmennej w -m pookrese cklu n N n n = = - srena z calego szeregu czasowego. Inerpreacja : na skuek wahan okresowch welkosc zjawska w -m pookrese cklu jes o ( -)00% wzsza / nzsza o srenego pozomu zjawska w calm okrese. Zachoza równosc: = = ( ) 00% = 0 = 2. awne = (=,2,...,) Inerpreacja : na skuek wahan okresowch welkosc zjawska w -m pookrese cklu jes o wzsza / nzsza o srenego pozomu zjawska w calm okrese Zachoz równosc: = = 0

Wskaznk wahan okresowch la szeregu czasowego z renem W m przpaku welkosc wahan okresla se porównujac perwon szereg czasow z szeregem wrównanm. Dlaego najperw nalez wrównac szereg.. mulplkawne a) najperw oblczam srene ruchome b) nasepne oblczam nwualne wskaznk okresowosc c) nasepne oblczm surowe wskaznk okresowosc ' = n N (=,2,...); suma surowch wskaznków okresowch najczescej ne jes równa lczbe pookresów w cklu, laego wskaznk nalez oczscc: ) oczszczone wskaznk okresowosc: = ' (=,2,...,) ' Zachoz równosc: = = Inerpreacja : na skuek wahan okresowch welkosc zjawska w -m pookrese cklu jes o ( -)00% wzsza / nzsza nz wnkalob o z renu. = 2. awne ' = ( ) (=,2,...,) neoczszczone n N = ' ' (=,2,...,) oczszczone = Inerpreacja : na skuek wahan okresowch welkosc zjawska w -m pookrese cklu jes o wzsza / nzsza nz wnkalob o z renu. Zachoz równosc: = = 0

Wskaznk okresowe sa oblczane w celu: ) pomaru wahan okresowch 2) elmnacj wahan okresowch z szeregu czasowego 3) prognozowana zjawska la przszlch okresów ELIMINACJA WAHAN KREWYCH ZA PMCA WKAZNIKÓW KREWCI: a) w przpaku wahan mulplkawnch proceura a polega na zelenu wrazów perwonego szeregu czasowego przez opowaajace m wskaznk : = la N b) w przpaku wahan awnch proceura a polega na oejmowanu o wrazów perwonego szeregu czasowego opowaajace m wskaznk : = la N zereg czasow o elemenach ỹ okreslon jes lko przez ren wahana przpakowe. Na jego posawe mozna oszacowac za pomoca MNK paramer funkcj renu. PRGNZWANIE ZJAWIKA: a) w przpaku wahan mulplkawnch: P ˆ = la T T T N gze ˆT jes warosca oszacowanej funkcj renu la =T. b) w przpaku wahan awnch: P ˆ = + la T T T N