Wykład 6. Badanie dynamiki zjawisk
|
|
- Franciszek Rybak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wkład 6 Badane dnamk zask
2 Krza eża Pze laa odchlene od onu merach 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,973 4,977 4,9725 4,9742 4,9757 Szeregem czasom nazam zbór arośc cech uorządkoanch chronologczne różnch momenach (rzedzałach) czasu. Oznaczaąc rzez,..., n momen (rzedzał) czasu, kórch obseroano arośc ene zmenne, a rzez nk obserac, szereg czaso zasuem ako zbór { ; =,...n}
3 SKŁADNK SZEREGU CZASOWEGO endenca rozooa (rend) - ogóln kerunek zman zaska czase będąc nkem ssemacznch, ednokerunkoch zman (sadek lub zros) ozomu badanego zaska ahana okresoe - rmczne ahana ozomu badanego zaska o określonm cklu (okrese rzebegu) (regularne odchlena arośc cech od rendu) ahana konunkuralne - ssemoe ahana ozomu badanego zaska obseroane dłuższch od roku okresach ahana rzadkoe - neregularne, nerzedalne zaróno co do kerunku ak sł zman ozomu badanego zaska
4 ETODA ANALTYCZNA odele endenc rozooe sosuem do rognozoana na odsae szeregó czasoch, kórch sęuą rend oraz ahana rzadkoe. Rolę zmenne obaśnaące odgra zmenna czasoa. Ne es ona bezośredną rzczną zman zachodzącch aroścach zmenne rognozoane, ale snezue ł blże ne znanch cznnkó, sarza możlość osu ch zman sosób lośco.
5 ETODA NAJNEJSZYCH KWADRATÓW NK - ETODA ANALTYCZNA Posać lnoego modelu endenc rozooe ), ( ), cov( ) ( ) ( 2 2 s s E D E Y ),2,..., ( n s dla
6 45, Eksor Polsce laach ( mln zł) 4, 35, 3, 25, 2, 5,, 5,, NK , , 74 Eksor R² =,9629 Lno (Eksor)
7 Prognoza (redkca) Żeb użć modelu do budo rognoz rzeba założć: a) sablność relac srukuralnch czase = osać analczna modelu arość ocen ego arameró ne ulegną zmane rzedzale czasu, dla kórego znacza sę rognozę, b) sablność rozkładu składnka losoego (umożla ocenę błędu ex ane rognoz).
8 WYODRĘBNANE SKŁADNKÓW SZEREGU CZASOWEGO TREND. FUNKCJA TRENDU ETODA ANALTYCZNA 2. ŚREDNE RUCHOE ETODA WYRÓWNYWANA ECHANCZNEGO średne ruchome zkłe średne ruchome scenroane
9 średne ruchome zkłe - oblcza sę z nearzse lczb sąsaduącch ze sobą razó szeregu, ak ab uzskan nk móc rzorządkoać całkoe arośc znaduące sę środku uzględnonego oblczenach rzedzału czasoego:
10 Eksor Eksor Polsce Polsce laach laach (mln zł) 45, 4, 35, 3, 25, 2, 5,, 5,, Eksor średne Eksor ruchome 3-okresoe
11 4545, Eksor Eksor Polsce Polsce laach laach (mln zł) Trend- średne ruchome 3-3-okresoe 5-okresoe 44, 3535, 33, 2525, 22, 55,, 55,, średne ruchome 3-okresoe średne ruchome 5-okresoe średne ruchome Eksor 3-okresoe ( 5 ( ) )
12 średne ruchome scenroane - oblcza sę z arzse lczb sąsaduącch ze sobą razó szeregu, uzględnaąc ołoę arośc erszego razu z danego cklu ahań, nasęne szske ozosałe raz składaące sę na ełn ckl ahań oraz oło arośc erszego razu z nasęnego cklu ahań:
13 3, Produk krao bruo Polsce laach 2-26 (mln zł) 29, 27, 25, 23, 2, 9, 7, 5, PKB średne ruchome
14 WSKAŹNK WAHAŃ OKRESOWYCH DLA SZEREGU CZASOWEGO Z TRENDE dla sezonoośc addne: amluda ahań kolench okresach ne będze rosła raz ze zrosem średnego ozomu (ne będze z nm dodano skoreloana) dla sezonoośc mullkane: amluda ahań kolench okresach będze rosła raz ze zrosem średnego ozomu (będze z nm dodano skoreloana) = T + S + e = T O e
15 WSKAŹNK WAHAŃ OKRESOWYCH DLA SZEREGU CZASOWEGO Z TRENDE WAHANA OKRESOWE ADDYTYWNE d S
16 25, 2, 5,, 5,, -5, -, -5, -2, nddualne skaźnk okresoośc PKB laach 2-26 ( ( s mln zł) zł) nddualne skaźnk okresoośc ednoskach absolunch nddualne skaźnk okresoośc Wahana okresoe ednoskach absolunch S ' n N (=,2,,d)
17 karał S' S -,992 -,93-4,32-4,44-3,449-3,36 V 9,29 9,37 suma -,354, d S Skorgoane ahana okresoe (suma odchleń okresoch obrębe cklu ahań róna zeru) k d d ' ' S,2,..., d S S k,2,..., d
18 WAHANA OKRESOWE ULTPLKATYWNE 3 Turśc zagranczn Krakoe laach 2-26 d d urśc zagranczn
19 ,6,4,2,,8,6,4,2, nddualne skaźnk okresoośc nddualne skaźnk okresoośc ednoskach zględnch nddualne skaźnk okresoośc - suro skaźnk ahań okresoch n N
20 karał O' O,527,53,2,27,53,52 V,737,742 suma 3,977 4, d d k d d - skaźnk korguąc k
21 ANALZA WAHAŃ OKRESOWYCH WSKAŹNK WAHAŃ OKRESOWYCH DLA SZEREGU CZASOWEGO BEZ TRENDU Turśc krao Krakoe laach 2-24 ( s) ഥ V V V V urśc krao Średna lczba ursó na karał Lno (urśc krao) laach 2-24
22
23 zględn skaźnk ahań okresoch: karał ;, 2,..., d suma 4, % mó, o le rocen arośc Warość rażena zaska obseroane -m odokrese cklu są, na skuek ahań okresoch, rzecęne ższe (znak +) lub nższe (znak -) od średnego zaska określonego rzez rend. O,83,254,26 V,97 absolun skaźnk ahań okresoch S,2,..., d S karał -9,875 25,625 2,625 V -8,375 suma,
24 ndeks sasczne
25 W rzadku badana dnamk zask ednorodnch znaczam: Absolune rzros arośc zmenne okrese, T 74567, ,2= 48469,3 T,,..., n Względne rzros arośc zmenne 48469,3 T, ,2 okrese, - oznacza ozom badanego zaska enm branm momence czasu T
26 Względn rzros zdefnoan ako loraz ozomó ego samego oednczego zaska z dóch różnch okresó (momenó) - ndeks nddualn. (, T ) / W sasce sołeczno-ekonomczne rozarue sę zkle rz rodzae nddualnch skaźnkó dnamk, a manoce: ndeks cen, lośc arośc.
27 ndeks łańcuchoe - ozom zaska es orónan z aroścą zaska momence orzednm -. / ndeks ednoodsaoe - ozom zaska es orónan z aroścą zaska momence =cons., czl sałm dla ozosałch momenó. /
28 ZASADY PRZELCZEŃ NDEKSÓW Przelczane ndeksó ednoodsaoch o odsae na ndeks o nne odsae Przelczane ndeksó ednoodsaoch o odsae na ndeks łańcuchoe Przelczane cągu ndeksó łańcuchoch na ndeks ednoodsaoe o odsae / / / : / / / :... ; / 2 / / 2 ' ' / :... : ' '
29 SYNTETYCZNE WELKOŚC CHARAKTERYZUJĄCE SZEREG CZASOWY 2. Średne emo zman ozomu zaska czase: r, n, g gdze g n n / n n es średną geomerczną z arośc ndeksu łańcuchoego badanm okrese.
30 Eksor rok orzedn = laa Eksor zł , ,8 25, , 4, , 9, ,6 2, ,8 23, ,6 5, ,5 7, 7 g n /,254,45...,7 g n n n ,5 64,,5 ( ) % (,5 ) % g Eksor (mln zł) Średne roczne emo zrosu: (mln zł),5 5% Średne roczne emo zman?
31 Na odsae onższch cągó ndeksó oceń kerunek emo zman rozmaró zaska. nd. ednoodsaoe:,;,;,;,;,; nd. łańcuchoe:,2;,2;,2;,2;,2; nd. ednoodsaoe:,;,;,2;,3;,4; nd. łańcuchoe:,;,;,2;,3;,4; nd. ednoodsaoe:,;,7;,8;,9;,; nd. łańcuchoe:,;,7;,8;,9;,; nd. ednoodsaoe:,5;,4;,3;,2;,; nd. łańcuchoe:,5;,4;,3;,2;,;
32 AGREGATOWE NDEKSY DLA WELKOŚC ABSOLUTNYCH: WARTOŚC, LOŚC CEN,2,..., m - zbór numeró rozaranch rodukó;,,, - arość -ego roduku,, odoedno momence (okrese) odsaom badanm; - lość (masa fzczna) -ego roduku, odoedno momence (okrese) odsaom badanm; - cena (ednoskoa) -ego roduku, momence (okrese) odsaom badanm.
33 ndeks nddualne (rose): skaźnk dnamk doczące orónana ednorodnch zmenaącch sę czase arośc. nddualn ndeks arośc:
34 ndeks agregaoe (zesołoe): skaźnk dnamk doczące orónana dnamk zaska neednorodne zboroośc: Agregao ndeks arośc: ndeks en nformue o łącznch zmanach arośc szskch rodukó momence badanm sosunku do momenu odsaoego.
35 Agregao ndeks cen Agregao ndeks lośc (mas fzczne) edług formuł Laseresa edług formuł Paaschego edług formuł Fshera L L P P P L F P L F
36 Przkład: zboża lość mln. cen zł szenca 5,265 4,87 59,4 367,2 żo 2,688, ,8 278,6 ęczmeń 3,383,62 56,5 375, Z aką słą łączne zman cen oraz lośc łał na zman łączne arośc srzedaż rzech gaunkó zbóż? 22 26
37 Przkład: P L L P zboża szenca 5,265 4,87 59,4 367,2 żo 2,688, ,8 278,6 ęczmeń 3,383,62 56,5 375, lość mln. cen zł zboża szenca 788,5 2682,2 933,6 248,9 żo 243,4 249,5 9,6 36,94 ęczmeń 232,7 93,9 43,6 34,2 2264,6 325,6 2268,8 32,
38 ,728 32, 2264,6 P, ,6 2268,8 L Agregaoe ndeks cen: edług formuł Laseresa edług formuł Paaschego
39 Agregaoe ndeks lośc: edług formuł Laseresa edług formuł Paaschego, ,6 32, L, ,8 2264,6 P
40 Róność ndeksoa:,725,997,727,996,728,726,998, ,6 2264,6 F F L P P L
41 L v edług formuł Laseresa Agregaoe ndeks cen: v Udzał arośc robu arośc szskch robó okrese odsaom
42 P v edług formuł Paaschego Agregaoe ndeks cen: v Udzał arośc robu arośc szskch robó okrese badanm
43 L v edług formuł Laseresa Agregaoe ndeks lośc: v Udzał arośc robu arośc szskch robó okrese odsaom
44 P v edług formuł Paaschego Agregaoe ndeks lośc: v Udzał arośc robu arośc szskch robó okrese badanm
PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK
PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)
Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9
ANALIZA SZEREGÓW CZASOWYCH
ANALIZA SZEREGÓW CZASWYCH Szereg czasow zbór warośc baanej cech lub warośc baanego zjawska zaobserwowanch w różnch momenach czasu uporząkowan chronologczne. Skłank szeregu czasowego:. enencja rozwojowa
ANALIZA DYNAMIKI ZJAWISK SZEREG CZASOWY
D. Miszczńska, M.Miszczński, Maeriał do wkładu 5 ze Saski, 29/ [] ANALZA DYNAMK ZJAWSK. szereg czasow, chronologiczn (momenów, okresów) 2. średni oziom zjawiska w czasie (średnia armeczna, średnia chronologiczna)
ANALIZA SZEREGÓW CZASOWYCH
ANALIZA ZEREGÓW CZAWYCH zereg czasow zbór warosc baanej cech lub warosc baanego zjawska zaobserwowanch w róznch momenach czasu uporzakowan chronologczne. klank szeregu czasowego:. enencja rozwojowa (ren)
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji
SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od 1.03.2010
formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych
Zebran materał statstczn w forme sprawozdań, formularz opsowch, anket lub nnch dokumentów stanow neuporządkowan surow materał statstczn, neprzdatn jeszcze do bezpośrednej analz, porównań wnosków. Materał
WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty
74 LIDIA LUTY ROCZNIKI NAUKOWE EKONOMII ROLNICTWA I ROZWOJU OBSZARÓW WIEJSKICH, T. 11, z. 1, 214 WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO Lda Lut Katedra Statstk Matematcznej
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych
Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00
ZAJĘCIA 4. Indeksy indywidualne i zespołowe (agregatowe)
ZAJĘCIA 4 Ies uale zesołoe (agregaoe) SZEREGI CZASOWE W baaach eoomczch sołeczch zjasa są częso osae rzez zbór arośc zaobseroach różch momeach, rzezałach czasu. Szeregem czasom azam uorząoa zbór arośc
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
FINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg
Podstawowe algorytmy indeksów giełdowych
Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 25-11-13 Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 2013-11-25 Sps reśc I. Algorymy oblczana warośc ndeksów gełdowych...3 1. Warość beżąca
t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o
Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz na podsawe ego odelu ożna wcągać wnos doczące badanego zjawsa
Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Badanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa.
Fundacja Centrum Edukacj Obyatelskej, ul. Noakoskego 10, 00-666 Warszaa, e-mal: ceo@ceo.org.l; Akadema ucznoska, Tel. 22 825 04 96, e-mal: au@ceo.org.l; ęcej nformacj:.akademaucznoska.l 1 Konstrukcja ger
dy dx stąd w przybliżeniu: y
Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc
α i = n i /n β i = V i /V α i = β i γ i = m i /m
Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena
L.Kowalski zadania ze statystyki opisowej-zestaw 4. ZADANIA Zestaw 4
ZADANA Zestaw 4 Zadanie 4. Na podstawie informacji o zyskach firmy podanych w tabeli: Lata 995 996 997 998 999 Zysk (w tys. zł) 5200 600 6500 6700 700 a) wyznaczyć ciąg przyrostów łańcuchowych (bezwzględnych
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
EKONOMETRIA I Spotkanie 1, dn. 05.10.2010
EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010
Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o ˆ
Eonoera Ćwczena Werfacja odelu eonoercznego Maerał poocncze Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym
Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI.
Dywersyfkacja ortfela orzez nwestycje alternatywne. Prowadzący: Jerzy Nkorowsk, Suerfund TFI. Część I. 1) Czym jest dywersyfkacja Jest to technka zarządzana ryzykem nwestycyjnym, która zakłada osadane
EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów
EKONOMERIA Wkład : Meoda Najmnejszch Kwadraów dr Doroa Cołek Kaedra Ekonomer Wdzał Zarządzana UG hp://wzr.pl/dc doroa.colek@ug.edu.pl Lnow model ekonomerczn:... zmenna endogenczna, 0 k k u zmenne objaśnające,
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego
Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Jak analzować dane o charakterze uporządkowanym? Dane o charakterze uporządkowanym Wybór jednej z welkośc na uporządkowanej skal Skala ne ma nterpretacj
Matematyka ubezpieczeń majątkowych r.
Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny
Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup
Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT
Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa
Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)
Szacowanie niepewności wskaźników PMV
zacoane nepenośc skaźnkó Welkośc płyające na nepeność skaźnkó : a) temperatra poetrza ; b) temperatra poczernonej kl ; c) lgotność poetrza RH; d) prędkość poetrza a ; e) skaźnk cepłochronnośc odzeży ;
METODY KOMPUTEROWE 10
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Obwody elektryczne. Stan ustalony i stan przejściowy. Metody analizy obwodów w stanie przejściowym. przejściowym. Stan ustalony i stan przejściowy
Obody elerycze Meody aalzy obodó sae rzejścoym Wyład W obodze rąd sałego Warośc rądó aęć e legają zmae W obodze rąd zmeego Warośc średe secze rądó aęć e legają zmae Prądy aęca są fcjam oresoym o aej samej
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
2012-10-11. Definicje ogólne
0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj
Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż
Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak
Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,
Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych
dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m
Konspekty wykładów z ekonometrii
Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na
MODEL TENDENCJI ROZWOJOWEJ
MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Dr inż. Robert Smusz Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki
Dr nż. Robert Smusz Poltechnka Rzeszowska m. I. Łukasewcza Wydzał Budowy Maszyn Lotnctwa Katedra Termodynamk Projekt jest współfnansowany w ramach programu polskej pomocy zagrancznej Mnsterstwa Spraw Zagrancznych
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl
MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Proko roko@sgh.waw.l Statyka dynamka olgoolstyczne struktury rynku. Modele krótkookresowe konkurenc cenowe w olgoolu.. Model ogranczonych mocy rodukcynych ako wyaśnene
Markowa. ZałoŜenia schematu Gaussa-
ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)
Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.
± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości
Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość
Stanisław Cichocki Natalia Nehrebecka. Wykład 5
Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
Analiza szeregów czasowych
Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie
Analiza i zarządzanie portfelem studia ZI Przykładowe zadania z minimum programowego 1
Zma 003/004 nalza zarządzane ortelem tuda ZI Przykładoe zadana z mnmum rogramoego 1 UTO: Paeł okta N INTEPETCJĘ POJĘĆ DOCHODU, YZYK I POTFEL EFEKTYWNEGO 1. Który ortel na eno ne jet eektyny: Naza ortela
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Ą Ą ć Ó Ó Ó Ś Ź Ź Ó ż Ź Ź Ś Ś ż Ę ĘŚ ń ń ć Ś Ą Ę ż ć Ś ć ć Ć Ó Ó ć ć Ó ć Ó ć ć ń ć Ą Ó Ó Ó Ą Ć ń ń Ź Ó ń ć Ó ć ć ć ń ż ć ć Ć Ć ć ż ć Ź Ó ć ć ć ć Ó ć ĘŚ ń ń ż ć Ś ć Ą Ó ń ć ć Ś ć Ę Ć Ę Ó Ó ń ż ź Ó Ó Ś ń
Ó ź ę ę ś Ą Ą Ę Ę Ł ę ę ź Ę ę ę ś ś Ł ę ś ś ę Ą ź ę ś ś ś ś ę ś ę ę ź ę ę ś ę ś ę ę ś Ś ś ę ę ś ś ę ę ę ś ę ę ę ę ś ę ź Ł Ą Ę Ł ę ś ź ść ś ę ę ę ę ę ę ś ś ś ę ę ś ę ę ś ę ź Ć ŚĆ ć ś ś ć ę ś ś ę ś ś ź ś
Ł Ą Ę Ń ć Ź ź ĘŚ ÓŁ Ę Ę ń ń ź Ę ń Ż ć ć ń ń ń Ę ń Ę ń ń Ę ń Ę ń ń ć ć ń Ę Ą Ś ń Ę Ą Ł ź ć Ś ć ć ć Ź Ł Ś ć ć ć ć ć Ł ć ć ź ń ń ń ń ń ń ń ź ź ć ń ć ć ć ź Ł ń Ę ÓŁ ń ź ź ź ń ć ć ć ń ń ń Ą ń ń ń ń ń Ś Ę