Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie
Zmienna losowa Niech (Ω, p) będzie ziarnista przestrzenia probabilistyczna. Każda funkcję X : Ω R nazywamy zmienna losowa w tej przestrzeni.
Zmienna losowa Niech (Ω, p) będzie ziarnista przestrzenia probabilistyczna. Każda funkcję X : Ω R nazywamy zmienna losowa w tej przestrzeni. Jeżeli przestrzeń probabilistyczna (Ω, p) jest modelem doświadczenia δ, to zmienna losowa X w tej przestrzeni jest funkcja, która każdemu wynikowi doświadczenia δ przypisuje liczbę rzeczywista.
Przykłady zmiennych losowych Zmienna losowa jest:
Przykłady zmiennych losowych Zmienna losowa jest: liczba reszek w n-krotnym rzucie moneta,
Przykłady zmiennych losowych Zmienna losowa jest: liczba reszek w n-krotnym rzucie moneta, suma liczb oczek wyrzuconych w dwukrotnym rzucie kostka,
Przykłady zmiennych losowych Zmienna losowa jest: liczba reszek w n-krotnym rzucie moneta, suma liczb oczek wyrzuconych w dwukrotnym rzucie kostka, liczba rzutów monet a wykonanych aż do uzyskania po raz pierwszy reszki,
Przykłady zmiennych losowych Zmienna losowa jest: liczba reszek w n-krotnym rzucie moneta, suma liczb oczek wyrzuconych w dwukrotnym rzucie kostka, liczba rzutów moneta wykonanych aż do uzyskania po raz pierwszy reszki, pod warunkiem, że o tych liczbach mówimy zanim rozpocznie się doświadczenie.
Rozkład zmiennej losowej Niech Ω X oznacza zbiór wartości zmiennej losowej X w przestrzeni probabilistycznej (Ω, p).
Rozkład zmiennej losowej Niech Ω X oznacza zbiór wartości zmiennej losowej X w przestrzeni probabilistycznej (Ω, p). Ten zbiór jest co najwyżej przeliczalny. Załóżmy, że Ω X = {x 1, x 2, x 3,..., x t } lub Ω X = {x 1, x 2, x 3,...}.
Rozkład zmiennej losowej Jeżeli x j Ω X, to symbolem {X =x j } oznaczamy zbiór {ω Ω : X(ω)=x j }.
Rozkład zmiennej losowej Jeżeli x j Ω X, to symbolem {X =x j } oznaczamy zbiór {ω Ω : X(ω)=x j }. Ten zbiór jest zdarzeniem w przestrzeni probabilistycznej (Ω, p).
Rozkład zmiennej losowej Jeżeli x j Ω X, to symbolem {X =x j } oznaczamy zbiór {ω Ω : X(ω)=x j }. Ten zbiór jest zdarzeniem w przestrzeni probabilistycznej (Ω, p). Niech P (X =x j ) oznacza jego prawdopodobieństwo.
Rozkład zmiennej losowej Jeżeli x j Ω X, to symbolem {X =x j } oznaczamy zbiór {ω Ω : X(ω)=x j }. Ten zbiór jest zdarzeniem w przestrzeni probabilistycznej (Ω, p). Niech P (X =x j ) oznacza jego prawdopodobieństwo. Nazywamy je prawdopodobieństwem, z jakim zmienna losowa X przyjmuje wartość x j.
Rozkład zmiennej losowej Określmy na zbiorze Ω X funkcję p X następujaco: p X (x j ) = P (X =x j ) dla x j Ω X.
Rozkład zmiennej losowej Określmy na zbiorze Ω X funkcję p X następujaco: p X (x j ) = P (X =x j ) dla x j Ω X. Zbiór {{X =x j } : x j Ω X } jest układem zupełnym zdarzeń w przestrzeni probabilistycznej (Ω, p).
Rozkład zmiennej losowej Określmy na zbiorze Ω X funkcję p X następujaco: p X (x j ) = P (X =x j ) dla x j Ω X. Zbiór {{X =x j } : x j Ω X } jest układem zupełnym zdarzeń w przestrzeni probabilistycznej (Ω, p). Funkcja p X jest zatem rozkładem prawdopodobieństwa na zbiorze Ω X, a więc para (Ω X, p X ) jest nowa przestrzenia probabilistyczna.
Rozkład zmiennej losowej Definicja. Jeśli X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), Ω X jest zbiorem jej wartości, a p X jest funkcja określona wzorem p X (x j ) = P (X =x j ) dla x j Ω X, to parę (Ω X, p X ) nazywamy przestrzenia probabilistyczna generowana na prostej przez zmienna losowa X, a funkcję p X rozkładem zmiennej losowej X.
Uwagi Rozkład zmiennej losowej X jest więc funkcja, która każdej wartości zmiennej losowej X przypisuje prawdopodobieństwo, z jakim zmienna losowa X przyjmuje (może przyjać) tę wartość.
Uwagi Rozkład zmiennej losowej X jest więc funkcja, która każdej wartości zmiennej losowej X przypisuje prawdopodobieństwo, z jakim zmienna losowa X przyjmuje (może przyjać) tę wartość. Każda zmienna losowa X w przestrzeni probabilistycznej (Ω, p) przeprowadza ja w nowa przestrzeń probabilistyczna (Ω X, p X ).
Przykład. Rozważmy doświadczenie δ: rzut dwiema monetami. Niech X będzie liczba wyrzuconych orłów.
Przykład. Rozważmy doświadczenie δ: rzut dwiema monetami. Niech X będzie liczba wyrzuconych orłów. Przyjmijmy oznaczenie: ω k doświadczenie δ zakończy się wyrzuceniem k orłów.
Przykład. Rozważmy doświadczenie δ: rzut dwiema monetami. Niech X będzie liczba wyrzuconych orłów. Przyjmijmy oznaczenie: ω k doświadczenie δ zakończy się wyrzuceniem k orłów. Wówczas Ω = {ω 0, ω 1, ω 2 } oraz p(ω 0 ) = p(ω 2 ) = 1 4 oraz p(ω 1 ) = 1 2.
Mamy tutaj Ω X = {0, 1, 2}
Mamy tutaj Ω X = {0, 1, 2} oraz {X = 0} = {ω 0 }, {X = 1} = {ω 1 }, {X = 2} = {ω 2 },
Mamy tutaj Ω X = {0, 1, 2} oraz {X = 0} = {ω 0 }, {X = 1} = {ω 1 }, {X = 2} = {ω 2 }, skad p X (0) = P (X = 0) = p(ω 0 ) = 1 4, p X (1) = P (X = 1) = p(ω 1 ) = 1 2, p X (2) = P (X = 2) = p(ω 2 ) = 1 4.
Dystrybuanta zmiennej losowej Niech X będzie zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), Ω X zbiorem jej wartości, p X zaś jej rozkładem. Niech {X < x} = {ω Ω : X(ω) < x}, gdzie x R. Zbiór {X < x} jest zdarzeniem w przestrzeni probabilistycznej (Ω, p). Niech P (X < x) oznacza jego prawdopodobieństwo.
Dystrybuanta zmiennej losowej Definicja. Jeżeli X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), to funkcję F X : R R określona wzorem F X (x) = P (X < x), dla x R, nazywamy dystrybuanta zmiennej losowej X.
Fizyczna interpretacja rozkładu zmiennej losowej Załóżmy, że X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), że Ω X jest zbiorem jej wartości, a funkcja p X jest jej rozkładem. Niech x j Ω X.
Fizyczna interpretacja rozkładu zmiennej losowej Załóżmy, że X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), że Ω X jest zbiorem jej wartości, a funkcja p X jest jej rozkładem. Niech x j Ω X. Interpretujmy liczbę p X (x j ), tj. prawdopodobieństwo P (X =x j ), jako masę skupiona na osi liczbowej w punkcie x j.
Fizyczna interpretacja rozkładu zmiennej losowej Załóżmy, że X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), że Ω X jest zbiorem jej wartości, a funkcja p X jest jej rozkładem. Niech x j Ω X. Interpretujmy liczbę p X (x j ), tj. prawdopodobieństwo P (X =x j ), jako masę skupiona na osi liczbowej w punkcie x j. Funkcja p X staje się w tej fizycznej interpretacji rozkładem jednostkowej masy w izolowanych punktach na prostej.
Fizyczna interpretacja rozkładu zmiennej losowej Załóżmy, że X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), że Ω X jest zbiorem jej wartości, a funkcja p X jest jej rozkładem. Niech x j Ω X. Interpretujmy liczbę p X (x j ), tj. prawdopodobieństwo P (X =x j ), jako masę skupiona na osi liczbowej w punkcie x j. Funkcja p X staje się w tej fizycznej interpretacji rozkładem jednostkowej masy w izolowanych punktach na prostej. Ta interpretacja rozkładu zmiennej losowej tłumaczy jego nazwę ROZKŁAD ZIARNISTY.
. 0 1 2
. 0 1 2 F X (x) = 0 dla x (, 0], 1 4 dla x (0, 1], 3 4 dla x (1, 2], 1 dla x (2, ).
. 0 1 2 F X (x) = 0 dla x (, 0], 1 4 dla x (0, 1], 3 4 dla x (1, 2], 1 dla x (2, ).
. 0 1 2 F X (x) = 0 dla x (, 0], 1 4 dla x (0, 1], 3 4 dla x (1, 2], 1 dla x (2, ).
. 0 1 2 F X (x) = 0 dla x (, 0], 1 4 dla x (0, 1], 3 4 dla x (1, 2], 1 dla x (2, ).
. F X 1 3 4 1 4 0 1 2 X
Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1];
Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1]; 2) a, b R : [a < b = F X (a) F X (b)];
Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1]; 2) a, b R : [a < b = F X (a) F X (b)]; 3) a R : [ lim F X(x) = F X (a) x a ] ;
Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1]; 2) a, b R : [a < b = F X (a) F X (b)]; 3) a R : [ lim F X(x) = F X (a) x a ] ; 4) lim x F X(x) = 0 oraz lim x F X (x) = 1.
Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1]; 2) a, b R : [a < b = F X (a) F X (b)]; 3) a R : [ lim F X(x) = F X (a) x a ] ; 4) lim x F X(x) = 0 oraz lim x F X (x) = 1.
Wartość oczekiwana zmiennej losowej Niech X będzie zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), Ω X zbiorem jej wartości, p X zaś jej rozkładem. Wartościa oczekiwana, albo wartościa średnia zmiennej losowej X, nazywamy liczbę E(X), gdzie: 1 o E(X) = c, gdy Ω X = {c};
Wartość oczekiwana zmiennej losowej Niech X będzie zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), Ω X zbiorem jej wartości, p X zaś jej rozkładem. Wartościa oczekiwana, albo wartościa średnia zmiennej losowej X, nazywamy liczbę E(X), gdzie: 1 o E(X) = c, gdy Ω X = {c}; 2 o E(X) = x 1 p X (x 1 ) + x 2 p X (x 2 ) +... + x t p X (x t ), gdy Ω X = {x 1, x 2,..., x t };
Wartość oczekiwana zmiennej losowej Niech X będzie zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), Ω X zbiorem jej wartości, p X zaś jej rozkładem. Wartościa oczekiwana, albo wartościa średnia zmiennej losowej X, nazywamy liczbę E(X), gdzie: 1 o E(X) = c, gdy Ω X = {c}; 2 o E(X) = x 1 p X (x 1 ) + x 2 p X (x 2 ) +... + x t p X (x t ), 3 o E(X) = j=1 gdy Ω X = {x 1, x 2,..., x t }; x j p X (x j ), gdy Ω X = {x 1, x 2, x 3,...}, pod warunkiem, że ten szereg jest zbieżny i to bezwzględnie.
Wartość oczekiwana zmiennej losowej W interpretacji fizycznej rozkładu p X liczba E(X) jest środkiem ciężkości tego układu mas. Z tego faktu wynikaja pewne własności wartości oczekiwanej.
Własności wartości oczekiwanej Twierdzenie. Jeśli zmienna losowa X posiada wartość oczekiwana E(X), b zaś jest dowolna ustalona liczba rzeczywista, to zmienna losowa Y =X +b także posiada wartość oczekiwana i E(Y ) = E(X +b) = E(X) + b.
Własności wartości oczekiwanej Twierdzenie. Jeśli zmienna losowa X posiada wartość oczekiwana E(X), b zaś jest dowolna ustalona liczba rzeczywista, to zmienna losowa Y =X +b także posiada wartość oczekiwana i E(Y ) = E(X +b) = E(X) + b. Twierdzenie. Jeżeli zmienna losowa X posiada wartość oczekiwana E(X) i a jest dowolna ustalona liczba rzeczywista różna od 0, to zmienna losowa Y = a X także posiada wartość oczekiwana i E(Y ) = E(a X) = a E(X).
Własności wartości oczekiwanej Twierdzenie. Jeśli zmienne losowe X 1, X 2,..., X s sa określone w tej samej przestrzeni probabilistycznej i każda posiada wartość oczekiwana, to posiada ja również ich suma i E(X 1 + X 2 + + X s ) = E(X 1 ) + E(X 2 ) + + E(X s ).
Wariancja zmiennej losowej Definicja. Jeżeli zmienna losowa X w przestrzeni probabilistycznej (Ω, p) posiada wartość oczekiwana E(X), to wariancja zmiennej losowej X nazywamy liczbę D 2 (X) = E[X E(X)] 2.
Wariancja zmiennej losowej Jeżeli X jest zmienna losowa posiadajac a wartość oczekiwana, to Y = [X E(X)] 2 jest nowa zmienna losowa w tej przestrzeni.
Wariancja zmiennej losowej Jeżeli X jest zmienna losowa posiadajac a wartość oczekiwana, to Y = [X E(X)] 2 jest nowa zmienna losowa w tej przestrzeni. Zmienna losowa Y jest kwadratem odchylenia wartości zmiennej losowej X od liczby E(X).
Wariancja zmiennej losowej Jeżeli X jest zmienna losowa posiadajac a wartość oczekiwana, to Y = [X E(X)] 2 jest nowa zmienna losowa w tej przestrzeni. Zmienna losowa Y jest kwadratem odchylenia wartości zmiennej losowej X od liczby E(X). Wariancja zmiennej losowej X jest więc wartościa oczekiwana kwadratu odchyleń wartości tej zmiennej losowej od liczby E(X).
Wariancja zmiennej losowej Z definicji wynika, że wariancja zmiennej losowej wyraża się wzorem: D 2 (X) = x j Ω X [x j E(X)] 2 p X (x j ).
Wariancja zmiennej losowej Z definicji wynika, że wariancja zmiennej losowej wyraża się wzorem: D 2 (X) = x j Ω X [x j E(X)] 2 p X (x j ). Z własności wartości oczekiwanej wynika następujace Twierdzenie. Jeżeli zmienna losowa X posiada wartość oczekiwana i posiada wariancję, to D 2 (X) = E(X 2 ) [E(X)] 2.
Własności wariancji Jeżeli zmienna losowa X ma wariancję, c zaś jest ustalona liczba rzeczywista, to: 1 o D 2 (c X) = c 2 D 2 (X);
Własności wariancji Jeżeli zmienna losowa X ma wariancję, c zaś jest ustalona liczba rzeczywista, to: 1 o D 2 (c X) = c 2 D 2 (X); 2 o D 2 (X + c) = D 2 (X);
Odchylenie standardowe Definicja. Pierwiastek kwadratowy z wariancji D 2 (X) nazywamy odchyleniem standardowym zmiennej losowej X i oznaczamy σ X.
Co wynika z faktu, że wariancja D 2 (X) = x j Ω X [x j E(X)] 2 p X (x j ). jest mała?