Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie."

Transkrypt

1 Ćwiczenie T - 6 Fale dźwiękowe i zjawisko dudnień I. Cel ćwiczenia: rejestracja i analiza fal dźwiękowych oraz zjawiska dudnienia. II. Przyrządy: interfejs CoachLab II +, czujnik dźwięku, dwa kamertony nieznacznie różniące się częstotliwością (np. 435Hz i 420Hz). III. Literatura: 1. D. Resnick, R. Holliday, Fizyka t.i, 2. M. Kozielski, Fizyka i astronomia t. 2, podr. dla szkół ponadgimnazjalnych, PWN 2005 W-wa, 3. Coach zeszyt ćwiczeń, Amstel Instytut Uniwersytetu w Amsterdamie. IV. Wprowadzenie. Fala akustyczna to zaburzenie rozchodzące się w ośrodku sprężystym, takim jak powietrze, metal, woda. Zaburzenia te polegają na chwilowych zmianach gęstości ośrodka, co z kolei wywołuje chwilowe lokalne różnice ciśnienia rozchodzące się w ośrodku. Prędkość rozchodzenia się fali akustycznej jest zależna od ośrodka. W powietrzu, w normalnych warunkach, przy średniej wilgotności wynosi około 340 m/s, w wodzie v = m/s, w żelazie v = 5100 m/s. W potocznym znaczeniu przez dźwięk rozumie się dźwięk słyszalny, tzn. fale akustyczne, które może odbierać ucho ludzkie. Drgania są odbierane jako dźwięk wtedy, gdy ich częstotliwość zawiera się w przedziale 16 Hz 20 khz. Fale o częstotliwościach mniejszych od 16 Hz nazywają się infradźwiękami, o częstotliwościach większych od słyszalnych w przedziale 20 khz Hz, to ultradźwięki. Nasze wrażenie, że jeden dźwięk jest silniejszy od drugiego, czyli tzw. głośność, zależy od natężenia I fali dźwiękowej. Jednak głośność nie jest proporcjonalna do natężenia dźwięku, ale, w przybliżeniu do logarytmu dziesiętnego z tego natężenia. Natężenie drugiego dźwięku musi być w przybliżeniu 10 razy większe, aby wydawał się nam dwa razy silniejszy od pierwszego. Dlatego dla scharakteryzowania głośności dźwięku przyjmuje się skalę logarytmiczną. Definiuje się tzw. poziom natężenia, który określamy za pomocą wzoru I K= log (1) I o Jednostką na tej skali jest bel. Dziesięciokrotny wzrost natężenia dźwięku, odpowiada jednemu belowi. Zero na tej skali umownie odpowiada natężeniu fali I o = W/m 2. Jest to tzw. próg słyszalności lub próg czułości ucha ludzkiego. Ta wartość progowa dotyczy średniego ucha i częstotliwości dźwięku f = Hz, przy której ucho jest najbardziej czułe. Z uwagi na to, że jednostka bel jest zbyt duża, w powszechnym użyciu jest jednostka dziesięć razy mniejsza 1 decybel, w skrócie 1 db. Poziom natężenia mierzony w decybelach określa się za pomocą wzoru I L= 10log (2) I o Dźwięki wytwarzane są przez drgające obiekty: w pianinie lub gitarze drgają struny, we flecie słup powietrza, a ludzkim gardle struny głosowe. W każdym z tych przypadków drgania źró-

2 dła zaburzają ośrodek, którym jest powietrze powodując jego lokalne zgęszczenia i rozrzedzenia. Falę dźwiękową możemy scharakteryzować podając jej okres T (lub częstotliwość f =1/T), amplitudę będącą miarą odczuwanego przez nas natężenia dźwięku oraz prędkość rozchodzenia się dźwięku w ośrodku. Płaską falę dźwiękową można opisać równaniem Ψ =Ψ sin( ωt kx+ ϕ ) (3) o gdzie Ψ jest ciśnieniem drgającego powietrza, Ψ o amplitudą ciśnienia, x odległością od źródła dźwięku wzdłuż wybranej osi X, k stałą falową (k = 2π/λ), ω częstością kołową (ω = 2πf), ϕ o fazą początkową. o T Rys.1 Zależność zmian ciśnienia w funkcji czasu w ustalonej odległości x od drgającego kamertonu. Rysunek 1 przedstawia zależność zmian ciśnienia w funkcji czasu w pewnej odległości od drgającego kamertonu. Jeżeli amplitudy dwóch drgań harmonicznych są jednakowe, a ich częstości kątowe niewiele się różnią, to w wyniku nałożenia się tych drgań otrzymuje się drganie wypadkowe o okresowo zmiennej amplitudzie (rys.2). Okresowe zmiany amplitudy od wartości minimalnej do maksymalnej nazywamy dudnieniami. Można wykazać, że częstotliwość dudnień równa jest różnicy częstotliwości drgań składowych: f dud = f 1 f 2. Dudnienie jest szczególnie wyraźnie słyszalne, gdy różnica częstości obu tonów składowych wynosi około 10 Hz. 2

3 T dud Rys. 2 Dudnienia. Wynik złożenia drgań z dwóch kamertonów o zbliżonych częstotliwościach drgań. V. Wykonanie pomiarów. Zestaw doświadczalny składa się z dwóch kamertonów, konsoli pomiarowej CoachLab II +, czujnika dźwięku (rys.3). Na widełki jednego z kamertonów założono pierścień metalowy, co pozwala zmniejszyć nieco jego częstotliwość drgań. Rys.3 Zestaw pomiarowy V.1 Pomiar częstotliwości drgań kamertonów 1. Połącz czujnik dźwięku z wejściem interfejsu (np. wejściem 1) i umieść go w pobliżu pudła rezonansowego kamertonu. 3

4 2. Uruchom program Coach W pasku narzędzi (góra) kliknij ikonę Nastawienie pomiaru. Można także wybrać ją z linijki menu Narzędzia. Nastaw czas pomiaru 100 ms, częstotliwość Hz. 4. Kliknij ikonę czujnika dźwięku prawym przyciskiem myszy, z menu wybierz Prezentuj wykres i umieść go np. w prawej górnej części ekranu, klikając lewym przyciskiem myszy w tej części ekranu. 5. Klikając myszką w ikonę młotka wybierz funkcję Prezentacja wykresu. W otwartym oknie (rys. obok) wybierz znacznik: Duża kropka, kolor znacznika, rodzaj wykresu: Brak, zaznacz opcję Pokaż siatkę. 6. Wpraw kamerton w drgania przy użyciu drewnianego młoteczka. 7. Uruchom pomiar klikając zielony przycisk Start. 8. Powiększ pole wykresu tak, by zawierało 5 8 okresów drgań. Jeśli ocenisz, że obraz drgań jest niezadowalający powtórz pomiary. 9. Zapisz wyniki w programie Coach 5 w katalogu (projekcie) Pomiary w fizyce. Pozwoli to wracać wielokrotnie do tych danych w celu wykonania ich analizy. W tym celu: najedź kursorem myszy na ikonę zapisu wyników (lewa strona górnej części ekranu i kliknij lewym przyciskiem myszy. Otworzy się okno Zapisz wyniki jako, w polu opis umieść swoją nazwę pliku danych np. Fale_JW1. V.1.1 Analiza zarejestrowanych fal dźwiękowych. 1 Dokonaj selekcji danych tak, by wykres zawierał tylko ok. 5 okresów fal. W tym celu: Wybierz opcję Przetwarzanie>Selekcja danych. Otworzy się okno Wybór/Usuwanie danych: w polu Metoda zaznaczyć Zakres, w polu Kolumna zaznaczyć ciśnienie, kursorem myszki przesunąć czarne znaczniki na osi czasu w odpowiednie położenia np. lewy do początku układu współrzędnych, prawy na odległość ok. 5 okresów od niego. zaznaczyć pole Wybierz i kliknąć OK. Po potwierdzeniu operacji na ekranie pozostaną jedynie wybrane punkty. 2. Oblicz częstotliwość zarejestrowanych drgań. Aby uzyskać dokładniejsze rezultaty okresu drgań należy zmierzyć odległość między np. 5 wierzchołkami i podzielić otrzymany rezultat przez Wyznacz amplitudę fali mierząc połowę odległości między maksymalnym i minimalnym wychyleniem (w kierunku y) z położenia równowagi. 4. Aby porównać rzeczywiste drgania z funkcją matematyczną, dopasuj do wyników eksperymentu funkcję sinusoidalną. Wybierz opcję Analiza>Dopasowanie funkcji. Otworzy się okno Dopasowanie funkcji: w polu Funkcja wybierz funkcję postaci asin(bx + c) + d, w polu Kolumna wybierz ciśnienie, kliknij Auto i zanotuj uzyskaną postać funkcji (współczynniki a, b, c, d), 4

5 Uwaga Nie zawsze udaje się automatyczne dopasować funkcję. Czasami konieczne jest dopasowanie ręczne przy pomocy czarnej pinezki (widoczna na ekranie) i myszy. zaznaczyć Dodaj wykres (jeśli nie jest zaznaczony) i kliknąć OK, ponieważ b = ω = 2πf (patrz wzór (3), oblicz tę częstotliwość dźwięku wynikającą z funkcji dopasowania, Wykorzystując opcję Dodanie adnotacji opisz wykres (tytuł, postać funkcji dopasowania). 5. Porównaj otrzymaną częstotliwość z częstotliwością umieszczoną na kamertonie. 6. Zapisz wykres w pliku Word a lub Excel a (po kliknięciu prawym przyciskiem myszki w wykres wybierz Kopiuj do schowka) ze stosownymi adnotacjami dotyczącymi wartości a, b, c, d. Wykonaj taki sam pomiar i obliczenia dla drugiego kamertonu. V.2 Rejestracja i pomiar częstotliwości dudnień. 1. Ustaw kamertony w odległości cm tak, by były zwrócone do siebie pudłami rezonansowymi. 2. Czujnik dźwięku podłączony jak w punkcie 1 części V.1 umieść między pudłami rezonansowymi kamertonów. 3. W pasku narzędzi (góra) kliknij ikonę Nastawienie pomiaru. Nastaw czas pomiaru 1 s, częstotliwość Hz. 4. Wybierz funkcję Prezentacja wykresu. W otwartym oknie wybierz znacznik: Brak, kolor znacznika, rodzaj wykresu: Linia, zaznacz opcję Pokaż siatkę. 5. Wpraw oba kamertony w drgania przy użyciu drewnianego młoteczka. 6. Uruchom pomiar klikając w zielony przycisk Start. 7. Powiększ pole wykresu tak, by zawierało ok. 6 8 okresów dudnień. Jeśli ocenisz, że obraz dudnień nie jest zadowalający powtórz pomiary. 8. Zapisz wyniki w programie Coach 5 w katalogu (projekcie) Pomiary w fizyce pod nazwą np. Dudnienia_JW1. V.2.1 Analiza pomiarów dudnień 1. Podaj okres dudnień T dud (patrz wykres 2). Oblicz częstotliwość zarejestrowanych dudnień 1 fdud =. T dud 2. Porównaj zmierzoną częstotliwość dudnień z wynikającą z rozważań teoretycznych f dud = f 1 f Wykorzystując opcję Analiza sygnału, która służy do znajdowania widma sygnału za pomocą transformaty Fouriera znajdź częstotliwości składowe dudnień. Wynik (wykres) zapisz w oddzielnym oknie i po powiększeniu interesującego fragmentu wykresu odczytaj częstości składowe. 4. Porównaj tak znalezione częstotliwości z obliczonymi wcześniej. 5

ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA.

ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA. ĆWICZENIE NR 15 ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSYCZNYCH DUDNIENIA. I. Cel ćwiczenia. Celem ćwiczenia było poznanie podstawowych pojęć związanych z analizą harmoniczną dźwięku jako fali

Bardziej szczegółowo

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH Autor: Tomasz Kocur Podstawa programowa, III etap edukacyjny Cele kształcenia wymagania ogólne II. Przeprowadzanie doświadczeń i wyciąganie wniosków

Bardziej szczegółowo

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się

Bardziej szczegółowo

(program Coach 5 PL, konsola pomiarowa, czujniki)

(program Coach 5 PL, konsola pomiarowa, czujniki) Możliwości systemu Coach (program Coach 5 PL, konsola pomiarowa, czujniki) Cel ćwiczenia: nabycie podstawowych umiejętności w posługiwaniu się programem Coach 5 PL przy prowadzeniu pomiarów i opracowywaniu

Bardziej szczegółowo

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv. Tematy powiązane Fale poprzeczne i podłużne, długość fali, amplituda, częstotliwość, przesunięcie fazowe, interferencja, prędkość dźwięku w powietrzu, głośność, prawo Webera-Fechnera. Podstawy Jeśli fala

Bardziej szczegółowo

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych

Bardziej szczegółowo

Drgania i fale sprężyste. 1/24

Drgania i fale sprężyste. 1/24 Drgania i fale sprężyste. 1/24 Ruch drgający Każdy z tych ruchów: - Zachodzi tam i z powrotem po tym samym torze. - Powtarza się w równych odstępach czasu. 2/24 Ruch drgający W rzeczywistości: - Jest coraz

Bardziej szczegółowo

Oscylator harmoniczny i drgania tłumione

Oscylator harmoniczny i drgania tłumione Oscylator harmoniczny i drgania tłumione I. Cel ćwiczenia: pomiar siły i wychylenia ciężarka z położenia równowagi w funkcji czasu, pomiar okresu i częstotliwości drgań własnych układu, zbadanie zależności

Bardziej szczegółowo

Drgania wymuszone. Rezonans mechaniczny

Drgania wymuszone. Rezonans mechaniczny Drgania wymuszone. Rezonans mechaniczny I. Cel ćwiczenia: wyznaczanie krzywej rezonansowej i pomiar częstotliwości rezonansowej. Porównanie częstotliwości drgań własnych układu ze znalezioną doświadczalnie

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

AKUSTYKA. Matura 2007

AKUSTYKA. Matura 2007 Matura 007 AKUSTYKA Zadanie 3. Wózek (1 pkt) Wózek z nadajnikiem fal ultradźwiękowych, spoczywający w chwili t = 0, zaczyna oddalać się od nieruchomego odbiornika ruchem jednostajnie przyspieszonym. odbiornik

Bardziej szczegółowo

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość

Bardziej szczegółowo

Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II

Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II 52 FOTON 99, Zima 27 Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II Bogdan Bogacz Pracownia Technicznych Środków Nauczania Zakład Metodyki Nauczania i Metodologii Fizyki Instytut

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości

Bardziej szczegółowo

Badanie efektu Dopplera metodą fali ultradźwiękowej

Badanie efektu Dopplera metodą fali ultradźwiękowej Badanie efektu Dopplera metodą fali ultradźwiękowej Cele eksperymentu 1. Pomiar zmiany częstotliwości postrzeganej przez obserwatora w spoczynku w funkcji prędkości v źródła fali ultradźwiękowej. 2. Potwierdzenie

Bardziej szczegółowo

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe

Bardziej szczegółowo

Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie.

Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie. 6COACH 43 Fala na sprężynie Program: Coach 6 Cel ćwiczenia - Pokazanie fali podłużnej i obserwacja odbicia fali od końców sprężyny. (Pomiar prędkości i długości fali). - Rezonans. - Obserwacja fali stojącej

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

Kamerton 1. Problem 1: Dlaczego kamerton umieszczony na pudle rezonansowym słyszymy głośniej? Skąd bierze się dodatkowa energia?

Kamerton 1. Problem 1: Dlaczego kamerton umieszczony na pudle rezonansowym słyszymy głośniej? Skąd bierze się dodatkowa energia? COACH 23 Kamerton 1 Program: Coach 6 Projekt: na ZMN6F CMA Coach Projects\PTSN Coach 6\Dźwięk\ Ćwiczenia: kamerton.cma Cel ćwiczenia 1. Rola pudła rezonansowego w wytwarzaniu fal dźwiękowych i tłumieniu

Bardziej szczegółowo

Fal podłużna. Polaryzacja fali podłużnej

Fal podłużna. Polaryzacja fali podłużnej Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db - Czym jest dźwięk? wrażeniem słuchowym, spowodowanym falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne dla człowieka, zawarte są

Bardziej szczegółowo

Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy

Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy 12 00-14 00 e-mail: kamil@fizyka.umk.pl Istotne informacje 20 spotkań (40 godzin lekcyjnych) wtorki (s. 22, 08:00-10:00), środy (s.

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1 RUCH FALOWY -cd Wykład 9 2008/2009, zima 1 Energia i moc (a) dla y=y m, E k =0, E p =0 (b) dla y=0 drgający element liny uzyskuje maksymalną energię kinetyczną i potencjalną sprężystości (jest maksymalnie

Bardziej szczegółowo

LIGA klasa 2 - styczeń 2017

LIGA klasa 2 - styczeń 2017 LIGA klasa 2 - styczeń 2017 MAŁGORZATA IECUCH IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Głośność dźwięku jest zależna od

Bardziej szczegółowo

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu.

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu. Efekt Dopplera Cel ćwiczenia Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu. Wstęp Fale dźwiękowe Na czym

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

FALE DŹWIĘKOWE. fale podłużne. Acos sin

FALE DŹWIĘKOWE. fale podłużne. Acos sin ELEMENTY AKUSTYKI Fale dźwiękowe. Prędkość dźwięku. Charakter dźwięku. Wysokość, barwa i natężenie dźwięku. Poziom natężenia i głośności. Dudnienia. Zjawisko Dopplera. Fala dziobowa. Fala uderzeniowa.

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

obszary o większej wartości zaburzenia mają ciemny odcień, a

obszary o większej wartości zaburzenia mają ciemny odcień, a Co to jest fala? Falę stanowi rozchodzące się w ośrodku zaburzenie, zmiany jakiejś wielkości (powtarzające się wielokrotnie i cyklicznie zmieniające swoje wychylenie). Fala pojawia się w ośrodkach, których

Bardziej szczegółowo

1. Opis okna podstawowego programu TPrezenter.

1. Opis okna podstawowego programu TPrezenter. OPIS PROGRAMU TPREZENTER. Program TPrezenter przeznaczony jest do pełnej graficznej prezentacji danych bieżących lub archiwalnych dla systemów serii AL154. Umożliwia wygodną i dokładną analizę na monitorze

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 2 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Fale sprężyste w gazach przemieszczenie warstwy cząsteczek s( x, t) = sm cos(kx t) zmiana ciśnienia

Bardziej szczegółowo

Ćwiczenie M6 KOMPUTEROWE BADANIE FAL AKUSTYCZNYCH

Ćwiczenie M6 KOMPUTEROWE BADANIE FAL AKUSTYCZNYCH Laboratorium Podstaw Miernictwa Wiaczesław Szamow Ćwiczenie M6 KOMPUTEROWE BADANIE FAL AKUSTYCZNYCH opr. tech. Mirosław Maś Uniwersytet Przyrodniczo - Humanistyczny Siedlce 2012 1. Wstęp W ćwiczeniu bada

Bardziej szczegółowo

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII

Bardziej szczegółowo

Mapa akustyczna Torunia

Mapa akustyczna Torunia Mapa akustyczna Torunia Informacje podstawowe Mapa akustyczna Słownik terminów Kontakt Przejdź do mapy» Słownik terminów specjalistycznych Hałas Hałasem nazywamy wszystkie niepożądane, nieprzyjemne, dokuczliwe

Bardziej szczegółowo

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość dr inż. Romuald Kędzierski Czym jest dźwięk? Jest to wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku

Bardziej szczegółowo

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk Dźwięk jest to fala akustyczna rozchodząca się w ośrodku sprężystym lub wrażenie słuchowe wywołane tą falą. Fale akustyczne to fale głosowe, czyli falowe

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 1 Drgania i fale 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Drgania i fale Standard 1. Posługiwanie się wielkościami i pojęciami fizycznymi do opisywania zjawisk

Bardziej szczegółowo

Przygotowała: prof. Bożena Kostek

Przygotowała: prof. Bożena Kostek Przygotowała: prof. Bożena Kostek Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej

Bardziej szczegółowo

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne. Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład

Bardziej szczegółowo

Pomiar prędkości światła

Pomiar prędkości światła Tematy powiązane Współczynnik załamania światła, długość fali, częstotliwość, faza, modulacja, technologia heterodynowa, przenikalność elektryczna, przenikalność magnetyczna. Podstawy Będziemy modulować

Bardziej szczegółowo

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE Ćwiczenie Nr 2 Temat: WYZNACZNIE CZĘSTOŚCI DRGAŃ WIDEŁEK STROIKOWYCH METODĄ REZONANSU Warszawa 2009 1 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU ZA POMOCĄ

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych uczniów Pracownia

Bardziej szczegółowo

( F ) I. Zagadnienia. II. Zadania

( F ) I. Zagadnienia. II. Zadania ( F ) I. Zagadnienia 1. Ruch drgający i falowy. Zjawiska rezonansowe. 2. Źródła oraz detektory drgań i fal mechanicznych. 3. Ultradźwięki, dźwięki i infradźwięki. Wibracje. 4. Obiektywne i subiektywne

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 25: Interferencja fal akustycznych. Prędkość dźwięku.

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 25: Interferencja fal akustycznych. Prędkość dźwięku. Nazwisko i imię: Zespół: Data: Ćwiczenie nr 25: Interferencja fal akustycznych. Prędkość dźwięku. Cel ćwiczenia: Pomiar prędkości dźwięku w powietrzu oraz w niektórych wybranych gazach przy użyciu rury

Bardziej szczegółowo

PRZYKŁADY RUCHU HARMONICZNEGO. = kx

PRZYKŁADY RUCHU HARMONICZNEGO. = kx RUCH HARMONICZNY; FALE PRZYKŁADY RUCHU HARMONICZNEGO F d k F s k Gdowski F k Każdy ruch w którym siła starająca się przywrócić położenie równowagi jest proporcjonalna do wychylenia od stanu równowagi jest

Bardziej szczegółowo

Fale dźwiękowe wstęp. Wytworzenie fali dźwiękowej w cienkim metalowym pręcie.

Fale dźwiękowe wstęp. Wytworzenie fali dźwiękowej w cienkim metalowym pręcie. Fale dźwiękowe wstęp Falami dźwiękowymi nazywamy fale podłużne, które rozchodzą się w ośrodkach sprężystych Ludzkie ucho rozpoznaje fale dźwiękowe o częstotliwości od około 20 Hz do około 20 khz (zakres

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Energia i natężenie fali Średnia energia ruchu drgającego elementu ośrodka o masie m, objętości V

Bardziej szczegółowo

Doświadczalne wyznaczanie prędkości dźwięku w powietrzu

Doświadczalne wyznaczanie prędkości dźwięku w powietrzu Doświadczalne wyznaczanie prędkości dźwięku w powietrzu Autorzy: Kamil Ćwintal, Adam Tużnik, Klaudia Bernat, Paweł Safiański uczniowie klasy I LO w Zespole Szkół Ogólnokształcących im. Edwarda Szylki w

Bardziej szczegółowo

BADANIE FAL AKUSTYCZNYCH

BADANIE FAL AKUSTYCZNYCH ĆWICZENIE 9 BADANIE FAL AKUSTYCZNYCH Wprowadzenie. Rozchodzenie się zaburzeń elementów masy w jakimś ośrodku sprężystym nazywamy falą sprężystą. W każdym rzeczywistym ośrodku sprężystym cząsteczki powiązane

Bardziej szczegółowo

Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox

Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox 1. Uruchom program Modellus. 2. Wpisz x do okna modelu. 3. Naciśnij przycisk Interpretuj

Bardziej szczegółowo

POMIARY WIDEO W PROGRAMIE COACH 5

POMIARY WIDEO W PROGRAMIE COACH 5 POMIARY WIDEO W PROGRAMIE COACH 5 Otrzymywanie informacji o położeniu zarejestrowanych na cyfrowym filmie wideo drobin odbywa się z wykorzystaniem oprogramowania do pomiarów wideo będącego częścią oprogramowania

Bardziej szczegółowo

Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B.

Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B. Imię i nazwisko Pytanie 1/ Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i Wskaż poprawną odpowiedź Które stwierdzenie jest prawdziwe? Prędkości obu ciał są takie same Ciało

Bardziej szczegółowo

Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku.

Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. RUCH FALOWY Wyklad 9 1 Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. Rodzaje fal: mechaniczne (na wodzie, fale akustyczne) elektromagnetyczne (radiowe, mikrofale,

Bardziej szczegółowo

Ć W I C Z E N I E N R M-7

Ć W I C Z E N I E N R M-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M-7 BADANIE CZĘSTOŚCI DRGAŃ WŁASNYCH ORAZ WYZNACZANIE PRĘDKOŚCI

Bardziej szczegółowo

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Rura Kundta. Ćwiczenie wirtualne. Marcin Zaremba

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Rura Kundta. Ćwiczenie wirtualne. Marcin Zaremba Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Rura Kundta Ćwiczenie wirtualne Marcin Zaremba 2015-03-31 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

AUDIOMETRYCZNE BADANIE SŁUCHU ORAZ CECH WYPOWIADANYCH GŁOSEK

AUDIOMETRYCZNE BADANIE SŁUCHU ORAZ CECH WYPOWIADANYCH GŁOSEK AUDIOMETRYCZNE BADANIE SŁUCHU ORAZ CECH WYPOWIADANYCH GŁOSEK I. Zagadnienia 1. Wielkości Fizyczne opisują ce falę dź wię kową. 2. Powstawanie dź wię ków mowy. 3. Odbieranie dź wię ków przez narzą d słuchu.

Bardziej szczegółowo

Część I. Pomiar drgań własnych pomieszczenia

Część I. Pomiar drgań własnych pomieszczenia LABORATORIUM INśYNIERII DŹWIĘKU 2 ĆWICZENIE NR 10 Część I. Pomiar drgań własnych pomieszczenia I. Układ pomiarowy II. Zadania do wykonania 1. Obliczyć promień krytyczny pomieszczenia, przy załoŝeniu, Ŝe

Bardziej szczegółowo

2.6.3 Interferencja fal.

2.6.3 Interferencja fal. RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

(L, S) I. Zagadnienia. II. Zadania

(L, S) I. Zagadnienia. II. Zadania (L, S) I. Zagadnienia 1. Wielkości opisujące falę dźwiękową, widmo fourierowskie dźwięków. 2. Budowa i funkcje ucha wewnętrznego. 3. Percepcja dźwięków, teoria miejsca. 4. Zaburzenia słuchu, szumy. 5.

Bardziej szczegółowo

Dźwięk podstawowe wiadomości technik informatyk

Dźwięk podstawowe wiadomości technik informatyk Dźwięk podstawowe wiadomości technik informatyk I. Formaty plików opisz zalety, wady, rodzaj kompresji i twórców 1. Format WAVE. 2. Format MP3. 3. Format WMA. 4. Format MIDI. 5. Format AIFF. 6. Format

Bardziej szczegółowo

Kalibracja czujnika temperatury zestawu COACH Lab II+. Piotr Jacoń. K-5a I PRACOWNIA FIZYCZNA

Kalibracja czujnika temperatury zestawu COACH Lab II+. Piotr Jacoń. K-5a I PRACOWNIA FIZYCZNA Kalibracja czujnika temperatury zestawu COACH Lab II+. Piotr Jacoń K-5a I PRACOWNIA FIZYCZNA 21. 02. 2011 I. Cel ćwiczenia: 1. Zapoznanie się z zestawem pomiarowym Coach Lab II+. 2. Kalibracja czujnika

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU Przyjmij w zadaniach prędkość

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

SPRAWDZIAN NR 1. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe.

SPRAWDZIAN NR 1. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. SRAWDZIAN NR 1 AGNIESZKA JASTRZĘBSKA IMIĘ I NAZWISKO: KLASA: GRUA A 1. Gitara akustyczna jest instrumentem, który wydaje dźwięk po pobudzeniu struny do drgań. Oceń prawdziwość każdego zdania. Zaznacz,

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 1 Poznawanie i posługiwanie się programem Multisim 2001 Wersja

Bardziej szczegółowo

Wykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana

Wykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana Wykład 3: Jak wygląda dźwięk? Katarzyna Weron Matematyka Stosowana Fala dźwiękowa Podłużna fala rozchodząca się w ośrodku Powietrzu Wodzie Ciele stałym (słyszycie czasem sąsiadów?) Prędkość dźwięku: stal

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

Wahadło. Celem ćwiczenia jest zapoznanie się z zasadą dokonywania wideopomiarów w systemie Coach 6 oraz obserwacja modelu wahadła matematycznego.

Wahadło. Celem ćwiczenia jest zapoznanie się z zasadą dokonywania wideopomiarów w systemie Coach 6 oraz obserwacja modelu wahadła matematycznego. 6COACH38 Wahadło Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6\Wideopomiary\wahadło.cma Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Pomiar temperatury procesora komputera klasy PC, standardu ATX wykorzystanie zestawu COACH Lab II+. Piotr Jacoń K-4 I PRACOWNIA FIZYCZNA

Pomiar temperatury procesora komputera klasy PC, standardu ATX wykorzystanie zestawu COACH Lab II+. Piotr Jacoń K-4 I PRACOWNIA FIZYCZNA Pomiar temperatury procesora komputera klasy PC, standardu ATX wykorzystanie zestawu COACH Lab II+. Piotr Jacoń K-4 I PRACOWNIA FIZYCZNA 21. 02. 2011 I. Cel ćwiczenia: 1. Zapoznanie się poprzez samodzielny

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Nauka o słyszeniu Wykład IV Głośność dźwięku

Nauka o słyszeniu Wykład IV Głośność dźwięku Nauka o słyszeniu Wykład IV Głośność dźwięku Anna Preis, email: apraton@amu.edu.pl 26.10.2016 Plan wykładu - głośność Próg słyszalności Poziom ciśnienia akustycznego SPL a poziom dźwięku SPL (A) Głośność

Bardziej szczegółowo

Ćwiczenie 25. Interferencja fal akustycznych

Ćwiczenie 25. Interferencja fal akustycznych Ćwiczenie 25. Interferencja fal akustycznych Witold Zieliński Cel ćwiczenia Wyznaczenie prędkości dźwięku w gazach metodą interferencji fal akustycznych, przy użyciu rury Quinckego. Wyznaczenie wartości

Bardziej szczegółowo

Drgania i fale zadania. Zadanie 1. Zadanie 2. Zadanie 3

Drgania i fale zadania. Zadanie 1. Zadanie 2. Zadanie 3 Zadanie 1 Zadanie 2 Zadanie 3 Zadanie 4 Zapisz, w którym punkcie wahadło ma największą energię kinetyczną, a w którym największą energię potencjalną? A B C Zadanie 5 Zadanie 6 Okres drgań pewnego wahadła

Bardziej szczegółowo

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis,

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis, Nauka o słyszeniu Wykład I Dźwięk Anna Preis, email: apraton@amu.edu.pl 7. 10. 2015 Co słyszycie? Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie Natura dźwięku dwie definicje

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Ćwiczenie nr Temat ćwiczenia:. 2. 3. Imię i Nazwisko Badanie filtrów RC 4. Data wykonania Data oddania Ocena Kierunek

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 00/009 sem.. grupa II Termin: 10 III 009 Nr. ćwiczenia: 1 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta: 6 Nr. albumu: 15101

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 5 Wyznaczanie przyspieszenia grawitacyjnego g za pomocą wahadła balistycznego Kalisz, luty 2005 r. Opracował: Ryszard

Bardziej szczegółowo