LABORATORIUM Z FIZYKI
|
|
- Zofia Domańska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UN EUROPEJSKEJ w raach EUROPEJSKEGO FUNDUSZU SPOŁECZNEGO Nuer Projektu: POKL /08 NSTYTUT FZYK WYDZAŁNśYNER PROCESOWEJ, MATERAŁOWEJ FZYK STOSOWANEJ POLTECHNKA CZĘSTOCHOWSKA LABORATORUM Z FZYK Ć W C Z E N E N R W- WYZNACZANE PARAMETRÓW WAHADŁA FZYCZNEGO O ZMENNEJ GEOMETR Politechnika Częstochowska, Centru Proocji i Zastosowań Nauk Ścisłych ul. Dąbrowskiego 7 pok. 78, 4-00 Częstochowa tel./ fax , e-ail: ii@ii.pcz.pl,
2 Ćwiczenie W-: Wyznaczanie paraetrów wahadła fizycznego o ziennej geoetrii. Zagadnienia do przestudiowania. a) Siła wypadkowa i oent sił. b) Zasady dynaiki Newtona dla ruchu postępowego i obrotowego. c) Ruch haroniczny prosty. d) Wahadło fizyczne i wahadło ateatyczne. e) Moent bezwładności brył i twierdzenie Steinera. f) Moent kierujący i długość zredukowana wahadła fizycznego. g) Wyznaczanie środka asy i oentu bezwładności układów złoŝonych z brył o kształtach regularnych Wprowadzenie teoretyczne Za wahadło fizyczne oŝna uwaŝać bryłę sztywną dowolnego kształtu (np. jak na Rys. a), zawieszoną powyŝej środka asy, która oŝe wykonywać drgania okresowe wokół pozioej osi przechodzącej przez punkt zaczepienia. Wahadłe ateatyczny jest abstrakcyjny układ składający się z punktowej asy zawieszonej na nierozciągliwej nici. PrzybliŜenie fizyczny wahadła ateatycznego jest zazwyczaj kulka o asie, zawieszona na nici o długości l (Rys. b). Wahadła ateatyczne i fizyczne, w najprostszy przypadku, wykonują ruch drgający pod działanie siły cięŝkości. W zakresie ałych aplitud ruch ten oŝe być przybliŝony do ruchu haronicznego prostego. Ruche haroniczny nazyway taki ruch okresowy, w który wartość siły F, powodującej ten ruch, jest wprost proporcjonalna do wychylenia z połoŝenia równowagi, zgodnie z zaleŝnością: F = - k x () gdzie x jest wychylenie w przypadku ruchu wzdłuŝ osi X układu współrzędnych o środku w punkcie równowagi, tzn. w punkcie, w który siła F = 0, k jest współczynnikie proporcjonalności zaleŝny od rodzaju siły powodującej drgania. Znak inus uwzględnia fakt, Ŝe siła jest zwrócona przeciwnie do kierunku wychylenia. Rys. Modele wahadła: a) fizycznego, b) ateatycznego Okres drgań wahadła fizycznego dla ałych aplitud, odpowiadających przybliŝeniu ruchu haronicznego z zadowalającą dokładnością, wyraŝa się wzore:
3 Ćwiczenie W-: Wyznaczanie paraetrów wahadła fizycznego o ziennej geoetrii T = π = π () gd D gdzie: jest oente bezwładności względe osi przechodzącej przez punkt zaczepienia, jest asą wahadła, g przyspieszenie zieski, d odległością środka asy wahadła od osi obrotu. Paraetr D = gd jest nazywany oente kierujący wahadła. kg Jednostką oentu kierującego wahadła jest. s Moent bezwładności punktu aterialnego o asie, obracającego się wokół osi oddalonej od punktu o r definiujey jako; = r () JeŜeli bryłę sztywną potraktować jako zbiór n eleentów o asach i, z których kaŝdy jest odległy od osi obrotu o r i, to w pierwszy przybliŝeniu oŝna zapisać wzór na oent bezwładności bryły jako: n i ri (4) i= = Dokładniejsze określenie oentu bezwładności, przy zniejszaniu eleentów i do punktów i przejściu do ciągłego rozkładu asy oraz wynikającego stąd n, wyaga znajoości rachunku całkowego i będzie oawiane na kursowych wykładach z fizyki, ujętych w prograie studiów. Dla oentów brył o kształtach regularnych istnieją odpowiednie wzory, wyprowadzone przy uŝyciu rachunku całkowego. Przykładowo, oent bezwładności walca pełnego o asie i proieniu podstawy r, względe osi obrotu pokrywającej się z osią walca, jest określony jako: = r (5) Jeśli walec ten a długość l, to jego oent bezwładności względe osi prostopadłej do osi walca i przechodzącej przez środek asy jest równy: o = l (6) JeŜeli znay oent bezwładności bryły o asie względe osi przechodzącej przez środek asy, oznaczony jako o i chcey wyznaczyć oent bezwładności tej bryły względe innej osi obrotu, równoległej do osi przechodzącej przez środek asy, to oŝey skorzystać z twierdzenia Steinera o postaci: gdzie b jest odległością iędzy osiai obrotu. Jednostką oentu bezwładności jest kg. x = o + b, (7) Przy wyznaczaniu oentu bezwładności lub oentu kierującego wahadła fizycznego poocna jest uiejętność wyznaczania środka asy brył. Środek asy ciała to punkt, w który przyłoŝone siły zewnętrzne powodują jego ruch taki jak gdyby była w ni skupiona cała asa ciała. W przypadku ruchu obrotowego występuje pojęcie środka cięŝkości ciała. Jest to punkt, względe którego sua oentów sił cięŝkości działających na ciało jest równa zeru. Dla ciał, dla których siłę cięŝkości oŝna uznać za niezienną w całej objętości, połoŝenie środka cięŝkości pokrywa się ze środkie asy. W praktyce uŝyway tych pojęć najczęściej zaiennie, a rozróŝniać je naleŝy przy analizie oddziaływań grawitacyjnych bardzo duŝych ciał, np. w przypadku ruchu KsięŜyca w polu grawitacyjny Ziei. JeŜeli przez r s oznaczyy wektor połoŝenia środka asy względe początku kartezjańskiego układu współrzędnych, to dla brył składających się ze zbioru n as eleentarnych:
4 Ćwiczenie W-: Wyznaczanie paraetrów wahadła fizycznego o ziennej geoetrii = n i= r s n i= r gdzie: r i jest wektore połoŝenia i-tej asy eleentarnej i względe początku układu współrzędnych. i i i (8) W przypadku pojedynczych, jednorodnych brył o kształtach regularnych, środek asy pokrywa się ze środkie geoetryczny. JeŜeli układ składa się z n brył regularnych, to połoŝenie środka asy takiego układu oŝe być wyznaczone w oparciu o wzór (8) przy załoŝeniu, Ŝe i oznacza asy poszczególnych brył, a r i połoŝenia środków ich as względe początku układu odniesienia. Moent bezwładności układu ciał składającego się z brył o kształtach regularnych względe osi obrotu jest równy suie oentów bezwładności poszczególnych brył względe danej osi obrotu. Okres drgań wahadła ateatycznego, wykonującego ruch w polu grawitacyjny, wyraŝa się wzore: l T = π (9) g Wzory () i (8) wyprowadza się w oparciu o rozkład siły grawitacji, przyłoŝonej w środku asy, na dwie wzajenie prostopadłe składowe (Rys.), z których jedna, F s = gsinα, powoduje ruch drgający wahadła. Wykorzystując tę siłę w drugiej zasadzie dynaiki dla ruchu obrotowego, stosując przybliŝenie sinα α, zadowalające dla ałych kątów α oraz równanie (), oŝey otrzyać wzory na okresy drgań wahadła fizycznego i ateatycznego. Do przeprowadzenia odpowiednich działań ateatycznych wyagana jest jednak znajoość podstaw rachunku róŝniczkowego, stąd teŝ zagadnienie to zostało tutaj przedstawione w sposób opisowy, dla podkreślenia, Ŝe wzory te wywodzą się z podstawowych praw fizyki, do jakich naleŝą zasady dynaiki Newtona. Dla kaŝdego wahadła fizycznego oŝey dobrać wahadło ateatyczne o takiej długości, aby ich okresy wahań były sobie równe. Długością zredukowaną wahadła fizycznego nazyway długość jaką a wahadło ateatyczne o ty say okresie wahań co dane wahadło fizyczne. Długość zredukowaną l z obliczay porównując ze sobą prawe strony równań () i (8), w wyniku czego otrzyay: l z = D g = d Cele danego ćwiczenia jest porównanie zaleŝności okresu drgań od odległości środka asy od osi obrotu w przypadku wahadła fizycznego przedstawionego na Rys. a z zaleŝnością okresu drgań od długości wahadła ateatycznego.. Przebieg ćwiczenia Zdjąć obciąŝnik B z wahadła fizycznego. Wykonać poiary czasu 0 drgań saego pręta A.. ZałoŜyć obciąŝnik B na pręt A i zaocować w iejscu odpowiadający odległości środka asy obciąŝnika od osi obrotu x = Wykonać poiary czasu 0 drgań. 5. Powtórzyć czynności z punktu 4 dla pozostałych odległości x podanych w Tabeli 6. Wykonać po poiary czasu 0 drgań dla wahadła ateatycznego o długościach z Tabeli 7. Wyniki zapisać w tabelach poiarów. (0) 4
5 Ćwiczenie W-: Wyznaczanie paraetrów wahadła fizycznego o ziennej geoetrii V. Tabele poiarów Tabela Wyniki dla wahadła fizycznego Odległość x obciąŝnika B od Czas 0 drgań Lp. osi obrotu [] bez obciąŝnika Średni okres drgań T Odległość d środka asy od osi obrotu [] 5
6 Ćwiczenie W-: Wyznaczanie paraetrów wahadła fizycznego o ziennej geoetrii Tabela Wyniki dla wahadła ateatycznego Lp. Długość l wahadła Czas 0 drgań [] Średni okres drgań T V. Opracowanie wyników poiarów Do obliczeń przyjąć następujące dane: asa pręta p = kg, długość pręta l p = 7, odległość środka asy pręta od osi obrotu d = 0.5, asa obciąŝnika o =0.409 kg, przyspieszenie zieskie g = 9.8. s Wyliczyć teoretyczną wartość okresu drgań wahadła fizycznego bez obciąŝnika w oparciu o wzory (), (6) i (7), zakładając, Ŝe pręt jest jednorodny i a kształt walca na całej długości. Porównać okres obliczony ze zierzony.. Wyliczyć teoretyczne wartości okresu drgań wahadła ateatycznego w oparciu o wzór (9) dla l = 00 i l = 0.0 i porównać je z wartościai zierzonyi. 4. Obliczyć średnie okresy drgań dla wahadła fizycznego i ateatycznego wg. Tabeli i Tabeli 5. Wyznaczyć połoŝenia d środka asy w oparciu o wzór (8) dla odległości x obciąŝnika od osi obrotu podanych w Tabeli 6. Sporządzić na jedny układzie współrzędnych wykresy T = f(x), T = f(d) dla wahadła fizycznego i T = f(l) dla wahadła ateatycznego. 7. Z przecięcia wykresów T = f(x) i T = f(l) wyznaczyć wartość x = l z odpowiadającą długości wahadła ateatycznego o okresie T z równy okresowi wahadła fizycznego. 8. Z wykresu T = f(d) dla wahadła fizycznego odczytać wartość d z odpowiadającą okresowi T z.oraz wartość d, dla którego okres drgań T osiąga wartość inialną. 6
7 Ćwiczenie W-: Wyznaczanie paraetrów wahadła fizycznego o ziennej geoetrii 9. W oparciu o wzór (0) obliczyć oent bezwładności z, charakterystyczny dla długości zredukowanej danego wahadła fizycznego o geoetrii odpowiadającej zaleŝności x = l z oraz oent odpowiadający inialnej wartości okresu drgań T, z przekształcenia wzoru (). V. Rachunek błędów Obliczyć błędy poiaru okresu drgań T dla kaŝdego z połoŝeń obciąŝnika wahadła fizycznego i dla kaŝdej z długości wahadła ateatycznego poprzez wyliczenie średniej wartości T śr z poiarów i przyjęcie za T aksyalną odchyłkę pojedynczego poiaru od wartości średniej: T = sup T i - T śr i =,, Nanieść błędy na wykresy T = f(x), T = f(l) i T = f(d) przyjując x = l = d = ±0 -.. Obliczyć błąd bezwzględny oentu bezwładności z w oparciu o wzór: z = d z l z + l z d z + d z l z gdzie = ±0 - kg, d z = l z = ± Obliczyć błąd bezwzględny oentu bezwładności w oparciu o wzór: = 4π ( T gd T+ T g d + T g d ) gdzie d = ±0 -, T jest średnią z wartości wyliczonych w punkcie dla wahadła fizycznego. a. Obliczyć błędy względne δ z = z 00% i δ = z 00% V. Dyskusja błędów i wyników Przedyskutować oŝliwe przyczyny róŝnic poiędzy teoretycznyi i doświadczalnyi wartościai okresów drgań. Przedyskutować przebieg zaleŝności T = f(d) dla wahadła fizycznego i T = f(l) dla wahadła ateatycznego. V. Literatura D. Halliday, R. Resnick, J. Walker; Podstawy fizyki, t., PWN Warszawa Sz. Szczeniowski; Fizyka doswiadczalna, cz., PWN Warszawa. C. Kittel, W.D. Knight, M.A.Ruderan; Mechanika, PWN Warszawa 7
Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego
POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC
Bardziej szczegółowoLABORATORIUM Z FIZYKI
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
Bardziej szczegółowogdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )
RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:
Bardziej szczegółowoĆwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Bardziej szczegółowoNazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Bardziej szczegółowoĆ W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
Bardziej szczegółowoFIZYKA R.Resnick & D. Halliday
FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela
Bardziej szczegółowoMechanika ogólna II Kinematyka i dynamika
Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,
Bardziej szczegółowoPaństwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest
Bardziej szczegółowoWyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Bardziej szczegółowoPF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
Bardziej szczegółowoWyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana
Bardziej szczegółowoĆw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Bardziej szczegółowoWyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
Bardziej szczegółowoWyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
Bardziej szczegółowoWYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE
ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie
Bardziej szczegółowoOpis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Bardziej szczegółowo1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8.
DYNAMIKA BRYŁY SZTYWNEJ Środek asy. Z pręta o stały przekroju poprzeczny i długości odcięto 5 c kawałek. O ile przesunęło się połoŝenie środka asy pręta. o 8 początkowej długości pręta. Trzy kule o asach:,
Bardziej szczegółowoO 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Bardziej szczegółowo2. OPIS ZAGADNIENIA Na podstawie literatury podręczniki akademickie, poz. [2] zapoznać się z zagadnieniem i wyprowadzeniami wzorów.
Zad. M 04 Temat: PRACOWA FZYCZA nstytut Fizyki US Wyznaczanie momentu bezwładności brył metodą wahadła fizycznego. Doświadczalne potwierdzenie twierdzenia Steinera. Cel: zapoznanie się z ruchem drgającym
Bardziej szczegółowoĆwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu
Bardziej szczegółowoM2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Bardziej szczegółowoĆw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Bardziej szczegółowoĆ W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoDRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Bardziej szczegółowoĆWICZENIE 5. Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego. Kraków,
Maria Nowotny-Różańska Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 5 Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego Kraków, 03.015 Spis treści:
Bardziej szczegółowoMOMENTY BEZWŁADNOŚCI, RÓWNANIE KRĘTU I ENERGIA KINETYCZNA CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynaiki Maszyn Politechniki Łódzkiej MOMENTY BEZWŁADNOŚCI, RÓWNANIE KRĘTU I ENERGIA KINETYCZNA CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Praca wprowadza oenty bezwładności ciała
Bardziej szczegółowoLista 2 + Rozwiązania BLiW - niestacjonarne
Dynaika 1. Oblicz wartość siły, z jaką siłacz usiałby działać na cięŝar o asie 100 kg, jeŝeli chciałby podnieść go na wysokość 0,5 w czasie 1 sekundy ruche jednostajnie przyspieszony. ( g Q + b g + a a
Bardziej szczegółowoDrgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie
Bardziej szczegółowoBryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoRys. 1Stanowisko pomiarowe
ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
Bardziej szczegółowoTMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów manipulatorów
aboratoriu Teorii Mechanizów TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów anipulatorów Cele ćwiczenia jest doświadczalne wyznaczanie współrzędnych tensorów bezwładności członów anipulatora
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Bardziej szczegółowoT =2 I Mgd, Md 2, I = I o
Kazimierz Pater, Nr indeksu: 999999 Wydział: Podstawowych Problemów Fizyki Kierunek: Fizyka Data: 99.99.9999 Temat: Wyznaczanie momentu bezwładności bryły sztywnej i sprawdzenie tw. Steinera Nr kat. ćwicz:
Bardziej szczegółowoMECHANIKA PŁYNÓW LABORATORIUM
MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 7 Waga hydrostatyczna, wypór. Cele ćwiczenia jest wyznaczenie gęstości ciał stałych za poocą wagi hydrostatycznej i porównanie tej etody z etodai, w których ierzona
Bardziej szczegółowoZasada zachowania pędu
Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać
Bardziej szczegółowoFizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności.
Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Przygotowane częściowo na podstawie materiałów z roku akademickiego 2007/8. Literatura (wspólna dla wszystkich
Bardziej szczegółowoWyznaczanie e/m za pomocą podłużnego pola magnetycznego
- 1 - Wyznaczanie e/ za poocą podłużnego pola agnetycznego Zagadnienia: 1. Ruch cząstek naładowanych w polu elektryczny i agnetyczny.. Budowa i zasada działania lapy oscyloskopowej. 3. Wyprowadzenie wzoru
Bardziej szczegółowoD103. Wahadła fizyczne sprzężone (przybliżenie małego kąta).
D3. Wahadła fizyczne sprzężone (przybliżenie małego kąta). Cel: Zbadanie przebiegu drgań dwóch wahadeł sprzężonych: zbadanie zależności częstości drgań wahadła prostego od jego momentu bezwładności, wyznaczenie
Bardziej szczegółowogdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności.
RUCH DRGJĄCY Ruche drgający (drganiai) nazywa się każdy ruch, który charakteryzuje powtarzalność w czasie wielkości fizycznych (np wychylenia) określających ten ruch Występujące w przyrodzie drgania ożna
Bardziej szczegółowoBadanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego
Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie
Bardziej szczegółowoMECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Bardziej szczegółowoFizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii
Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka
Bardziej szczegółowoĆwiczenie nr 1: Wahadło fizyczne
Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel
Bardziej szczegółowoFizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014
Program Wykładu Fizyka Wydział Zarządzania i Ekonomii Rok akademicki 2013/2014 Mechanika Kinematyka i dynamika punktu materialnego Zasady zachowania energii, pędu i momentu pędu Podstawowe własności pola
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Bardziej szczegółowoWyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
Bardziej szczegółowoPaństwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 3 Wyznaczanie modułu sztywności metodą dynamiczną Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski Doświadczenie
Bardziej szczegółowoWYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH
WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:
Bardziej szczegółowoMateriały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 21
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Analiza płaskiego dowolnego układu sił Dr hab. inż. Krzysztof
Bardziej szczegółowoIII Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?
III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał
Bardziej szczegółowo10 K A T E D R A FIZYKI STOSOWANEJ
10 K A T E D R A FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 10. Wyznaczanie momentu bezwładności brył nieregularnych Wprowadzenie Obserwowane w przyrodzie ruchy ciał można opisać * stosując podział
Bardziej szczegółowoPaństwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 5 Wyznaczanie przyspieszenia grawitacyjnego g za pomocą wahadła balistycznego Kalisz, luty 2005 r. Opracował: Ryszard
Bardziej szczegółowoRuch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Bardziej szczegółowoε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ
WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz
Bardziej szczegółowoO ciężarkach na bloczku z uwzględnieniem masy nici
46 FOTON 3, ato O ciężarkach na bloczku z uwzględnienie asy nici Mariusz Tarnopolski Student fizyki IF UJ Rozważy klasyczne zadanie szkolne z dwoa ciężarkai zawieszonyi na nici przerzuconej przez bloczek,
Bardziej szczegółowoLaboratorium Fizyki I Płd. Bogna Frejlak DRGANIA PROSTE HARMONICZNE: WAHADŁO REWERSYJNE I TORSYJNE
Politechnika Warszawska Wydział Fizyki aboratorium Fizyki P Bogna Politechnika Frejlak Warszawska Wydział Fizyki aboratorium Fizyki Płd Bogna Frejlak RGANA PROSE HARMONCZNE: WAHAŁO REWERSYJNE ORSYJNE RGANA
Bardziej szczegółowoRówna Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Bardziej szczegółowoPRZYRZĄD DO WPROWADZENIA POJĘCIA MOMENTU OBROTU I PARY SIŁ
PRZYRZĄD DO WPROWADZENIA POJĘCIA MOMENTU OBROTU I PARY SIŁ (V 6 60) Za pomocą kompletu, w skład którego wchodzi dźwignia, 5 małych bloczków z uchwytami dostosowanymi do prętów statywowych, 6 linek z haczykami
Bardziej szczegółowoWYZNACZANIE OGNISKOWYCH SOCZEWEK
WYZNACZANIE OGNISKOWYCH SOCZEWEK Cel ćwiczenia:. Wyznaczenie ogniskowej cienkiej soczewki skupiającej.. Wyznaczenie ogniskowej cienkiej soczewki rozpraszającej (za pomocą wcześniej wyznaczonej ogniskowej
Bardziej szczegółowoMECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Bardziej szczegółowoLABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
Bardziej szczegółowoWyznaczanie modułu sprężystości za pomocą wahadła torsyjnego
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoMechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Bardziej szczegółowoZasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Bardziej szczegółowoWyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Bardziej szczegółowoZasada prac przygotowanych
1 Ćwiczenie 20 Zasada prac przygotowanych 20.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z praktycznym zastosowaniem zasady prac przygotowanych przy rozpatrywaniu równowagi układu o dwóch stopniach
Bardziej szczegółowoMECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Bardziej szczegółowoLABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowo1. Kinematyka 8 godzin
Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak
Bardziej szczegółowoR o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to
Bardziej szczegółowoPIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BADANIE MIKROFAL opracowanie: Marcin Dębski, I. Gorczyńska
PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BAANIE MIKROFAL opracowanie: Marcin ębski, I. Gorczyńska 1. Przediot zadania: fale elektroagnetyczne. 2. Cel zadania: badanie praw rządzących propagacją fali
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE. Fizyka I. Logistyka inżynierska. niestacjonarne. I stopnia. Instytut Fizyki, WIPiTM. Dr Joanna Gondro.
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Bardziej szczegółowoPROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Bardziej szczegółowoRuch harmoniczny wózek na linii powietrznej
COACH 11 Ruch haroniczny wózek na linii powietrznej Progra: Coach 6 Projekt: na ZMN060C CMA Coach Projects\PTSN Coach 6\ Drgania haroniczne Ćwiczenia: ruch haroniczny.ca, Model.ca, Model1.ca Teaty: 1.
Bardziej szczegółowo1. Wahadło fizyczne o regulowanej płaszczyźnie. drgań. kilkukrotnie sprawdzając z jaką niepewnością statystyczną możemy mieć do czynienia. pomiarze.
. Wahadło fizyczne o regulowanej płaszczyźnie drgań.. Cel ćwiczenia Cel ćwiczenia: Analiza drgań harmonicznych na przykładzie wahadła fizycznego. Sprawdzenie relacji między okresem drgań obliczonym a okresem
Bardziej szczegółowoWYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Bardziej szczegółowoBADANIA CHARAKTERYSTYK STATYCZNYCH WIBROIZOLATORÓW
ĆWICZEIA LABORATORYJE Z WIBROIZOLACJI: BADAIA CHARAKTERYSTYK STATYCZYCH WIBROIZOLATORÓW 1. WSTĘP Stanowisko laboratoryjne znajduje się w poieszczeniu hali technologicznej w budynku C-6 Politechniki Wrocławskiej.
Bardziej szczegółowoBADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
Bardziej szczegółowoPODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (POWYM)
PODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (POWYM) Automatyka i Robotyka Sem. 3 Dr inŝ. Anna DĄBROWSKA-TKACZYK (4,, 8, 5) X; (8, 3,, 9) XI; (6, 3, 0), XII; (3, 0, 7, 4) I 3 XI (wtorek) zamiast 5 XI (czwartek) Dzień
Bardziej szczegółowoZasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Bardziej szczegółowo12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość
Bardziej szczegółowoWyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
Bardziej szczegółowoZasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
Bardziej szczegółowoMechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Bardziej szczegółowoZadanie domowe z drgań harmonicznych - rozwiązanie trzech wybranych zadań
- rozwiązanie trzech wybranych zadań Ireneusz Mańkowski I LO im. Stefana Żeromskiego w Lęborku ul. Dygasińskiego 14 28 kwietnia 2016 Wybrane zadania domowe 1 Zadanie 5.4.4 Rozwiązanie zadania 5.4.4 2 Zadanie
Bardziej szczegółowopodać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.
PLAN WYNIKOWY FIZYKA - KLASA TRZECIA TECHNIKUM 1. Ruch postępowy i obrotowy bryły sztywnej Lp. Temat lekcji Treści podstawowe 1 Iloczyn wektorowy dwóch wektorów podać przykład wielkości fizycznej, która
Bardziej szczegółowoMetody numeryczne. materiały do ćwiczeń dla studentów. 1. Teoria błędów, notacja O
Metody nueryczne ateriały do ćwiczeń dla studentów 1. Teoria błędów, notacja O 1.1. Błąd bezwzględny, błąd względny 1.2. Ogólna postać błędu 1.3. Proble odwrotny teorii błędów - zasada równego wpływu -
Bardziej szczegółowoMECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
Bardziej szczegółowoWYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWE WYDZAŁ LABORAORUM FZYCZNE Ćwiczenie Nr 1 emat: WYZNACZNE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Warszawa 9 WYZNACZANE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
Bardziej szczegółowoPodstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy
Bardziej szczegółowo