Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej f. ii) zmienne losowe X n zbiegają według rozkładu do zmiennej losowej X (ozn. X n X), jeśli µ Xn µ X, czyli dla dowolnej funkcji ciągłej ograniczonej f, Ef(X n ) Ef(X).. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, ale µ n (A) µ(a) dla pewnego zbioru A.. Wykaż, że: a) jeśli X n X p.n., to X n X; b) jeśli X n X według prawdopodobieństwa, to X n X; c) jeśli X n c, gdzie c jest stałą, to X n c według prawdopodobieństwa. 5. Zmienne losowe X n, X przyjmują tylko wartości całkowite. a) Wykaż, że X n X wtedy i tylko wtedy gdy P(X n = k) P(X = k) dla wszystkich liczb całkowitych k. b) Czy z istnienia granic lim n P(X n = k) dla k całkowitych wynika zbieżność X n wg rozkładu? 6. Czy teza punktu a) poprzedniego zadania się zmieni, jeśli zmienne X n przyjmują wartości wymierne? 7. Niech Bin(p, n) oznacza rozkład Bernoulliego o n próbach z prawdopodobieństwem sukcesu p, a Poiss(λ) - rozkład Poissona z parametrem λ. Wykaż, że jeśli p n n λ, to Bin(p n, n) Poiss(λ). 8. Podaj przykład ciągu dystrybuant F n, zbieżnego punktowo do funkcji, która nie jest dystrybuantą. 9. Podaj przykład ciągu zmiennych losowych X n, zbieżnego wg rozkładu, takiego, że odpowiadający mu ciąg dystrybuant nie zbiega punktowo do dystrybuanty rozkładu granicznego.. Wykaż, że zmienne losowe mające gęstości mogą zbiegać do stałej.. Udowodnij, że N (a n, σ n) N (a, σ ) wtedy i tylko wtedy gdy a n a, σ n σ.. Niech X będzie niezdegenerowaną zmienną losową. Wykaż, że zmienne a n X + b n zbiegają według rozkładu do zmiennej ax + b wtedy i tylko wtedy gdy a n a i b n b.
Zadania z Rachunku Prawdopodobieństwa II -. Co trzeba założyć o funkcji f, by z tego, że X n jest zbieżne według rozkładu do X wynikała zbieżność według rozkładu f(x n ) do f(x)?. Udowodnij, że jeśli X n X, p > oraz sup n E X n p <, to E X p <, ale niekoniecznie E X n p E X p. Jest to jednak prawdą, gdy dla pewnego ε >, sup n E X n p+ε <.. Niech g n, g oznaczają odpowiednio gęstości rozkładów prawdopodobieństwa µ n, µ na R n. Wykazać, że jeśli g n g p.w., to µ n µ, ale niekoniecznie na odwrót.. Niech X będzie rzeczywistą zmienną losową. Wykaż, że istnieje ciąg zmiennych X n zbieżny według rozkładu do X taki, że a) każde X n przyjmuje tylko skończenie wiele wartości, b) zmienne X n mają gęstość. 5. Wykazać, że jeśli dla wszystkich n, X n jest niezależne od Y n, X jest niezależne od Y oraz X n X, Y n Y, to (X n, Y n ) (X, Y ). 6. Wykaż, że rodzina rozkładów normalnych N (a α, σ α) jest ciasna wtedy i tylko wtedy gdy sup α a α, sup α σ α <. 7. Dana jest rodzina rozkładów a) wykładniczych {Exp(λ) : λ A}, A R +, b) jednostajnych {U(a, b) : a, b A, a < b}, A R. Jaki warunek musi spełniać zbiór A, aby ta rodzina była ciasna?
Zadania z Rachunku Prawdopodobieństwa II -. Załóżmy, że ciąg zmiennych losowych X n zbiega według rozkładu do zmiennej X o rozkładzie ciągłym. Wykaż, że dystrybuanty X n zbiegają jednostajnie do dystrybuanty X.. Zmienne X, X,... są niezależne i mają rozkład jednostajny na [, a], zbadaj zbieżność według rozkładu ciągu n min{x, X,..., X n }.. Wykaż, że wzór d(µ, ν) = inf{ε > : t F µ (t ε) ε < F ν (t) < F µ (t + ε) + ε} definiuje metrykę na wszystkich rozkładach probabilstycznych na R zgodną ze słabą zbieżnością (tzn. µ n µ d(µ n, µ) ).. Oblicz funkcje charakterystyczne rozkładów i) dyskretnych - dwupunktowego, geometrycznego, Bernoulliego, Poissona; ii) ciągłych - normalnego, jednostajnego, wykładniczego, dwustronnego wykładniczego. 5. Które z następujących funkcji są funkcjami charakterystycznymi: cos t, cos t, ( + eit ), +cos t, e? it
Zadania z Rachunku Prawdopodobieństwa II -. Korzystając z funkcji charakterystycznej oblicz EX k dla X N (, ).. Pokaż, że kombinacje wypukłe funkcji charakterystycznych są funkcjami charakterystycznymi.. Wiadomo, że ϕ jest funkcją charakterystyczną pewnej zmiennej losowej X. Czy funkcjami charakterystycznymi są : ϕ, Reϕ, ϕ, ϕ?. Zmienne losowe N, X, X,... są niezależne, przy czym N ma rozkład Poissona z parametrem λ, a X i rozkład jednostajny na [, ]. Znajdź rozkład zmiennej losowej N i= X i (przyjmujemy, że ta suma jest równa dla N = ). 5. Niech X będzie zmienną losową taką, że P(X Z) =. Pokaż, że dla każdego n Z, P(X = n) = π π e itn ϕ X (t)dt. 6. Wykaż, że jeśli funkcja charakterystyczna zmiennej X ma drugą pochodną w zerze, to EX <. 7. Zmienna losowa X ma rozkład jednostajny na [, ]. Czy istnieje niezależna od niej zmienna losowa Y taka, że rozkłady zmiennych X + Y i Y są takie same?
Zadania z Rachunku Prawdopodobieństwa II - 5. Wykaż, że istnieje t takie, że ϕ X (t) = wtedy i tylko wtedy, gdy P(X a + bz) = dla pewnych a, b R.. Przy pomocy funkcji charakterystycznych sprawdź, że jeśli ε n są niezależnymi symetrycznymi zmiennymi losowymi przyjumjącymi wartości ±, to zmienna losowa n n ε n ma rozkład jednostajny na przedziale [, ].. Udowodnij, że zmienna losowa X jest symetryczna wtedy i tylko wtedy gdy ϕ X (t) R dla wszystkich t.. Zmienne X, Y są niezależne, przy czym X i X +Y mają rozkłady normalne. Udowodnij, że zmienna Y ma także rozkład normalny lub jest stała p.n. 5. Zmienne X, Y, ε są niezależne, przy czym X, Y mają rozkład wykładniczy z parametrem λ oraz P(ε = ±) =. Wykaż, że zmienna X Y ma ten sam rozkład, co zmienna εx. 6. Znajdź funkcję charakterystyczną rozkładu Cauchy ego. 7. Udowodnij, że splot rozkładów Cauchy ego ma rozkład Cauchy ego. 8. Znajdź zmienne losowe X, Y takie, że ϕ X+Y = ϕ X ϕ Y oraz zmienne X, Y są zależne. 9. Zmienna X ma funkcję charakterystyczną ϕ X (t) = e t α dla pewnego α (, ]. Co można powiedzieć o rozkładzie zmiennej ax + by, gdzie a, b R, a Y jest niezależną kopią X? 5
Zadania z Rachunku Prawdopodobieństwa II - 6. Wykaż, że dla α > nie istnieje zmienna losowa taka, że ϕ X (t) = e t α.. Załóżmy, że zmienne X i Y są niezależne, mają jednakowy rozkład oraz dla dowolnych liczb a, b zmienna ax + by ma ten sam rozkład co zmienna ( a α + b α ) /α X. Wykaż, że ϕ X (t) = e c t α dla pewnego c.. Dla n zmienna X n ma rozkład geometryczny z parametrem p n (, ). Wykaż, że jeśli (a n ) n jest takim ciągiem liczb dodatnich, że a n, p n /a n λ >, to zmienne a n X n zbiegają słabo do rozkładu wykładniczego z parametrem λ.. Podaj przykład zmiennych losowych X n takich, że ϕ Xn ϕ punktowo, ale ϕ nie jest funkcją charakterystyczna żadnego rozkładu na prostej. 5. Na campusie uniwersyteckim są dwie restauracja po miejsc każda. Wiadomo, że codziennie osób będzie chciało zjeść obiad, a wyboru restauracji dokonują losowo i niezależnie. Jaka jest szansa, że w którejś restauracji zabraknie miejsc? Ile miejsc należy przygotować w każdej restauracji, by powyższe prawdopodobieństwo było mniejsze od,? 6. W pewnym stanie w wyborach prezydenckich głosuje 5. osób. Zakładając, że wyborcy głosują na każdego z dwu kandydatów z prawdopodobieństwem 5% jaka jest szansa, że różnica między kandydatami będzie mniejsza niż głosów? 7. Na podstawie losowej próby szacujemy procent dorosłych osób popierających pewną partię polityczną. Chcemy by błąd był mniejszy niż % z prawdopodobieństwem.95? Ile w tym celu musimy przepytać osób? Jak zmieni się odpowiedź, jeśli wiemy, że partię popiera nie więcej niż % wyborców? 8. Prawdopodobieństwo urodzenia chłopca wynosi,57. Jakie jest prawdopodobieństwo, że wśród noworodków liczba chłopców nie przewyższy liczby dziewcząt? 9. Rzucono razy kostką. Oszacuj prawdopodobieństwo, że suma wyrzuconych oczek będzie zawarta między a 59.. Dane są niezależne zmienne losowe X, X,..., o wspólnym rozkładzie z wartością oczekiwaną równą i dodatnią wariancją. Wyznacz w zależności od a, α R ( ) lim P X +... + X n n > a.. Zmienne X, X,... są niezależne oraz P(X i = a) = P(X i = /a) = / dla pewnego a >. Wykaż, że zmienne Z n = (X X X n ) / n są zbieżne według rozkładu i znajdź rozkład graniczny. n α 6
Zadania z Rachunku Prawdopodobieństwa II - 7. Zmienne X λ mają rozkład Poissona z parametrem λ. Wykaż, że X n n n N (, ) według rozkładu gdy n.. Udowodnij, że lim n k n e n k! =. k n. Wykaż, że jeśli X n X oraz Y n c dla pewnego c R, to a) X n + Y n c + X, b) X n Y n cx.. Zmienne losowe X, X,... są niezależne, mają ten sam rozkład taki, że EX =, Var(X) =. Zbadaj zbieżność względem rozkładu ciągów n(x +..., X n ) U n = X +... +, V n = X +... + X n. X n X +... + Xn 5. Niech X, X,... będą niezależnymi zmiennymi losowymi, takimi, że Wykaż, że P(X n = ±) = ( n ), P(X n = ±n) = n. X +... + X n n N (, ), ale Var(X n ). 6. Niech X będzie całkowalną z kwadratem zmienną losową, taką, że X Y +Z, gdzie Y, Z - niezależne kopie X. Wykaż, że X ma rozkład N (, σ ). 7. Załóżmy, że zmienne X k są niezależne oraz P(X k = ±) = / zbadaj zbieżność według rozkładu ciągu n / (X + X +... + nx n ). 8. Zmienne X i są niezależne i mają rozkład jednostajny na [, ]. Zbadaj zbieżność według rozkładu ciągu n / (X + X +... + X n n ). 9. Zmienne X, X,... są niezależne i mają jednakowy rozkład o średniej zero i wariancji. Ciąg (a n ) jest ograniczony oraz s n = (a + a... + a n) /. Wykaż, że ax+ax+...+anxn s n zbiega według rozkładu do N (, ). 7
Zadania z Rachunku Prawdopodobieństwa II - 8. Rzucamy razy symetryczną monetą. Niech X oznacza łączną liczbę orłów, zaś Y liczbę orłów w pierwszych czterech rzutach. Znajdź E(X Y ) oraz E(Y X).. Zmienne X, X,... są niezależne o rozkładzie wykładniczym z parametrem λ, niech S n = X + X +... + X n. a) blicz E(S n X ), E(S n X ). b) Dla n k wyznacz E(S n S k ), E(S n S k ) oraz E(e Sn S k ).. Znajdź przykład zmiennych losowych X, Y, które nie są niezależne, ale E(X Y ) = EX.. Zmienne X i Y są niezależne, a f jest borelowską funkcją dwu zmiennych taką, że E f(x, Y ) <. Wykaż, że E(f(X, Y ) Y ) = g(y ) p.n., gdzie g(y) = Ef(X, y). 5. Załóżmy, że zmienne X, Y przyjmują wartości naturalne oraz Oblicz E(X Y ). P(X = k, Y = l) = { l l 6. Wektor losowy (X, Y ) ma gęstość g(x, y) = Znajdź E(X Y ). { x dla k l w przeciwnym przypadku. e x(y+) jeśli x >, y > w przeciwnym przypadku 7. Zmienne X i Y są całkowalne, niezależne i mają jednakowy rozkład. Wykaż, że E(X X + Y ) = E(Y X + Y ) = (X + Y ). 8
Zadania z Rachunku Prawdopodobieństwa II - 9. Załóżmy, że X jest całkowalną zmienną losową, G i G σ-ciałami, przy czym G jest niezależne od X i G. Wykaż, że E(X σ(g, G )) = E(X G ).. Załóżmy, że ε i są niezależnymi zmiennymi takimi, że P(ε i = ±) = /. Oblicz E(ε + ε ε ε ε ) oraz E(ε ε ε + ε ε ).. Wektor (X, Y ) ma łączny rozkład gaussowski o średniej zero taki, że Var(X) = σ, Var(Y ) = σ oraz Cov(X, Y ) = c. Oblicz E(X Y ) oraz P(X Y ).. Wiemy, że p-procent monet jest sfałszowanych - po obu stronach mają orły. Losujemy ze zwracaniem n monet i za każdym razem ją rzucamy. Niech F oznacza liczbę wylosowanych fałszywych monet, a O liczbę wyrzuconych orłów. Udowodnij, że E(F ) = p p+ O. 5. Zmienne τ i σ są momentami zatrzymania względem filtracji (F n ) n=. Wykaż, że τ σ, τ σ, τ + σ są momentami zatrzymania. Czy τ, τ + też są momentami zatrzymania? 6. Zmienne losowe (X n ) są adaptowalne względem filtracji (F n ) n=. Udowodnij, że następujące zmienne losowe są momentami zatrzymania dla dowolnego zbioru borelowskiego B: a) τ = inf{n : X n B} pierwsza wizyta w zbiorze B, b) τ k = inf{n > τ k : X n B}, k =,,... k-ta wizyta w zbiorze B. 7. Niech τ i σ będą momentami zatrzymania względem (F n ) n=. Wykaż, że a) jeśli τ t, to F τ = F t, b) jeśli τ < σ, to F τ F σ, c) A F τ wtedy i tylko wtedy gdy A F oraz A {τ = t} F t dla wszystkich t. 8. Zmienne τ i σ są momentami zatrzymania względem filtracji (F n ) n=. Udowodnij, że {τ < σ}, {τ σ}, {τ = σ} F τ F σ oraz F τ F σ = F τ σ. 9. Podaj przykład momentu zatrzymania τ, takiego, że σ(τ) F τ. 9
Zadania z Rachunku Prawdopodobieństwa II -. Niech X, X,... będzie ciągiem niezależnych zmiennych losowych o skończonej wariancji i średniej zero oraz S n = X + X +... + X n. Wykaż, że S n i S n Var(S n ) są martyngałami względem filtracji generowanej przez X n.. Załóżmy, że ε, ε,... są niezależnymi zmiennymi losowymi takimi, że P(ε i = ±) = / oraz F n = σ(ε,..., ε n ). Niech S n = ε +... + ε n. a) Znajdź wszystkie liczby a takie, że (a n cos(s n ), F n ) jest martyngałem. b) Wykaż, że dla dowolnego λ >, ciąg (exp(λs n nλ /), F n ) jest nadmartyngałem.. Zmienne X, X,... są niezależne oraz E X i < dla wszystkich i. Udowodnij, że M n = X X X n jest martyngałem względem filtracji generowanej przez X n wtedy i tylko wtedy gdy EX i = dla wszystkich i lub X = p.n... Niech X n będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i średniej. Wykaż, że ciąg Z n dany wzorem Z = Z n = X X +X X +...+X n X n, n jest martyngałem względem F n = σ(x, X,..., X n ). 5. Niech S n = X +X +...+X n oraz F n = σ(x,..., X n ), gdzie X, X,... są niezależnymi zmiennymi losowymi o jednakowym rozkładzie takim, że EXi <. Znajdź liczby a n, b n dla których Sn + a n S n + b n jest martyngałem względem F n. 6. Niech t R oraz X, X,... będą niezależnymi zmiennymi losowymi o rozkładzie normalnym N (, ). Przyjmijmy S n = X + X +... + X n oraz F n = σ(x,..., X n ). Znajdź wszystkie ciągi (a n ) takie, że (e itsn+an, F n ) jest martyngałem.
Zadania z Rachunku Prawdopodobieństwa II -. Ciąg (X n ) jest martyngałem. Zbadaj, czy są pod- bądź nadmartyngałami ciągi: a) ( X n p ) n p ; b) (X n a) n ; c) (X n a) n ; d) (X n) n.. (Tożsamość Walda) Niech X, X,... będą niezależnymi całkowalnymi zmiennymi losowymi o jednakowym rozkładzie, a τ momentem zatrzymania względem filtracji generowanej przez X n. Niech S n = X +... + X n, wykaż, że ES τ = EτEX, o ile Eτ <.. Oblicz prawdopodobieństwo wygrania (przy skończonym kapitale obu graczy) w grze orła i reszkę monetą symetryczną.. Zmienne X, X,... są niezależne oraz P(X i = ) = p = P(X i = ). Przyjmując S = S n = n i= X i znajdź wszystkie liczby rzeczywiste λ dla których λ Sn jest martyngałem względem filtracji generowanej przez (X n ). 5. Oblicz prawdopodobieństwo wygrania (przy skończonym kapitale obu graczy) w grze orła i reszkę monetą niesymetryczną. 6. Oblicz średni czas oczekiwania na ruinę któregoś z graczy w grze orła i reszkę monetą symetryczną i niesymetryczną. 7. Niech X, X,... będą niezależnymi zmienymi losowymi takimi, że P (X i = ±) = /, S n = X + X +... + X n oraz τ = inf{n : S n = }. Wykaż, że Eτ =. 8. X, X,... są niezależnymi zmiennymi losowymi o wspólnym rozkładzie takim, że EXi <. Udowodnij, że dla dowolnego momentu zatrzymania względem filtracji generowanej przez (X n ) takiego, że Eτ < zachodzi E(S τ τex ) = EτVar(X ). Czy wzór ten musi być prawdziwy bez założenia o skończoności Eτ? 9. Gracz A dysponuje nieskończonym kapitałem. Ile wynosi średni czas oczekiwania na wygranie zł. przez A w grze orła i reszkę a) monetą symetryczną b) monetę niesymetryczną.. Niech (X n, F n ) będzie adaptowalnym ciągiem całkowalnym. Udowodnij, że jest on martyngałem wtedy i tylko wtedy gdy dla dowolnego ograniczonego momentu zatrzymania τ, EX τ = EX.
Zadania z Rachunku Prawdopodobieństwa II -. Niech (ε n ) n będzie ciągiem niezależnych symetrycznych zmiennych losowych o wartościach ±. Wykaż, że nadmartyngał Z n := e a(ε+...+εn) (na /) jest zbieżny prawie na pewno. Czy jest zbieżny w L?. Niech X, X,... będą niezależne o rozkładzie jednostajnym na [, ]. Wykaż, że n M n = tworzą martyngał (względem filtracji generowanej przez X n ) zbieżny do prawie na pewno, ale nie w L.. Podaj przykład martyngału X n takiego, że X n p.n. oraz E X n.. Wykaż, że jeśli (X i ) i (Y i ) są jednostajnie całkowalne, to dla dowolnych a, b R, (ax i + by i ) jest jednostajnie całkowalny. 5. Znajdź jednostajnie całkowalny ciąg X n taki, że E sup n X n =. ϕ(x) 6. Niech ϕ : R + R + spełnia warunek lim x x =. Wykaż, że jeśli sup i Eϕ( X i ) <, to (X i ) jest jednostajnie całkowalny. k= X k
Zadania z Rachunku Prawdopodobieństwa II -. Zmienne ε,... są niezależne oraz P(ε i = ±) = /. Rozstrzygnij, które z podanych poniżej procesów są łancuchami Markowa. a) X =, X n = ε +... + ε n, n =,,... b) Y =, Y n = ε ε ε n,, n =,,... c) Z n = ( ) εn,, n =,,... d) W n = ε n ε n+, n =,,... e) V n = ε n + ε n+, n =,..... Załóżmy, że E jest zbiorem przeliczalnym, f : E R E jest funkcją mierzalną (przyjmujemy, że wszystkie podzbiory E są mierzalne), Y pewną zmienną o wartościach w E, zaś X, X,... ciągiem niezależnych zmiennych losowych. Definiujemy Y n+ = f(x n, Y n ) dla n =,,.... Wykaż, że (Y n ) jest łańcuchem Markowa.. Dwa jednorodne łańcuchy Markowa (X n ), (Y n ) z macierzą przejścia P są niezależne. Udowodnij, że Z n = (X n, Y n ) też jest łańcuchem Markowa i znajdź jego macierz przejścia.. (X n ) jest łańcuchem Markowa o wartościach w E. Wykaż, że dla dowolnej funkcji różnowartościowej f : E E, (f(x n )) jest łańcuchem Markowa. Czy tak być musi, jeśli nie założymy różnowartościowości f? 5. Dla łańcuchów Markowa o przestrzeni stanów {,,, } i poniższych macierzach przejścia znajdź wszystkie stany nieistotne i wszystkie zamknięte zbiory stanów. a) b) 6. Rzucamy kostką tak długo, aż pojawi się ciąg 6 lub 66. Jakie jest prawdopodobieństwo, że ciąg 6 pojawi się wcześniej? 7. Rzucamy symetryczną monetą aż do momentu, gdy wyrzucimy pod rząd cztery orły. Oblicz wartość oczekiwaną liczby wykonanych rzutów. 8. Macierz przejścia łańcucha Markowa (X n ) n na przestrzeni S = {,,, } dana jest następująco:. a) Czy jest to łańcuch nieprzywiedlny? b) Oblicz prawdopodobieństwo przejścia w dwu krokach ze stanu do stanu. c) Zakładając, że X = p.n. oblicz prawdopodobieństwo tego, że X n będzie w stanie przed stanem. d) Zakładając, że X = p.n. oblicz wartość oczekiwaną czasu dojścia do stanu.
Zadania z Rachunku Prawdopodobieństwa II -. Zbadaj okresowość łańcuchów o poniższych macierzach przejścia: a) b). Jednorodny łańcuch Markowa o przestrzeni stanów {,,...} ma macierz przejścia (p n,m ) n,m taką, że p, =, p n,n+ = p n,n = p dla n =,..., gdzie p (, ). W zależności do parametru p wyznacz wszystkie rozkłady stacjonarne.. W dwu urnach znajduje się łącznie n kul. W każdej chwili wybieramy losowo kulę i przenosimy ją do innej urny. Znajdź rozkład stacjonarny liczby kul w pierwszej urnie.. Zmienne Y, Y, Y,... są niezależne i mają ten sam rozkład geometryczny z parametrem. Ciąg zmiennych X, X,... jest określony następująco: X p.n., a dla n, { jeśli Y n =, X n+ = X n Y n jeśli Y n. a) Wykaż, że (X n ) n jest nieprzywiedlnym łańcuchem Markowa. b) Czy ten łańcuch jest okresowy? c) Udowodnij, że wszystkie stany są powracające. 5. Rozważamy symetryczne błądzenie losowe (X n ) po kracie Z, tzn. ze stanu (i, j) przechodzimy z równymi prawdopodobieństwami do jednego ze stanów (i +, j), (i, j) (i, j + ) i (i, j ). Czy łańcuch Markowa (X n ) jest a) okresowy, b) powracalny? c) Czy istnieje rozkład stacjonarny? 6. Dany jest łańcuch Markowa X n startujący ze stanu i. Niech τ = inf{n : X n i}. Wykaż, że τ ma rozkład geometryczny. 7. (X n ) jest łańcuchem Markowa, czy wynika stąd, że a) P(X n = a k+ X ik = a k, X ik = a k,..., X i = a ) = P(X n = a k+ X ik = a k ) dla dowolnych liczb całkowitych i < i <... < i k < n oraz stanów a, a,..., a k+? b) P(X n A k+ X ik A k, X ik A k,..., X i A ) = P(X n A k+ X ik A k ) dla dowolnych liczb całkowitych i < i <... < i k < n oraz zbiorów stanów A, A,..., A k+?