EGZAMIN MATURALNY 2010 MATEMATYKA



Podobne dokumenty
EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

Próbny egzamin maturalny z matematyki 2010

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

KLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D

Klucz odpowiedzi do zadań zamkniętych oraz Schemat oceniania. Poziom Podstawowy

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Zestaw II sposób rozwiązania (rozkład trójmianu kwadratowego na czynniki)

EGZAMIN MATURALNY 2012 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA

PRÓBNY EGZAMIN MATURALNY

EGZAMIN MATURALNY 2012 MATEMATYKA

KLUCZ PUNKTOWANIA ODPOWIEDZI

MATEMATYKA POZIOM PODSTAWOWY

KLUCZ PUNKTOWANIA ODPOWIEDZI

EGZAMIN MATURALNY 2011 MATEMATYKA

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

MATEMATYKA POZIOM PODSTAWOWY

MATEMATYKA POZIOM PODSTAWOWY

KLUCZ PUNKTOWANIA ODPOWIEDZI

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań

MATEMATYKA POZIOM PODSTAWOWY

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

EGZAMIN MATURALNY 2012 MATEMATYKA

MATEMATYKA POZIOM PODSTAWOWY

MATEMATYKA POZIOM PODSTAWOWY

EGZAMIN MATURALNY 2012 MATEMATYKA

Rozwiązania zadań otwartych i schematy punktowania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2014/2015 MATEMATYKA POZIOM PODSTAWOWY

MATEMATYKA POZIOM PODSTAWOWY

EGZAMIN MATURALNY 2012 MATEMATYKA

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

Egzamin maturalny z matematyki Poziom rozszzerzony. Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

MATEMATYKA POZIOM PODSTAWOWY

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2017/2018 MATEMATYKA POZIOM PODSTAWOWY

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.

EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA POZIOM PODSTAWOWY

EGZAMIN MATURALNY 2013 MATEMATYKA

1 wyznacza współrzędne punktów przecięcia prostej danej

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

V. WYMAGANIA EGZAMINACYJNE

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO

D B C B C D A C A C B D C C A B C B A A. Schemat oceniania zadań otwartych

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

III. STRUKTURA I FORMA EGZAMINU

OCENIANIE ARKUSZA POZIOM PODSTAWOWY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY 2011 MATEMATYKA

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

MATEMATYKA POZIOM ROZSZERZONY

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

EGZAMIN MATURALNY W ROKU SZKOLNYM 2018/2019 MATEMATYKA

Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM

MATEMATYKA POZIOM PODSTAWOWY

zestaw DO ĆWICZEŃ z matematyki

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

SPIS TREŚCI WSTĘP LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

MATEMATYKA POZIOM ROZSZERZONY

EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 MATEMATYKA

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

MATEMATYKA POZIOM PODSTAWOWY

EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 MATEMATYKA

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/ ZAKRES PODSTAWOWY

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2016/2017. MATEMATYKA POZIOM Podstawowy. Copyright by Nowa Era Sp. z o.o.

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

Transkrypt:

entralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 010 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 010

Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od 1. do 5. podane były cztery odpowiedzi:,,, D. Zdający wybierał poprawną odpowiedź i zaznaczał ją na karcie odpowiedzi. Zadanie 1. Obszar standardów i tworzenie informacji Sprawdzane umiejętności interpretacji geometrycznej wartości bezwzględnej do wskazania zbioru rozwiązań nierówności typu x a b Poprawna odpowiedź (1 p.) Zadanie. Zadanie. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. i tworzenie informacji Zadanie 8. i tworzenie informacji Stosowanie w obliczeniach pojęcia procentu w obliczeniach praw działań na potęgach Stosowanie w obliczeniach wzoru na iloraz logarytmu Wykonanie dodawania wielomianów Rozwiązanie prostego równanie wymiernego, prowadzącego do równania liniowego Sprawdzenie, czy dana liczba spełnia nierówność kwadratową Odczytanie z postaci kanonicznej funkcji kwadratowej współrzędnych wierzchołka paraboli D D

Egzamin maturalny z matematyki Zadanie 9. Zadanie 10. Zadanie 11. Zadanie 1. Zadanie 1. Zadanie 14. Zadanie 15. Zadanie 16. Zadanie 17. wykorzystanie Zadanie 18. Interpretowanie współczynników we wzorze funkcji liniowej Odczytywanie wartości funkcji z jej wykresu Wyznaczanie wyrazów ciągu arytmetycznego Wyznaczanie wyrazów ciągu geometrycznego własności wielokątów do wyznaczania liczby przekątnych Stosowanie związków między funkcjami trygonometrycznymi kąta ostrego do obliczenia wartości wyrażenia Wyznaczanie długości boku kwadratu opisanego na okręgu związków w trójkącie równoramiennym do wyznaczenia wysokości tego trójkąta Posługiwanie się własnościami figur podobnych do obliczania długości odcinków Korzystanie ze związków między kątem wpisanym i środkowym do obliczenia miary kąta

4 Zadanie 19. Zadanie 0. i tworzenie informacji Zadanie 1. i tworzenie informacji Zadanie. Zadanie. Zadanie 4. Zadanie 5. Egzamin maturalny z matematyki Obliczanie pola figury płaskiej z zastosowaniem funkcji trygonometrycznych adanie równoległości prostych na podstawie ich współczynników kierunkowych Odczytanie z równania środkowego okręgu długości promienia Obliczanie odległości punktów na płaszczyźnie Obliczanie pola powierzchni wielościanu własności wielościanów Obliczanie średniej arytmetycznej D D D Zadania otwarte Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie przyznajemy maksymalną liczbę punktów. Zadanie 6. (0 ) Rozwiązywanie nierówności kwadratowej Rozwiązanie Znajdujemy pierwiastki trójmianu kwadratowego obliczamy wyróżnik trójmianu kwadratowego: 9 1 1 x1 1 x

Egzamin maturalny z matematyki 5 stosujemy wzory Viète a: x1x 1 oraz x1x i stąd x1 1, x zapisujemy nierówność w postaci x1 x 0. Lewą stronę nierówności możemy uzyskać np.: o grupując wyrazy i wyłączając wspólny czynnik, o korzystając z postaci kanonicznej 1 9 1 1 x x x 4 o podając postać iloczynową x1x rysujemy fragment wykresu funkcji kwadratowej z zaznaczonymi miejscami zerowymi, 4 y 1 - - -1 1 4 x -1 - wskazujemy pierwiastki trójmianu x1 1, x Podajemy rozwiązanie nierówności: 1 x. Schemat oceniania Zdający otrzymuje... 1 pkt wyznaczy pierwiastki trójmianu kwadratowego lub zapisze trójmian w postaci iloczynowej i na tym poprzestanie lub dalej popełni błędy. Zdający otrzymuje... pkt poda zbiór rozwiązań nierówności w postaci: 1 x lub 1, lub x 1, sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: x 1, x

6 Egzamin maturalny z matematyki poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów: -1 x Zadanie 7. (0 ) Rozwiązanie równania wielomianowego I sposób rozwiązania (metoda grupowania) Przedstawiamy lewą stronę równania w postaci iloczynowej stosując metodę grupowania wyrazów 4 7 4 0 lub x x 7 4 x 7 0 x7 x 4 0 x x x Stąd x 7 lub x lub x. Schemat oceniania I sposobu rozwiązania Zdający otrzymuje...1 pkt pogrupuje wyrazy do postaci, z której łatwo można przejść do postaci iloczynowej, np.: xx 47x 40 lub x x7 4 x 7 0 i na tym poprzestanie lub dalej popełni błąd Zdający otrzymuje... pkt wyznaczy bezbłędnie wszystkie rozwiązania równania: x 7 lub x lub x. II sposób rozwiązania (metoda dzielenia) Stwierdzamy, że liczba jest pierwiastkiem wielomianu x 7x 4x 8. Dzielimy wielomian 7 4 8 przez dwumian x 5x 14. x x x x. Otrzymujemy iloraz y równanie w postac i x x 5x14 0. Stąd x xx7 0 Zapisujem i x 7 lub x lub x. Stwierdzamy, że liczba jest pierwiastkiem wielomianu x 7x 4x 8. Dzielimy wielomian x 7x 4x8 przez dwumian x. Otrzymujemy iloraz x 9x 14. Zapisujemy równanie w postac i x x 9x14 0. Stąd x xx7 0 i x lub x lub x 7. Stwierdzamy, że liczba 7 jest pierwiastkiem wielomianu x 7x 4x 8. Dzielimy wielomian 7 4 8 przez dwumian 7 x 4. x x x Zapisujemy równanie w postac i x 7 x 4 0. St i x 7 lub x lub x. x. Otrzymujemy iloraz ąd x 7 x x 0

Egzamin maturalny z matematyki 7 Schemat oceniania II sposobu rozwiązania Zdający otrzymuje... 1 pkt podzieli wielomian 7 4 8 przez dwumian x, otrzyma iloraz x x x x 5x 14 i na tym poprzestanie lub dalej popełni błąd podzieli wielo mian 7 4 8 przez dwumian x x 9x14 i na tym poprzestanie lub dalej popełni błąd podzieli wielomian 7 4 8 przez dwumian x 7 x x x x x x i na tym poprzestanie lub dalej popełni błąd podzieli wielomian 7 4 8 przez trójmian np., otrzyma iloraz x x x x x 7, otrzyma iloraz x 4 i na tym poprzestanie lub dalej popełni błąd. Zdający otrzymuje... pkt wyznaczy bezbł ędnie wszystkie rozwiązania równania: x, x, x 7 Zadanie 8. (0 ) Stosowanie prostego rozumowania do rozwiązywania problemów Przeprowadzenie dowodu geometrycznego składającego się z niewielkiej liczby kroków Rozwiązanie Dorysowujemy odcinki D i E. Pokazujemy, że trójkąty D i E są przystające:, bo trójkąt jest równoramienny D E, bo trójkąt DE jest równoramien ny D 90 D E Stosujemy cechę przystawania bkb Schem at oceniania Zdający otrzymuje... 1 pkt napisze, że trójkąty D i E są przystające i wyprowadzi stąd wniosek, że D E zapisze, że, D E i D E Zdający otrzy muje... pkt poprawnie uzasadni, że tró jkąty D i E są przystające i wyprowadzi stąd wniosek, że D E. Wymagamy udowodnienia równości kątów D i E.

8 Zadanie 9. (0 ) Użycie strategii do rozwiązywania problemów Egzamin maturalny z matematyki Wyznaczanie wartości funkcji trygonometrycznych kąta ostrego I sposób rozwiązania (jedynka trygonometryczna) sin 5 cos 1 sin cos 1 5 1 sin cos 1 cos sin 5 5 cos cos 1 1 sin 5 sin 1 1 5 cos cos 1 144 sin sin 1 144 5 144 cos i cos 0 5 sin i sin 0 169 169 1 cos 5 1 sin i stądcos 1 1 1 II sposób rozwiązania (trójkąt prostokątny) c 1x 5x c 1x 5x c 1x 1 cos 1 Schemat oceniania Zdają cy otrzymuje...1 pkt przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko cos 5 5 i wykorzysta jedynkę trygonometryczną, np. sin cos, cos cos 1 1 144 i na tym poprzestanie lub dalej popełni błąd przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko sin 1 144 i wykorzysta jedynk ę trygonometryczną, np. cos sin, sin sin 1 5 5 i na tym poprzestanie lub dalej popełni błąd przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko sin np. 5 sin lub 5 5sin 144sin i na tym poprzestanie lub dalej popełni 144 1 sin błąd

Egzamin maturalny z matematyki 9 przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko sin i tg, np. tg cos cos 1 lub cos tg 1 1 i na tym poprzestanie lub dalej popełni błąd obliczy długość przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 1 i 5 (lub ich wielokrotności) z błędem rachunkowym oraz zapisze sin i na tym zakończy obliczy długość przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 1 i 5 (lub ich wielokrotności) z błędem rachunkowym i zapisze cos narysuje trójkąt prostokątny o przyprostokątnych długości 1 i 5 (lub ich wielokrotności), obliczy długość przeciwprostokątnej i zaznaczy w tym trójkącie poprawnie kąt odczyta z tablic przybliżoną wartość kąta : (akceptujem y wynik ) i na tym zakończy lub dalej popełnia błędy Zdający otrzymuje... pkt 1 obliczy wartość cos : cos 1 obliczy przybliżoną wartość cos : cos 0, 97 lub cos 0,905 Zadanie 0. (0 ) Stosowanie prostego rozumowania do rozwiązywania problemów Wykazanie prawdziwości nierówności I sposób rozwiązania Przekształcamy nierówność w sposób równoważny: a 1 a1 a 1 a1 0 a 1 a 1 a 1a 1 a 1 a1 a 1 a a a 1 a a1 0 a 1 0 co kończy dowód. a a1 0 a 1 a 1 a 1 0 co kończy dowód. 0

10 Egzamin maturalny z matematyki II sposób rozwiązania Dla każdej liczby rzeczywistej a prawdziwa jest nierówność a 1 0. Przekształcamy tę nierówność w sposób równoważny: a 1 a 1 a a 1 a a a 1 1 Ponieważ a 0, więc co kończy dowód. 1 a 1 a1 a 1 III sposób rozwiązania (dowód nie wprost) a 1 a1 Przypuśćmy, że dla pewnego a 0 mamy. Przekształcamy tę nierówność a 1 tak, jak w I sposobie rozwiązania do postaci, np. a 1 0 i stwierdzamy, że otrzymaliśmy sprzeczność. Schem at oceniania Zdający otrzymuje...1 pkt a a1 otrzyma nierówność a a 1 0 lub 0 i na tym poprzestanie lub a 1 w dalszej części dowodu popełni błąd stosując metodę dowodu nie wprost otrzyma nierówność a 1 0 i nie zapisze żadnych wniosków lub zapisze błędne wnioski stosując II sposób rozwiązania otrzyma nierówność a a 1 i nie zapisze żadnych wniosków lub zapisze błędne wnioski. Zdający otrzymuje... pkt zapisze nierówność a a10 i uzasadni, że wszystkie liczby dodatnie a spełniają tę nierówność a a1 zapisze nierówność 0 i uzasadni, że wszystkie liczby dodatnie a spełniają a 1 tę nierówność stosując metodę dowodu nie wprost otrzyma nierówność a 1 0 i zapisze, że otrzymana nierówność nie zachodzi dla żadnej liczby rzeczywistej a.

Egzamin maturalny z matematyki 11 Zadanie 1. (0 ) Użycie i stosowanie strategii do rozwiązywania problemów związków miarowych w figurach płaskich Rozwiązanie D Prowadzimy wysokość E trójkąta równobocznego. Wówczas E i stąd D E. Następnie zapisujemy, że 6 E 6 oraz D E. Stąd obwód trapezu jest równy 66 15. Schemat oceniania Zdający otrzymuje... 1 pkt prawidłowo podzieli trapez na trójkąty i poprawnie obliczy długość krótszej podstawy trapezu ( D ) i na tym zakończy lub popełni błędy rachunkowe przy obliczaniu obwodu trapezu prawidłowo podzieli trapez na trójkąty i poprawnie obliczy wysokość trapezu ( h ) i na tym zakończy lub popełni błędy rachunkowe przy obliczaniu obwodu trapezu Zdający otrzymuje... pkt obliczy poprawnie obwód trapezu: 15. Zadanie. (0 4) Użycie i stosowanie strategii do rozwiązywania problemów Obliczanie objętości wielościanu Strategia rozwiązania tego zadania sprowadza się do realizacji następujących etapów rozwiązania: obliczenie długości krawędzi lub podstawy ostrosłupa bądź wysokości DE ściany bocznej D zastosowanie poprawnej metody obliczenia pola podstawy i obliczenie tego pola obliczenie objętości ostrosłupa

1 Egzamin maturalny z matematyki I sposób rozwiązania (krawędź podstawy, wysokość E podstawy i zwykły wzór na pole trójkąta ) Z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że D D do trójkąta D wynika, że 5. 5, stąd 5. Podobnie z twierdzenia Pitagorasa zastosowanego Rysujemy trójkąt i prowadzimy w nim wysokość E. Trójkąt jest równoramienny ( ), więc E E. Z twierdzenia Pitagorasa dla trójkąta E mamy E. E E 16, stąd E 4. 1 1 Zatem P 64 1. Objętość ostrosłupa jest równa V 1 1 48. Schemat oceniania I sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania......1 pkt Obliczenie długości krawędzi lub podstawy ostrosłupa: 5, 5. Rozwiązanie, w którym jest istotny postęp... pkt Obliczenie wysokości E trójkąta : E 4. Zdający nie musi uzasadniać, że E E, wystarczy, że poprawnie stosuje twierdzenie Pitagorasa do obliczenia wysokości E trójkąta. Pokonanie zasadniczych trudności zadania... pkt Obliczenie pola podstawy ostrosłupa: P 1. R ozwiązanie pełne......4 pkt Obliczenie objętości ostrosłupa: V 48. Jeśli zdający przy obliczaniu wysokości trójkąta lub pola tego trójkąta (pola podstawy ostrosłupa) nie stosuje poprawnej metody (co przekreśla poprawność strategii rozwiązania zadania), np. przyjmie, że środkowa F trójkąta jest jego wysokością, to za całe rozwiązanie przyznajemy co najwyżej 1 punkt (zdający nie osiągnął istotnego postępu).

Egzamin maturalny z matematyki 1 II sposób rozwiązania (krawędź podstawy, cosinus jednego z kątów trójkąta, wzór z sinusem na pole trójkąta ) Z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że D D 5, stąd 5. Podobnie z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że 5. Rysujemy trójkąt i prowadzimy w nim wysokość E i oznaczamy. Wariant I obliczenia pola podstawy. Trójkąt jest równoramienny (. E ), więc E E. Stąd cos E 5. Zatem Pole trójkąta jest równe 4 sin 1cos 1. 5 5 1 1 4 P sin 65 1. 5 Wariant II obliczenia pola podstawy. Z twierdzenia cosinusów dla trójkąta obliczamy cos : 7 6 5 5 5 5cos, stąd cos. 5 7 4 Następnie obliczamy sin 1cos 1. 5 5 1 1 4 Pole trójkąta jest równe P sin 55 1. 5 Po obliczeniu pola podstawy obliczamy objętość V ostrosłupa V 1 1 1 48. Schemat oceniania II sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania... 1 pkt O bliczenie długości krawędzi lub podstawy ostrosłupa: 5, 5. Rozwiązanie, w którym jest istotny postęp... pkt 4 4 Obliczenie sinusa jednego z kątów trójkąta : sin lub sin. 5 5

14 Egzamin maturalny z matematyki Pokonanie zasadniczych trudności zadania... pkt Obliczenie pola podstawy ostrosłupa: P 1. Rozwiązanie pełne......4 pkt Obliczenie objętości ostrosłupa: V 48. Jeśli zdający przy obliczaniu wysokości trójkąta lub pola tego trójkąta (pola podstawy ostrosłupa) nie stosuje poprawnej metody (co przekreśla poprawność strategii E rozwiązania zadania), np. zapisze, że sin, to za całe rozwiązanie 5 przyznajemy co najwyżej 1 punkt (zdający nie osiągnął istotnego postępu). III sposób rozwiązania (krawędź podstawy, wzór Herona na pole trójkąta ) Z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że D D 5, stąd 5. Podobnie z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że 5. Pole trójkąta obliczamy ze wzoru Herona 556 P p pa pb p c, gdzie p 8, pa86, pb pc85. P 8 1. 1 1 Objętość ostrosłupa jest równa V P D 1 1 48. Schemat oceniania III sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania...1 pkt Obliczenie długości krawędzi lub podstawy ostrosłupa: 5, 5. Pokonanie zasadniczych trudności zadania...... pkt Obliczenie pola podstawy ostrosłupa: P 1. Zdający otrzymuje punkty, jeśli poprawnie zastosuje wzór Herona, popełni błąd rachunkowy przy obliczaniu pola trójkąta i na tym zakończy. Rozwiązanie pełne...4 pkt Obliczenie objętości ostrosłupa: V 48.

Egzamin maturalny z matematyki 15 IV sposób rozwiązania (wysokość ściany bocznej D, wysokość E podstawy i zwykły wzór na pole trójkąta ) Przyjmijmy oznaczenia jak na rysunku. D 1 1 1.. 6. E Trójkąt D jest równoramienny, więc środek E boku jest spodkiem wysokości DE tego trójkąta. Z twierdzenia Pitagorasa zastosowanego do trójkąta ED wynika, że DE D E 1 160. Z twierdzenia Pitagorasa w trójkącie DE obliczamy wysokość E trójkąta E DE D 1601 16, stąd E 4. 1 Pole trójkąta jest równe P 64 1. 1 Objętość ostrosłupa jest równa V 1 1 48. Schemat oceniania IV sposobu rozw iązania Rozwiązanie, w którym postęp jest n iewielki, ale konieczny na drodze do pełnego rozwiązania... 1 pkt Obliczenie wysokości DE ściany bocznej D ostrosłupa (lub kwadratu tej wysokości): DE 410. Zdający nie musi uzasadniać, że E E, wystarczy, że poprawnie stosuje twierdzenia Pitagorasa do obliczenia wysokości DE trójkąta D. Rozwiązanie, w którym jest istotny postęp... pkt Obliczenie wysokości E trójkąta : E 4. Pokonanie zasadniczych trudności zadania... pkt Obliczenie pola podstawy ostrosłupa: P 1. Rozwiązanie pełne... 4 pkt Obliczenie objętości ostrosłupa: V 48.

16 Zadanie. (0 4) Modelowanie matematyczne Egzamin maturalny z matematyki Obliczanie prawdopodobieństwa z zastosowaniem klasycznej definicji prawdopodobieństwa Rozwiązanie (model klasyczny) jest zbiorem wszystkich par 6. ab, takich, że ab, 1,,,4,5,6 Zdarzeniu sprzyjają następujące zdarzenia elementarne:,6, 4,,4,6,6,,6,4,6,6 6 1 Z atem 6 i stąd P. 6 6. Mamy model klasyczny. S chemat oceniania Rozwiązanie, w którym postęp je st niewielki, ale konieczny na drodze do całkowitego rozwiązania zadania...1 pkt Zdający zapisze, że 6 i na tym zakończy lub dalej rozwiązuje błędnie. Rozwiązanie, w którym jest istotny postęp... pkt Zdający zapisze, że 6oraz, że,6, 4,, 4,6, 6,, 6, 4, 6,6 i na tym zakończy lub dalej rozwiązuje błędnie. Pokonanie zasadniczych trudności zadania... pkt Zdający zapisze, że 6oraz obliczy 6 i na tym zakończy lub dalej rozwiązuje błędnie. Jeżeli zdający wypisze bezbłędnie wszystkie zdarzenia elementarne sprzyjające zdarzeniu, ale błędnie zapisze ich liczbę (np. 5 7 ) i konsekwentnie rozwiąże zadanie do końca, to otrzymuje punkty. Rozwiązanie bezbłędne.....4 pkt 1 Obliczenie prawdopodobieństwa zdarzenia : P 6 1 Jeśli zdający ograniczy swoje rozwiązanie do zapisu 6; 6 oraz P, 6 to otrzymuje 1 pkt. Zadanie 4. (0 5) Modelowanie matematyczne Rozwiązanie zadania, umieszczonego w kontekście praktycznym, prowadzącego do równania kwadratowego Rozwiązanie Oznaczmy przez x długość (w metrach) basenu w pierwszym hotelu i przez y szerokość (w metrach) tego basenu. Zapisujemy układ równań: xy 40 x5y50

Egzamin maturalny z matematyki 17 Przekształcamy drugie równanie w sposób równoważny: x yx5y10 50, podstawiamy do tego równania xy 40 i wyznaczamy z tak przekształconego równania 100 5y niewiadomą x : x. Wyznaczon ą wartość x podstawiamy do pierwszego równania 100 5y y 40, które następnie przekształcamy do postaci: y 0y96 0. Rozwiązaniami tego ró wnania są: y1 8, y 1. Zatem: jeże li y 8, to x 0 i wtedy basen w pierwszym hotelu ma wymiary: 0 m 8 m, za ś basen w drugim hotelu: 5 m10 m, jeżeli y 1, to x 0 i wtedy basen w pierwszym hotelu ma wymiary: 0 m 1 m, zaś basen w drugim hotelu: 5 m 14 m. Schemat oceniania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania... 1 pkt Wprowadzenie oznaczeń, na przykład: x, y wymiary basenu w pierwszym hotelu i zapisanie równania xy 40 równan ia x5 y 50. Rozwiązanie, w którym jest istotny postęp... pkt Zapisanie układu równań z niewiadomymi x i y, np. xy 40 x5y50 Zdający nie musi zapisywać układu równań, może od razu zapisać równanie z jedną niewiadomą. Pokonanie zasadniczych trudności zadania... pkt Zapisanie równania z jedną niewiadomą x lub y, np: 40 40 x 5 50 5 y 50 x y Rozwiązanie prawie całkowite... 4 pkt Doprowadzenie równania wymiernego do równania kwadratowego oraz rozwiązanie równania kwadratowego: x 50x600 0, skąd x 0 lub x 0 y 0y96 0, skąd y 8 lub y 1 Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)... 4 pkt Zdający popełnia błąd rachunkowy w rozwiązaniu równania (ale otrzymuje dwa rozwiązania) i konsekwentnie do popełnionego błędu oblicza wymiary obu basenów. Rozwiązanie pełne... 5 pkt Zapisanie wymiarów obu basenów: asen w pierwszym hotelu ma wymiary 0 m 8 m i w drugim hotelu 5 m10 m lub basen w pierwszym hotelu ma wymiary 0 m1 m i w drugim 5 m 14 m.