OCENIANIE ARKUSZA POZIOM ROZSZERZONY
|
|
- Daria Krajewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) =. x x I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy f( x) = p+ Liczba punktów p. x p. Zapisanie nierówności p > 0. Rozwiązanie powyższej nierówności:.4 p,,.. ( ) ( ) II sposób rozwiązania podpunktu b) Obliczenie pochodnej funkcji f (x) : p f ( x) =, x p ( x p) p i zapisanie nierówności < 0 pozwalającej ( x p ) wyznaczyć szukany zbiór wartości parametru p. Uwagi dla sprawdzającego pkt za wykonanie dzielenia ( px ):( x p) = p( x p) + p lub wykorzystanie innej metody, która doprowadzi do zapisania wyrażenia w postaci sumy, np. px ( p) + p f( x) =. x p pkt za zapisanie funkcji w postaci homograficznej: p f( x) = p+. x p pkt przyznajemy za obliczenie pochodnej, pkt za zapisanie nierówności.
2 Próbny egzamin maturalny z matematyki..4. Stwierdzenie, że ( x p) 0 p 0 <. > i zapisanie nierówności Rozwiązanie nierówności p < 0: ( ) ( ) p,,. III sposób rozwiązania podpunktu b) z zastosowaniem definicji funkcji malejącej. la dowolnych x, x ( p, ) takich, że x < x funkcja f jest malejąca gdy f( x) f( x) < 0. Obliczenie różnicy f ( x) f( x) : pkt zapisanie założeń. pkt doprowadzenie różnicy f ( x) f( x) do postaci iloczynowej p ( x x) ( x x) ( x x)( p ) f( x) f( x) = =. ( x p)( x p) ( x p)( x p) Analiza znaku ułamka: ( x p) > 0, ( x p) > 0 i ( x x) < 0 dla każdego x, x p,. Zapisanie nierówności p > 0. ( ) Rozwiązanie nierówności ( ) ( ) p,,. p > 0: IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f, f p+ > p. była malejąca w przedziale ( p + ): ( ) Zapisanie warunku f ( p+ ) > p w postaci: p( p+ ) > p. ( p+ ) p Rozwiązanie nierówności ( ) ( ) p,,. p > 0: Zauważenie, że wyrażenie f ( x) f( x) przyjmuje wartość ujemną gdy p > 0.
3 ..... Wyznaczenie pierwiastków trójmianu y = x 8x + : x =, x = 6. Rozważenie możliwych przypadków ciągów geometrycznych, które mogą być rosnące:,,6,,6,6, k ( k ), ( k ), ( ) Wyznaczenie wszystkich wartości k, dla których ciąg jest rosnący: k = lub k = lub k = 8.. Zapisanie wzoru funkcji f : f ( x) x.. Rozwiązanie równania ( f ( x) ) 6 = 0: f ( x ) = 4 lub f ( x ) = 4 z niewiadomą ( ) Podanie rozwiązań równania ( f ( x) ) 6 = 0 z niewiadomą x: x = lub x = 6. 6 = log. f x. pkt za rozwiązanie każdego z przypadków. Jeśli zdający nie odrzucił rozwiązania k =, nie przyznajemy punktu. pkt za wykorzystanie definicji logarytmu i zapisanie równania log p 4 =. pkt za wyznaczenie podstawy logarytmu. Za bezpośrednie podanie wzoru funkcji przyznajemy pkt. Zdający może od razu zapisać alternatywę równań : log x= 4 lub log x= 4.
4 4 Próbny egzamin maturalny z matematyki Sporządzenie poprawnego rysunku, na którym, np.: oznacza punkt styczności okręgu z przeciwprostokątną, E,F są punktami styczności przyprostokątnych AC i BC trójkąta z okręgiem. (odcinek C nie zawiera średnicy okręgu wpisanego w dany trójkąt). C Zdający otrzymuje punkt jeśli narysuje trójkąt z zaznaczonymi dobrymi kątami i wpisanym okręgiem F E O B A 4. Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. Δ FBO jest prostokątny i FBO = 0. OF = stąd OB =. 4. Obliczenie długość odcinka FB z Δ FBO : FB =. 4.4 Obliczenie długość odcinka CB: CB = CF + FB = Obliczenie długość odcinka B: B = BF =. Z własności trójkąta opisanego na okręgu.
5 5 4.6 Zastosowanie wzoru cosinusów w odcinka C: C = CB + B CB B cos 60 ( ) ( ) Δ CB do obliczenie długości C = = +,, Jeżeli błąd jest spowodowany tym, że punkty C, O, są współliniowe i zdający korzysta z twierdzenia Pitagorasa w trójkącie CB, wtedy nie przyznajemy punktów. C = +. II sposób rozwiązania. Sporządzenie rysunku. C E 4. F O 4. B A Skorzystanie z tego, że CE = CF = r (czworokąt CFOE jest 4. kwadratem) oraz ze wzoru na długość promienia okręgu wpisanego AC + BC AB w trójkąt CE = CF =. Przyjęcie oznaczeń, np. a = BC i zapisanie tej równości w postaci: ( ) a+ a a a = =.
6 6 Próbny egzamin maturalny z matematyki 4. Obliczenie BC = a = = +. Obliczenie AC = +, np. z wykorzystaniem funkcji 4.4 trygonometrycznych w trójkącie ABC. 4.5 Obliczenie AE = A = Zastosowanie wzoru cosinusów w trójkącie CA i obliczenie długości C : C = AC + A AC A cos 0 ( ) ( ) ( )( ) C = = + C = +. III sposób rozwiązania ( z wykorzystaniem Sporządzenie rysunku. C, CO ) F E O B A
7 Obliczenie miary FO : (wykorzystanie miary kątów czworokąta FOB) FO = 60, FO = 0. Zauważenie, że FOC = 45 i obliczenie CO = = 65. Obliczenie długości odcinka OC. (OC przekątna kwadratu o boku długości ). OC = = Wykorzystanie wzoru redukcyjnego: cos65 = cos5. Zastosowanie wzoru cosinusów w Δ CO : 4.6 C = OC + O OC O cos65 Obliczenie długości odcinka C: ( ) ( ) C = cos5 C = cos5.,. Zdający może pozostawić wynik w takiej postaci: cos5, lub odczytać wartość cosinusa z tablic i podać wynik liczbowy.
8 8 Próbny egzamin maturalny z matematyki IV sposób rozwiązania. Sporządzenie rysunku. C 4. F O B Oznaczmy AB = a. Z własności trójkąta ABC wynika, że a a BC =, AC =. Wyznaczenie pola trójkąta ABC (z zastosowaniem wzoru: S = pr, gdzie p = ( a+ b+ c) i r jest promieniem okręgu wpisanego w a a AC BC a ten trójkąt): a + + = =. 8 Wyznaczenie AB = a z powyższej równości: A a + = a, AB = a = 6+. Wyznaczenie długości odcinka B: a B = BF = CF = + =.
9 9 4.6 Zastosowanie wzoru cosinusów w trójkącie CB do wyznaczenia długości odcinka C: V sposób rozwiązania. Sporządzenie rysunku. C C = CB + B CB B cos 60. P 4. R O B Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. Wyznaczenie O A z trójkąta AO: = = tg5 stąd A = A A tg5. Wyznaczenie B z trójkąta BO: B =. O = = tg0 stąd B B P = A = tg5 (z trójkąta prostokątnego PA, w którym PA = 60 ). A
10 0 Próbny egzamin maturalny z matematyki B R = = (z trójkąta prostokątnego BR, w którym BR = 60 ). Wyznaczenie długości odcinka C z trójkąta prostokątnego CR: 7 C = R + RC = +. 4tg 5 4 VI sposób rozwiązania. Sporządzenie rysunku. C 4. F E Obliczenie miary kąta ON: ON = B M N O N Wyznaczenia N z trójkąta prostokątnego ON: sin 0 O =, N = i ON = O =. CM = CF + FM = + ON = +. A
11 M = N + MN = + OF =. Wyznaczenie C z twierdzenia Pitagorasa w trójkącie CM: C = CM + M = + + = +, C = +. VII sposób rozwiązania. Sporządzenie rysunku. C Zdający otrzymuje punkt jeśli narysuje trójkąt z zaznaczonymi dobrymi kątami i wpisanym okręgiem. E 4. F O 4. B G A Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. Δ FBO (lub Δ BO ) jest prostokątny i FBO = 0. OF = stąd OB =. Obliczenie długości odcinków FB z FB = i B =. Δ FBO i B z Δ BO : 4.4 Obliczenie długość odcinka CB: CB = CF + FB = +.
12 Próbny egzamin maturalny z matematyki Obliczenie długości odcinków BG i CG i G: + = BG = BC, + = CG = BC, G = B BG =. Zastosowanie twierdzenia Pitagorasa ΔBGC do obliczenie długości odcinka C: C = CG + G + C = + = +, C = +. Sporządzenie wykresu funkcji (skorzystanie z definicji wartości bezwzględnej i sporządzenie wykresu albo naszkicowanie wykresu funkcji gx ( ) = x x, a następnie naszkicowanie wykresu funkcji f ( x) = g( x) ). Wskazanie każdego punktu, w którym istnieje ekstremum lokalne funkcji f i określenie rodzaju ekstremum: minimum lokalne dla x = 0, maksimum lokalne dla x = oraz x =. = 06,. 6. Wyznaczenie współrzędnych punktu : ( ) 6. Wyznaczenie współrzędnych punktów A i B: A = 0,, B = 60, ( ) ( ) 6. Wyznaczenie długości odcinka C: C =. 6.4 Obliczenie pola trapezu: P ABC 9+ = 6 = 6. Zdający może rozpatrzyć dwa przypadki i za każdy poprawnie rozwiązany otrzymuje pkt. Jeśli jest prawidłowy rysunek to zdający otrzymuje pkt. Przyznajemy punkt jeśli, np. - rysunek jest prawidłowy tylko po jednej stronie osi Oy, - gdy zdający nie wybrał tej części wykresu, która jest prawidłowa (pozostawił niepotrzebne części wykresu).
13 Wyznaczenie cos x z danego równania: cos x = 0 lub cos x =. Wybranie i zapisanie rozwiązań należących do przedziału 0, π : 7. π π 5 x =, x =, x = π, x 4 = π II sposób rozwiązania. π π Rozwiązanie równania gdy cos x = 0 : x = lub x =. Rozwiązanie równania gdy cos x 0 : pkt - za doprowadzenie równania do najprostszej postaci cos x =. π 5π pkt za rozwiązanie: x = lub x =., poprawnego znaku pochodnej: (+). 8. Zaznaczenie w przedziale ( ) 8. Zapisanie, że mimo poprawienia błędu w tej tabeli umieszczone w niej dane nie pozwalają stwierdzić dokładnie ile miejsc zerowych ma funkcja f: mogą być, albo 4 miejsca zerowe (zdający sporządza rysunki lub przedstawia słowne uzasadnienie). Jeśli zdający podzieli równanie obustronnie przez cos x, bez komentarza dostaje 0 pkt. Jeśli zdający w 7. podzielił równanie przez cos x ale poprawnie rozwiązał otrzymane w ten sposób równanie otrzymuje pkt. Zdający może podać odpowiedź w stopniach. pkt jeśli zdający poda odpowiedź nie pozwala, pkt jeśli poda odpowiedź nie pozwala, bo może mieć lub lub 4 miejsca zerowe (poprawnie wskazuje dwie różne liczby miejsc zerowych, ale nie pokazuje, jak wygląda wykres funkcji). pkt jeśli poda odpowiedź i narysuje dwa wykresy lub pokazuje, że np. w przedziale (, + ) funkcja może mieć 0 miejsc zerowych lub miejsce zerowe.
14 4 Próbny egzamin maturalny z matematyki Obliczenie prawdopodobieństwa P( A B) : PA ( B) = PA ( ) PA ( \ B) = 0,. ( pkt za pokazanie metody, pkt za obliczenia) Obliczenie iloczynu prawdopodobieństw P( A) P( B) i zapisanie, że dane zdarzenia są niezależne: P ( A) P( B) = 0,5 0,4 = 0,. Obliczenie różnicy dwóch kolejnych wyrazów w postaci ogólnej: an+ an = p i stwierdzenie, że ciąg ( a n ) jest arytmetyczny. Obliczenie żądanej sumy dwudziestu jeden wyrazów danego ciągu: a0 + a40 S 40 S9 = = 4 lub = 4. b był stały: p + p = Zapisanie warunku na to aby ciąg ( ) n Wyznaczenie wszystkich wartości p, dla których ciąg ( b n ) jest stały: 0.4 p = lub p =.. Wyznaczenie pierwiastków trójmianu kwadratowego: n, n... Wyznaczenie zbioru rozwiązań nierówności x nx + n < 0 : n, n. ( ) Wyznaczenie największej liczby całkowitej spełniającej nierówność i zapisanie wzoru funkcji f : n, f (n) = n, dla n>. pkt za przedstawienie metody, pkt za wykonanie obliczeń.
15 5 C.. A. B. Zauważenie, że trójkąt ABC jest prostokątny i kąt ABC ma miarę 60. Zapisanie pola zacieniowanej figury jako odpowiedniej różnicy pól:. np. deltoidu ABC i wypukłego wycinka kołowego BC.. Obliczenie pola deltoidu ABC: P ABC = 64. π.4 Obliczenie pola zacieniowanej figury: P f = 64. Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) x = x. I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
Numer zadania... Etapy rozwizania zadania Przeksztacenie wzoru funkcji do danej postaci f ( x) lub f ( x) x x. I sposób rozwizania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE ARKUSZA
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
OCENIANIE ARKUSZA POZIOM PODSTAWOWY
Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24
Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA-POZIOM ROZSZERZONY Zadanie 1. (4 pkt) Rozwiąż równanie: w przedziale. 1 pkt Przekształcenie równania
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
Uzasadnienie tezy. AB + CD = BC + AD 2
LUBELSKA PRÓBA PRZED MATURĄ MARZEC 06 ODPOWIEDZI I PROPOZYCJA OCENIANIA ZAMKNIĘTE ODPOWIEDZI Nr zadania 5 Odpowiedź C D C B B ZADANIE Z KODOWANĄ ODPOWIEDZIĄ Zadanie 6 cyfra dziesiątek jedności OTWARTE
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )
Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Numer zadania Etapy rozwiązania zadania Liczba punktów. Zapisanie dziedziny funkcji f:,.. Podanie miejsc zerowych funkcji: Naszkicowanie wykresu funkcji
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Numer zadania Etapy rozwiązania zadania Liczba punktów Zapisanie dziedziny funkcji f:, Podanie miejsc zerowych funkcji: Naszkicowanie wykresu funkcji
? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19
PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań
PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
Sponsorem wydruku schematu odpowiedzi jest wydawnictwo
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM ROZSZERZONY Katalog zadań poziom rozszerzony
KLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D
Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH NR ZADANIA POPRAWNA ODPOWIEDŹ D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) Okręgowa
Próbny egzamin maturalny z matematyki 2010
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki 00 Klucz punktowania do zadań zamkniętych oraz schemat oceniania do zadań
ZADANIA PRZED EGZAMINEM KLASA I LICEUM
ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,
Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.
Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA. Schemat odpowiedzi PRÓBNA MATURA Z MATEMATYKI, POZIOM ROZSZERZONY
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA We współpracy Schemat odpowiedzi PRÓBNA MATURA Z MATEMATYKI, POZIOM ROZSZERZONY Marzec 014 Zadanie 1 Wyróżnienie na osi
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)
Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Model odpowiedzi i schemat oceniania do arkusza I
Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna
Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3
Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja
Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom rozszerzony Listopad 8 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. B Wskazówki do rozwiązania q =, więc q
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM Matematyka Poziom rozszerzony Listopad W kluczu są prezentowane przykładowe prawidłowe odpowiedzi. Należy również uznać odpowiedzi ucznia, jeśli są
MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań
MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań inną
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom podstawowy. Listopad Wskazówki do rozwiązania zadania 22 = 2
Vademecum KRYTERI OENINI OPOWIEZI Próbna Matura z OPERONEM Operon 00% MTUR 07 V EMEUM ZKRES POSTWOWY KO WEWNĄTRZ Poziom podstawowy Zacznij przygotowania do matury już dziś Listopad 06 Zadania zamknięte
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1
Nr zadania Nr czynności. Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR Etapy rozwiązania zadania POZIOM PODSTAWOWY Obliczenie wyróżnika oraz pierwiastków trójmianu
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 00 MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ 00 Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY
Nr zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr Etapy rozwiązania zadania czynności Obliczenie wyróżnika oraz pierwiastków trójmianu
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom podstawowy. Listopad Wskazówki do rozwiązania zadania 22 = 2
Vademecum GIELMTURLN.PL OIERZ KO OSTĘPU* Matematyka - Twój indywidualny klucz do wiedzy! *Kod na końcu klucza odpowiedzi KRYTERI OENINI OPOWIEZI Próbna Matura z OPERONEM Operon 00% MTUR 07 V EMEUM Matematyka
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematyka Poziom rozszerzony Listopad 0 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź Wskazówki do rozwiązania.
Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4
Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb
POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i .
POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i. To książka dla wszystkich maturzystów, zdających nową maturę z matematyki na poziomie podstawowym i rozszerzonym. Jasne
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY EGZAMIN MATURALNY
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie.. Imię i Nazwisko... Klasa... Liczba uzyskanych punktów PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI... Wynik procentowy... Ocena szkolna POZIOM ROZSZERZONY 1. Sprawdź, czy
Tematy próbnego pisemnego egzaminu dojrzałości z matematyki
Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Zadanie Rozwiąż nierówność: [ +log 0, ( x- )] + [ +log 0, ( x- )] + [ +log 0, ( x- )] ++ + [ + log 0, ( x- )] Zadanie Odcinek AB, gdzie A = (,
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Arkusz II 5 LISTOPADA 007 Instrukcja dla zdającego Czas pracy
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 00 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 00 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od. do 5. podane były
Model odpowiedzi i schemat oceniania do arkusza II
Model odpowiedzi i schemat oceniania do arkusza II Zadanie 12 (3 pkt) Z warunków zadania : 2 AM = MB > > n Wprowadzenie oznaczeń, naprzykład: A = (x, y) i obliczenie współrzędnych wektorów n Obliczenie
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania
EGZAMIN MATURALNY 2013 MATEMATYKA
Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 0 MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi MAJ 0 Egzamin maturalny z matematyki Zadanie (0 ) Rozwiąż nierówność x x x Obszar standardów
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 04/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R CZERWIEC 0 Klucz punktowania zadań zamkniętych Nr zad. 3
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny
Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki
Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142395 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Które z podanych
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut
LUBELSKA PRÓBA PRZED MATURĄ 07 poziom podstawowy Kod ucznia Nazwisko i imię M A T E M A T Y K A 8 LUTEGO 07 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron (zadania -34).
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 4 5 6 7 8 9 0 4 5 6 7 8 9 0 Odpowiedź
Próbny egzamin maturalny z matematyki Poziom podstawowy
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2019 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 22 sierpnia
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO ZADANIA OPRACOWANE PRZEZ Agnieszkę Sumicką Katarzynę Hejmanowską
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO
Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań
MTEMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) III... Uczeń posługuje się w obliczeniach pierwiastkami i stosuje prawa działań na pierwiastkach. 7 6 6 =
LUBELSKA PRÓBA PRZED MATURĄ 2015
1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
MATEMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 05/06 FORMUŁA DO 0 ( STARA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 06 Zadanie. ( pkt) Rozwiąż nierówność + 5 + 6
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
Szanowni Państwo, Nauczyciele poprawiający prace uczniowskie z badania diagnostycznego z matematyki
Szanowni Państwo, Nauczyciele poprawiający prace uczniowskie z badania diagnostycznego z matematyki Poniżej przedstawiamy zasady, dotyczące oceniania arkuszy egzaminacyjnych z matematyki Zasady te są omawiane