Ruch harmoniczny wózek na linii powietrznej

Podobne dokumenty
Kondensator, pojemność elektryczna

Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej.

Prawo Hooke a. Cel ćwiczenia - Badanie zależności siły sprężystości od wydłużenia sprężyny - wprowadzenie prawa Hooke a.

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

Wyznaczanie wartości przyspieszenia ziemskiego (za pomocą nachylanej linii powietrznej)

Wahadło tłumione (tłumienie nieeksponencjalne)

Wpływ temperatury na opór elektryczny metalu. Badanie zaleŝności oporu elektrycznego włókna Ŝarówki od natęŝenia przepływającego prądu.

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym

Bezwładność - Zrywanie nici nad i pod cięŝarkiem (rozszerzenie klasycznego ćwiczenia pokazowego)

Podstawy fizyki sezon 1 VII. Ruch drgający

Kamerton 1. Problem 1: Dlaczego kamerton umieszczony na pudle rezonansowym słyszymy głośniej? Skąd bierze się dodatkowa energia?

Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie.

Fizyka 11. Janusz Andrzejewski

III zasada dynamiki Newtona

gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności.

Tarcie statyczne i kinetyczne

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA.

RUCH HARMONICZNY. sin. (r.j.o) sin

Oscylator harmoniczny i drgania tłumione

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Tematy: oscylator harmoniczny, oscylator tłumiony, oscylator wymuszony, zjawisko rezonansu, przykłady układ RLC, jądrowy rezonans magnetyczny

Przemiana izochoryczna. Prawo Charlesa

Walec na równi pochyłej

Fizyka 12. Janusz Andrzejewski

Wykład 2: Od drgań do fali Katarzyna Weron. WPPT, Matematyka Stosowana

Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.

Praca i energia Mechanika: praca i energia, zasada zachowania energii; GLX plik: work energy

FIZYKA R.Resnick & D. Halliday

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

a = (2.1.3) = (2.1.4)

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

Kalibracja czujnika temperatury zestawu COACH Lab II+. Piotr Jacoń. K-5a I PRACOWNIA FIZYCZNA

Drgania wymuszone - wahadło Pohla

Temat ćwiczenia. Analiza częstotliwościowa

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Ruch drgający i falowy

a = (2.1.2) m a = (2.1.3) = (2.1.4) + (2.1.5) m 2 = A e (2.1.9)

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH

Przyspieszenie na nachylonym torze

PORÓWNANIE WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKA ROLNICZEGO NA JEGO DRGANIA

Zasady oceniania karta pracy

(program Coach 5 PL, konsola pomiarowa, czujniki)

Drgania wymuszone. Rezonans mechaniczny

Ć W I C Z E N I E N R M-2

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

CEL PRACY ZAKRES PRACY

Zjawisko interferencji fal

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

Spr yna Coach 6 Wyznaczanie stałej spr ysto ci spr yny Zestaw.cma Obserwacja zjawiska indukcji elektromagnetycznej Indukcja.cma

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

Instrukcja do programu Coach 5 z opisem pomiarów podstawowych CTN

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.

CHARAKTERYSTYKA ROBOCZA LICZNIKA SCYNTYLACYJNEGO. CZAS MARTWY LICZNIKA SCYNTYLACYJNEGO i G-M

III zasada dynamiki Newtona

Wykład 6 Drgania. Siła harmoniczna

BADANIA CHARAKTERYSTYK STATYCZNYCH WIBROIZOLATORÓW

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wahadło. Celem ćwiczenia jest zapoznanie się z zasadą dokonywania wideopomiarów w systemie Coach 6 oraz obserwacja modelu wahadła matematycznego.

Podstawy fizyki wykład 7

POMIARY WIDEO W PROGRAMIE COACH 5

KOMPUTEROWE BADANIE RUCHÓW MECHANICZNYCH

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana

Spadek swobodny. Spadek swobodny

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu.

EKG (Elektrokardiogram zapis czasowych zmian potencjału mięśnia sercowego)

SONDA ULTRADŹWIĘKOWA

Energia promieniowania termicznego sprawdzenie zależności temperaturowej

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

Multimetr cyfrowy MAS-345. Instrukcja instalacji i obsługi oprogramowania DMM VIEW Ver 2.0

Wyznaczanie charakterystyk przepływu cieczy przez przelewy

Wyznaczanie prędkości dźwięku w powietrzu

2.6.3 Interferencja fal.

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

Drgania. O. Harmoniczny

Drgania i fale II rok Fizyk BC

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Siła sprężystości - przypomnienie

LABORATORIUM Z FIZYKI

Ćwiczenie 5. Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Badanie widma fali akustycznej

Obwody prądu przemiennego bez liczb zespolonych

Transkrypt:

COACH 11 Ruch haroniczny wózek na linii powietrznej Progra: Coach 6 Projekt: na ZMN060C CMA Coach Projects\PTSN Coach 6\ Drgania haroniczne Ćwiczenia: ruch haroniczny.ca, Model.ca, Model1.ca Teaty: 1. Ruch haroniczny (drgania haroniczne).. Ruch haroniczny tłuiony słabo. 3. Porównanie opisu teoretycznego drgań z obserwacjai eksperyentalnyi - Modelowanie. Układ poiarowy Linia powietrzna z wózkie zaocowany iędzy dwoa sprężynai, ultradźwiękowy czujnik ruchu D0664. Ruch haroniczny 1

Przygotowanie poiaru. - Wczytać sterownik Ultrasonic Motion Detector (664) (CMA) (0..1) [dla prograu Coach6 jest wczytywany autoatycznie]. Przenieść ikonę sterownika na odpowiednie wejście na rysunku konsoli CoachLabII. - Dobrać ustawienie ultradźwiękowego czujnika ruchu tak, żeby wskazywał położenie wózka uieszczonego na linii powietrznej. Czujnik działa na zasadzie rejestracji czasu powrotu odbitej fali ultradźwiękowej. Trzeba go ustawić tak, żeby nie odbijał fali od ściany i linii powietrznej * (usi patrzeć trochę od ściany i trochę w górę), a wózek wyposażyć w gładką powierzchnię odbijającą (np. karta fortranowska). Ustawienia czujnika dokonuje się uieszczając wózek w ożliwie dużej odległości (z założonyi sprężynai) i obserwując wyświetlane wartość położenia na koputerze. - Dopasować kalibrację sterownika do potrzeb poiarowych (zero przypisać położeniu równowagi). - Dobrać paraetry poiaru Przykładowe ustawienia: czas poiaru 0s częstotliwość próbkowania 5/s - W oknach prograu Coach przygotować potrzebne wykresy np. x(t), v(t). Wykres v(t) ożna uzyskać poprzez różniczkowanie x(t) [Forula: Derivative()]. Przy częstotliwościach próbkowania większych od 5/s wskazany jest wygładzenie wykresu x(t) [Forula: Bezier(x)] przed dokonanie różniczkowania. Przygotowane ćwiczenie (ruch haroniczny.ca) zawiera proponowane ustawienia prograu COACH. Poiar Uruchoić naduch linii powietrznej, wychylić wózek z położenia równowagi i puszczając go nacisnąć zielony przycisk "start" (na ekranie) albo F9 (na klawiaturze). Ad 1. Ruch haroniczny. Wprowadzenie pojęcia (definicji) ruchu haronicznego (drgań haronicznych) na podstawie obserwacji ruchu wózka na linii powietrznej. * Fala jest eitowana w stoŝek o kącie odchylenia od osi centralnej 18 o. Ruch haroniczny

Wprowadzenie wielkości fizycznych charakteryzujących drgania haroniczne swobodne; A - aplituda, T - okres, f - częstotliwość, ω - częstość. F r = 0 Na wychylony z połoŝenia równowagi wózek spręŝyny działają siłą proporcjonalną do wychylenia r r F = kx r F = r k x W pierwszy przybliŝeniu oŝna poinąć niewielkie siły wywołane opore powietrza i przyjąć, Ŝe jest to siła wypadkowa działająca na wózek. Wynikie działania tej siły jest obserwowany ruch okresowy. Taki ruch nazyway ruche haroniczny swobodny. MoŜna go opisać funkcją sinus lub cosinus. x ( t) = Acos( ω t + ϕ) k gdzie ϖ =, a jest asą wózka. Faza zian prędkości w ty ruchu jest przesunięta względe fazy połoŝenia. Maksyalneu wychyleniu z połoŝenia równowagi odpowiada prędkość zero, a przy przechodzeniu przez połoŝenie równowagi prędkość ciała jest największa. Drgania haroniczne drganie opisane funkcją sinus lub cosinus. ( t) = A ( ϖ t +ϕ) x cos Ruch haroniczny 3

JeŜeli na ciało działa siła proporcjonalna do wychylenia z połoŝenia równowagi, r r skierowana przeciwnie do wychylenia F = kx to jego drgania będą haroniczne. Ad. Ruch haroniczny tłuiony słabo. JeŜeli obserwujey ruch wózka przez dłuŝszy czas to widać, Ŝe aplituda drgań aleje. Jest to spowodowane opore powietrza. Dla ałych prędkości oŝna przyjąć, Ŝe siła oporu jest proporcjonalna do prędkości. drgania swobodne tłuienie proporcjonalne do prędkości + a = kx = bv F t => a = kx bv Dla słabego tłuienia tj. dla b < k aplituda drgań aleje eksponecjalnie. Ziany położenia wózka w zależności od czasu opisane są funkcją (rozwiązanie równania różniczkowego jest funkcja): gdzie: A 0 jest aplitudą początkową drgań b β = ϖ 1 = ϖ β ϖ = k x = A e β t 0 cos ( ϖ t + ϕ ) 1 d x dx = kx b dt dt d x + b dt dx dt + kx = 0 Ruch haroniczny 4

Ad 3. Porównanie opisu teoretycznego drgań z obserwacjai eksperyentalnyi - Modelowanie. Wyniki eksperyentalne ożna porównać z opise teoretyczny korzystając z opcji Modelowanie. Modelowanie jest dostępne jedynie, gdy podczas tworzenia ćwiczenia wybrano opcję Bez konsoli. Dlatego poiary uszą być wykonywane wcześniej, w inny ćwiczeniu z dostępną konsolą poiarową i zapaiętane jako Wynik (Result). Mogą one następnie być wczytane (do przygotowywanego wykresu) jako tło - Iport background graph. W aktywny ćwiczeniu ożna otworzyć (zaknąć) okno edycji odelu naciskając przycisk Model Window. Do tworzenia odeli dostępne są dwa edytory: tekstowy i graficzny. Przykłady odeli dla ruchu haronicznego są dostępne w ćwiczeniach (activities): Model, Model1. Model jest uruchaiany po naciśnięciu zielonego przycisku Start (F9). Obliczenia są wykonywane zadaną liczbę razy (Options/Settings...). Opcja Monitor * ułatwia znalezienie ewentualnych błędów w odelu. Opcja Syulacja * uożliwia obserwację zian wywołanych odyfikacją wartości paraetrów odelu. Przykłady: Model. ZaleŜność połoŝenia od czasu dla wózka uieszczonego na linii powietrznej, poiędzy spręŝynai. Niebieskie krzyŝyki wyniki eksperyentalne, róŝowa linia wyniki obliczań dla prezentowanego odelu Model uwzględnia ekspotencjalny zanik aplitudy drgań spowodowany opore powietrza proporcjonalny do prędkości ruchu. Korzysta z analitycznego wzoru opisującego ziany połoŝenia w funkcji czasu. * Dostęp przez prawy przyciski yszy w oknie odelu Ruch haroniczny 5

Model1. ZaleŜność połoŝenia od czasu dla wózka uieszczonego na linii powietrznej, poiędzy spręŝynai. Niebieska linia wyniki eksperyentalne, róŝowa linia wyniki obliczań dla prezentowanego odelu. Model uwzględnia siłę oporu powietrza proporcjonalną do b prędkości ruchu v. Model nie korzysta z gotowego, analitycznego wzoru opisującego ziany połoŝenia w funkcji czasu, lecz z krokowej analizy zian a(t), v(t), x(t). W wyniku zastosowania takiego odelu uzyskujey nie tylko zaleŝność x(t), ale równieŝ v(t) i a(t). Takie podejście uoŝliwia takŝe analizowanieprzypadków, dla których nie a rozwiązania analitycznego. Niektóre inne oŝliwości analizy wyników:. - Wyznaczanie okresu drgań - Scan - Prezentacja wykresu fazowego v(x) - Create/Edit diagra - Dopasowanie funkcji teoretycznej (sinusoidy) - Analise\ Function-fit Ruch haroniczny 6