Logika rozmyta. Agnieszka Nowak - Brzezińska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Logika rozmyta. Agnieszka Nowak - Brzezińska"

Transkrypt

1 Logika rozmyta Agnieszka Nowak - Brzezińska

2

3 Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information Control 8, , 1965). Tak naprawdę, historia myśli, która doprowadziła do stworzenia tej teorii jest jednak znacznie dłuższa i warto przedstawić chociaż dwa fakty z tym związane. Pierwszych prób wyjścia poza dwuwartościową logikę można doszukać się już u Platona stwierdzającego, że istnieje jakiś dodatkowy obszar pomiędzy prawdą i fałszem. W początkowych latach XX wieku, polski uczony - Jan Łukasiewicz zaproponował system logiki trójwartościowej stanowiącej bazę dla logiki rozmytej.

4 Na systemy rozmyte składają się te techniki i metody, które służą do obrazowania informacji nieprecyzyjnych, nieokreślonych bądź niekonkretnych. Pozwalają one opisywać zjawiska o charakterze wieloznacznym, których nie jest w stanie ująć teoria klasyczna i logika dwuwartościowa. Charakteryzują się tym, że wiedza jest przetwarzana w postaci symbolicznej i zapisywana w postaci rozmytych reguł. Systemy rozmyte znajdują zastosowanie tam, gdzie nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie odtworzenie tegoż modelu staje się nieopłacalne lub nawet niemożliwe. Tak więc możemy je spotkać w bazach danych, sterowaniu oraz dziedzinach zajmujących się przetwarzaniem języka naturalnego.

5 Zastosowanie logiki rozmytej (Fuzzy- Logic) Logika rozmyta jest stosowana wszędzie tam, gdzie użycie klasycznej logiki stwarza problem ze względu na trudność w zapisie matematycznym procesu lub gdy wyliczenie lub pobranie zmiennych potrzebnych do rozwiązania problemu jest niemożliwe. Ma szerokie zastosowanie w różnego rodzaju sterownikach. Sterowniki te mogą pracować w urządzeniach tak pospolitych jak lodówki czy pralki, jak również mogą być wykorzystywane do bardziej złożonych zagadnień jak przetwarzanie obrazu, rozwiązywanie problemu korków ulicznych czy unikanie kolizji. Sterowniki wykorzystujące logikę rozmytą są również używane na przykład w połączeniu z sieciami neuronowymi.

6 Przykłady zastosowań: Intensywny rozwój logiki rozmytej na całym świecie daje się zauważyć zwłaszcza na początku lat dziewięćdziesiątych. Logika rozmyta znajduje bardzo szerokie i różnorodne zastosowania zarówno w elektronice, systemach sterowania jak i w medycynie czy w różnych gałęziach przemysłu. Poniżej wymienione są niektóre aplikacje obrazujące możliwości wykorzystania logiki rozmytej: układy sterowania rozrusznika serca układ sterowania samochodu bojler wodny reaktory i urządzenia chemiczne urządzenia chłodnicze urządzenia klimatyzacyjne i wentylacyjne urządzenia do spalania śmieci piec do wytopu szkła układ sterowania ciśnienia krwi urządzenia diagnostyki nowotworowej system ostrzegawczy chorób serca układ sterowania suwnicą lub dźwigiem stacja pomp przetwarzanie obrazów urządzenia szybkiego ładowania akumulatorów rozpoznawanie słów terapia diabetyczna, sterowanie poziomu cukru we krwi układ energetyczny urządzenia do obróbki metali sterowanie bioprocesorów urządzenia grzewcze sterowanie silników elektrycznych urządzenia i procesy spawalnicze sterowanie ruchu biomedycyna urządzenia do czyszczenia pomieszczeń urządzenia do odszlamiania urządzenia do oczyszczania wody układy autopilotów samolotów i okrętów

7 Przykłady c.d. ABS i tempomaty do samochodów (np. Tokio monorail) Klimatyzatory Foto Cyfrowe przetwarzanie obrazu, takie jak wykrywanie krawędzi Zmywarki Windy Pralki i inne AGD Dźwigi maszynki do golenia Kamery

8 W mieście Sendai w Japonii, metro jest sterowane przez rozmyty komputer (Hitachi) - jazda jest tak gładka, że jadący nie muszą posiadać pasów Nissan - rozmyta automatyczna skrzynia biegów, rozmyty antypoślizgowy układ hamulcowy CSK, Hitachi rozpoznawanie pisma ręcznego Sony rozpoznawanie znaków drukowanych Ricoh, Hitachi - Rozpoznawanie głosu

9 Pralki / zmywarki Logika rozmyta to już prawie standardowy element do sprawdzenia obciążenia wagi, czujników brudu i automatycznego ustawiania w kontekście wykorzystania energii, wody i detergentów. Samsung, Toshiba itp. Haier ESL-T21 Miele WT945 Pralka / Suszarka AEG LL1610 Zanussi ZWF1430W

10 Logika klasyczna = 4 Dzień lub noc Tak lub nie 0 lub 1 Białe lub czarne Zdrowy lub chory Zdać egzamin lub nie zdać egzaminu

11 Zbiór i przynależność do niego

12 Zbiór i przynależność do niego

13

14

15 Logika rozmyta Nie zawsze da się jednoznacznie ustalić granicę między danymi spełniającymi pewne kryterium a danymi, które tego kryterium nie spełniają. Dzięki wprowadzeniu funkcji przynależności zbiory rozmyte pozwalają na określanie stopnia przynależności elementu do zbioru bądź klasy.

16

17 Zmienna lingwistyczna

18

19 Przykład wartości lingwistycznych {niski, średni, wysoki} charakteryzujący zmienną lingwistyczną ph kąpieli topnikującej w interpretacji logiki klasycznej i rozmytej.

20 Zbiór rozmyty - definicja Zbiorem rozmytym nazwiemy zbiór elementów, które w różnym stopniu do niego należą. Zbiór rozmyty A w niepustej przestrzeni X, A X opisywany przez zbiór par: gdzie A {( X, ( X )) : x X} A ( x); x A [0,1] Jest funkcją przynależności zbioru rozmytego A

21 Funkcja przynależności A Funkcja ta każdemu elementowi x X przypisuje jego stopień przynależności do zbioru rozmytego A, przy czym można wyróżnić 3 przypadki: A (x)=1 pełna przynależność do zbioru rozmytego A, A (x)=0 element x nie należy do zbioru rozmytego A, : X [0,1] 0< A (x)<1 element x częściowo należy do zbioru rozmytego A.

22 Symboliczny zapis zbioru rozmytego wyrażany jest w postaci: Gdy X jest przestrzenią o skończonej liczbie elementów X = {x 1,..,x n } A n A( x ) A( xn) A( x... x x x 1 1 ) Lub gdy X jest przestrzenia o nieskończonej liczbie elementów. A x n A x i 1 ( x)

23

24 Podstawowe pojęcia związane ze zbiorami rozmytymi Zbiory rozmyte (przykładowo A i B) są równe wtedy i tylko wtedy, gdy Zbiór rozmyty A jest podzbiorem zbioru rozmytego B (A B) wtedy i tylko wtedy, gdy: Nośnikiem (ang.support) zbioru rozmytego A nazywamy klasyczny zbiór złożony z obiektów, dla których funkcja przynależności jest dodatnia: Rdzeniem (ang. core) jest zbiór składający się z elementów, dla których funkcja przynależności jest równa 1: Core (A) = {x X } Każdy zbiór rozmyty jest jednoznacznie opisany przez swoją funkcję przynależności.

25 Typowe funkcje przynależności 1. Trójkątna 2. Trapezowa 3. Gaussowska 4. Uogólniona dzwonowa 5. Sigmoidalna 6. Rozmyty singleton 7. Funkcja typu S 8. Funkcja typu Z 9. Funkcja typu

26 Trójkątna funkcja przynależności

27 Trapezowa funkcja przynależności

28 Sinusoidalna funkcja przynależności

29

30

31 Operacje na zbiorach rozmytych Musimy być w stanie działać na zbiorach rozmytych i umieć opisywać ich przecięcie, sumę, dopełnienia itp. Wszystko po to, abyśmy mogli użyć złożonych opisów lingwistycznych w sposób matematyczny. Np.. pacjent, który jest chory i radosny, należy do zbioru osób chorych ale również do zbioru osób radosnych. chory radosny pacjent powinien zatem należeć do zbioru chorych radosnych osób, który jest przecięciem tych zbiorów.

32 Operacje na zbiorach rozmytych

33 Operacje na zbiorach rozmytych

34 Suma zbiorów rozmytych A i B jest zbiorem rozmytym C = A B o funkcji przynależności m C ( ), ( ) ( x) max m x m x A B dla x X Przecięcie (iloczyn) dwóch zbiorów rozmytych A i B jest zbiorem rozmytym C = A B o funkcji przynależności m C ( ), ( ) ( x) min m x m x A B

35

36

37 Logika dwuwartościowa vs. wielowartościowa

38

39 Zbiór osób NIE średnich A NOT średnie NOT średnie to znaczy, że niskie OR wysokie

40 Czy x jest osobą NIE średniego wzrostu? Mierzymy wartość funkcji przynależności obiektu x do zbioru A oznaczającego grupę osób o wzroście nie średnim. niskie średnie wysokie ( x) ( x) ( x) NOT ( x) 1 średnie ( x) NOT średnie średnie Zresztą to samo uzyskamy badając dopełnienie tego zbioru osób: ( x) ( x) ( x) niskie wysokie 1 jako wartość funkcji NOT średnie dla naszej osoby x oznacza, że: Osoba x na pewno nie jest wzrostu średniego, co jest oczywiście prawdą.

41 Chory radosny pacjent µ chory (x) = 0.8 µ radosny (x) = 0.9 Wtedy wartość funkcji przynależności byłaby: choryandradosny ( pacjent ) min chory ( pacjent ), radosny ( pacjent ) min 0.8,

42 Pacjent który nie jest chory To dopełnienie do zbioru pacjentów chorych, a więc 1 µ chory (pacjent)=1 0.8 = 0.2

43 Bardzo, mniej więcej, trochę Gdy stopniujemy zmienne lingwistyczne dodając słowa: bardzo, w jakiś sposób, mniej, bardziej, mniej lub więcej, przez co powstają określenia: bardzo wysoki, nie krótki, blisko średniej musimy użyć odpowiedniego ich przewartościowania na wartości numeryczne:

44

45

46 Stopniowanie rozmywania pojęć Pacjent może być bardzo stary. Jeśli tak jest to zastosowanie tego słowa do opisu rozmytego intuicyjnie powinno dawać odpowiedni efekt wzmacniający dla funkcji przynależności. A 0 ( x) 25 (1 ) 1 ( x 50) gdy gdy x x 50 50

47 A 0 ( x) 25 (1 ) 1 ( x 50) gdy gdy x x Jeśli jako A* określimy zbiór bardzo stary, to ten nowy zbiór można zdefiniować jako: A ( x) ( ( x)) * A 2 x X

48 Degree of Membership Short Average Short Tall Very Short Very Tall Tall Height, cm

49

50

51

52

53 Schemat wnioskowania

54

55 Wnioskowanie rozmyte słowo wstępu Zmienna lingwistyczna dla zmiennej temperatura jak widzimy może przyjąć różną wartości: gorąco, umiarkowanie, zimno. Rozmyte określanie zmiennych Każda rozmyta zmienna może być atomowa bądź złożona. "Temperature is hot" jest zmienną rozmytą atomową. "Temperature is hot and humidity is low" jest złożoną zmienną rozmytą. Zmienne złożone wyraża się za pomocą operatorów logicznych dla zbiorów: sumy, iloczynu bądź dopełnienia. Syntaktyka reguł: Reguły rozmyte zapisujemy następująco: IF <fuzzy proposition> THEN <fuzzy proposition>

56 Schemat wnioskowania Rozmywanie (fuzyfikacja) - operacja przekształcająca sygnały wejściowe z dziedziny ilościowej na wielkości jakościowe reprezentowane przez zbiory rozmyte na podstawie określających je funkcji przynależności. Wnioskowanie rozmyte - operacja wyznaczania w dziedzinie jakościowej wartości wyjść na podstawie wejść za pomocą zbioru reguł rozmytych. Baza reguł - reprezentuje wiedzę jakościową o systemie w postaci zbioru reguł rozmytych w postaci wyrażeń jeśli-to. W przypadku układu MISO mają one postać: Wyostrzanie (defuzyfikacja) - operacja przekształcająca sygnały wyjściowe systemu z dziedziny jakościowej na ilościową.

57 Proces wnioskowania Jako regułę wnioskowania dla sterowników rozmytych stosuje sie rozmytą regułę modus ponens. Reguła ta wygląda następująco: Przesłanka: x jest A Implikacja: If x jest A THEN y jest B Wniosek: y jest B Załóżmy, że mamy regułę Jeśli prędkość samochodu jest duża, to poziom hałasu jest wysoki. Niech teraz przesłanka mówi: Prędkość samochodu jest średnia. Sterownik powinien na podstawie tego wywnioskować, że: Poziom hałasu jest średnio wysoki.

58 Przykład: wentylator powietrza Na podstawie temperatury pokoju ustalana jest odpowiednio siła działania wentylatora powietrza (czy ma on chłodzić czy nagrzewać i w jakim stopniu). Normalny kontroler ciepła działa tak, że jeśli ustawimy, że ma grzać dopiero od temp 78 stopni, to grzejnik aktywuje się dopiero wówczas, gdy temperatura będzie mniejsza bądź równa 75 stopni. Kiedy temp będzie wyższa niż 81 stopni grzejnik się wyłączy.

59 Rozmyty termostat pracuje w odcieniach szarości, gdzie temperatura jest traktowana jako seria zachodzących na siebie zakresów. Na przykład, temperatura 78 stopni to w 60% ciepło i w 20% gorąco. Sterownik działa w oparciu o reguły: if-then. Dzięki temu, gdy zmienia się temperatura prędkość wentylatora się zmienia i dostosowuje do żądanej do utrzymania temperatury.

60 Reguły wnioskowania IF temperature IS cold THEN fan_speed IS high IF temperature IS cool THEN fan_speed IS medium IF temperature IS warm THEN fan_speed IS low IF temperature IS hot THEN fan_speed IS zero

61 Działanie rozmytego wentylatora Pobrana jest wejściowa dana: temperatura. W procesie rozmywania zostaje obliczona wartość rozmyta danego parametru, następuje ewaluacja reguły gdzie rozmyta wartość wyjścia jest obliczana. W procesie defuzyfikacji rozmyta wartość wyjścia jest z powrotem przeliczana na wartość w języku naturalnym. 1. W procesie rozmywania wartość temperatury równa 78oF na wejściu jest tłumaczona na wartość rozmytą ciepło jako 0.6 (czy 60%) i gorącą jako 0.2 (lub 20%). 2. W procesie ewaluacji reguły wejściowy zbiór reguł jest analizowany i pewne reguły zostają uaktywnione. Dla temp. 78 F tylko ostatnie 2 reguły zostaną uaktywnione. Uaktywniając regułę 3: fan_speed będzie niskie z wartością 0.6. Stosując regułę 4: fan_speed będzie równe 0 z wartością W procesie defuzyfikacji wartość niska równa 60% i zerowa równa 20% zostają połączone za pomocą metody środka ciężkości (ang. Center of Gravity (COG)) i zostaje obliczona wartość 13.5 RPM dla zmiennej fan speed.

62 Krok 1: Fuzzyfikacja

63 Krok 2: Ustalenie konkluzji dla każdej reguły

64 Krok 3: Agregacja konkluzji

65 Krok 4: Defuzzyfikacja

66

67 Metoda Mamdani E.H. Mamdani zaproponował następującą metodę wnioskowania: Operacja minimum przy łącznikach AND w przesłankach reguł oraz jako koniunkcyjną interpretację tych reguł Operacja maksimum jako operator agregacji wyników wnioskowania uzyskanych na podstawie pojedynczych reguł Metoda środka ciężkości do wyostrzenia wynikowego zbioru rozmytego

68 Defuzyfikacja - wyostrzanie Logika rozmyta sprawia, że w procesie rozmywania każda reguła zostaje opatrzona pewną rozmytą wartością i musi potem być powtórnie konwertowana na wartość rzeczywistą. Przed procesem wyostrzania wszystkie rozmyte wartości wyjściowe są zsumowane za pomocą funkcji max ze zbioru wartości funkcji przynależności:

69 Metoda środka maksimum Metoda SM (środka maksimum) jest prosta obliczeniowo, ale uwzględnia tylko wpływ najbardziej zaktywizowanego zbioru i jest mało czuła na zmiany stopnia aktywizacji:

70 Metoda PM (pierwszego maksimum) Metoda PM (pierwszego maksimum) przy takim samym stopniu skomplikowania obliczeń jak w SM daje większą czułość na zmiany stopnia aktywizacji:

71 Metoda OM (ostatniego maksimum) Metoda OM (ostatniego maksimum) ma podobne wady i zalety jak PM, przy czym dodatkowo można zauważyć pewną nieprawidłowość. Rozpatrzmy rysunek poniżej. Przy zmniejszaniu aktywizacji zbioru A3 wartość ostra powinna zbliżać się do A2, tymczasem oddala się:

72 METODA ŚRODKA CIĘŻKOŚCI (SC) Wynikiem jest środek ciężkości figury ograniczonej wykresem funkcji przynależności i osią. W defuzyfikacji biorą więc udział wszystkie aktywne reguły, ale wymaga to dużego nakładu obliczeniowego. Ponadto następuje zawężenie zakresu defuzyfikacji, metoda jest nieczuła na aktywizację tylko jednej funkcji przynależności. u 0 U U u u udu du

73 Przykład wnioskowania rozmytego

74

75 Wiek kierowcy 1,2 1 0,8 0,6 0,4 mlody sredni stary 0,

76 Wiek kierowcy μ młody (x) = { 0 x 20 1 x < x < 25 x μ średni (x) = { 0 x 30 lub x < x < 40 x x < x < 50 μ stary (x) = { 0 x 40 1 x < x < 50 x ,2 1 0,8 0,6 0,4 0,2 mlody sredni stary

77 Moc samochodu 1,2 1 0,8 0,6 0,4 0,2 mala srednia duża

78 Moc samochodu μ mała (x) = { 0 x 70 1 x < x < 120 x μ średnia (x) = { 0 x 70 lub x < x < 120 x x < x < 170 1,2 1 μ duża (x) = { 0 x x < x < 170 x ,8 0,6 0,4 0,2 mala srednia duża

79 Ryzyko ubezpieczeniowe 1,2 1 0,8 0,6 0,4 0, niskie średnioniskie średnie średniowysokie wysokie

80 Ryzyko ubezpieczeniowe μ niskie (x) = { 1 x 5 0 x 10 5 < x < 10 x μ śr_niskie (x) = { μ średnie (x) = { 0 x 5 lub x 15 x x < x < < x < 15 0 x 10 lub x < x < 15 x x μ śr_wysokie (x) = { μ wysokie (x) = { 15 < x < 20 0 x 15 lub x 25 x x < x < < x < 25 0 x 20 1 x < x < 25 x ,2 1 0,8 0,6 0,4 0, niskie średnioniskie średnie średniowysokie wysokie

81 Szukamy reguł do uaktywnienia

82 Szukamy reguł do uaktywnienia μ ryzyko=wysokie (wiek =33,moc samochodu=160) = min μ młody 33, μ duża 160 = min 0.7,0.8 = 0.7 μ ryzyko=śr_wysokie (wiek =33,moc samochodu=160) = min μ młody 33, μ średnia 160 = min 0.7,0.2 = 0.2 μ ryzyko=śr_wysokie (wiek =33,moc samochodu=160) = min μ średni 33, μ duża 160 = min 0.3,0.8 = 0.3 μ ryzyko=średnie (wiek =33,moc samochodu=160) = min μ średni 33, μ średnia 160 = min 0.3,0.2 = 0.2 Operacja minimum przy łącznikach AND w przesłankach reguł oraz jako koniunkcyjną interpretację tych reguł

83 Agregujemy decyzje reguł μ ryzyko=wysokie (wiek =33,moc samochodu=160) = min μ młody 33, μ duża 160 = min 0.7,0.8 = 0.7 μ ryzyko=śr_wysokie (wiek =33,moc samochodu=160) = min μ młody 33, μ średnia 160 = min 0.7,0.2 = 0.2 μ ryzyko=śr_wysokie (wiek =33,moc samochodu=160) = min μ średni 33, μ duża 160 = min 0.3,0.8 = 0.3 μ ryzyko=średnie (wiek =33,moc samochodu=160) = min μ średni 33, μ średnia 160 = min 0.3,0.2 = 0.2 Operacja maksimum jako operator agregacji wyników wnioskowania uzyskanych na podstawie pojedynczych reguł

84 Agregujemy decyzje reguł Gdy kilka reguł dostarcza różnych wartości decyzji agregujemy decyzje metodą MAX: μ ryzyko=śr_wysokie (wiek =33,moc samochodu=160) = min μ młody 33, μ średnia 160 = min 0.7,0.2 = 0.2 μ ryzyko=śr_wysokie (wiek =33,moc samochodu=160) = min μ średni 33, μ duża 160 = min 0.3,0.8 = 0.3 Operacja maksimum jako operator agregacji wyników wnioskowania uzyskanych na podstawie pojedynczych reguł

85

86 defuzyfikacja Metoda środka ciężkości Metoda średniego maksimum Metoda pierwszego maksimum Metoda ostatniego maksimum

87 Metoda środka ciężkości COG = 25 1,2 1 0,8 0,6 0,4 0, średnie średniowysokie wysokie

88 Metoda średniego maksimum 27,5 1,2 1 0,8 0,6 0,4 0, średnie średniowysokie wysokie

89 Metoda pierwszego maksimum 25 1,2 1 0,8 0,6 0,4 0, średnie średniowysokie wysokie

90 Metoda ostatniego maksimum 30 1,2 1 0,8 0,6 0,4 0, średnie średniowysokie wysokie

91

92 Graficzna reprezentacja zmiennych lingwistycznych w postaci zbiorów rozmytych

93

94

95

96

97

98

99

100 Agregacja

101

102

103

104

105

106

107

108

109

110

111

112

113

114 Dziękuję za uwagę

Logika rozmyta. Agnieszka Nowak - Brzezińska

Logika rozmyta. Agnieszka Nowak - Brzezińska Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F. METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość

Bardziej szczegółowo

Wnioskowanie rozmyte. Krzysztof Patan

Wnioskowanie rozmyte. Krzysztof Patan Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad

Bardziej szczegółowo

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco. Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności

Bardziej szczegółowo

Sztuczna inteligencja: zbiory rozmyte

Sztuczna inteligencja: zbiory rozmyte Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element

Bardziej szczegółowo

Logika rozmyta. Agnieszka Nowak - Brzezioska

Logika rozmyta. Agnieszka Nowak - Brzezioska Logika rozmyta Agnieszka Nowak - Brzezioska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information

Bardziej szczegółowo

Reprezentacja rozmyta - zastosowania logiki rozmytej

Reprezentacja rozmyta - zastosowania logiki rozmytej 17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych

Bardziej szczegółowo

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek

Bardziej szczegółowo

METODY INTELIGENCJI OBLICZENIOWEJ wykład 6

METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy

Bardziej szczegółowo

Logika rozmyta. Agnieszka Nowak - Brzezioska

Logika rozmyta. Agnieszka Nowak - Brzezioska Logika rozmyta Agnieszka Nowak - Brzezioska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information

Bardziej szczegółowo

Piotr Sobolewski Krzysztof Skorupski

Piotr Sobolewski Krzysztof Skorupski Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady

Bardziej szczegółowo

Technologie i systemy oparte na logice rozmytej

Technologie i systemy oparte na logice rozmytej Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. 2

Sztuczna inteligencja : Zbiory rozmyte cz. 2 Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:

Bardziej szczegółowo

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup. Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. III

Sztuczna inteligencja : Zbiory rozmyte cz. III Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru

Bardziej szczegółowo

Zadanie 0 gdy nie mamy logiki rozmytej

Zadanie 0 gdy nie mamy logiki rozmytej Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania

Bardziej szczegółowo

Układy logiki rozmytej. Co to jest?

Układy logiki rozmytej. Co to jest? PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy

Bardziej szczegółowo

Cel projektu: Wymogi dotyczące sprawozdania:

Cel projektu: Wymogi dotyczące sprawozdania: W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,

Bardziej szczegółowo

6. Zagadnienie parkowania ciężarówki.

6. Zagadnienie parkowania ciężarówki. 6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe

Bardziej szczegółowo

ELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej

ELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej ELEMENTY SZTUCZNEJ INTELIGENCJI 1 Wstęp do logiki rozmytej PLN 1. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte: 1. typu

Bardziej szczegółowo

7. Zagadnienie parkowania ciężarówki.

7. Zagadnienie parkowania ciężarówki. 7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

Logika Stosowana Ćwiczenia

Logika Stosowana Ćwiczenia Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15

Bardziej szczegółowo

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np. ZBIORY ROZMYTE Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonyc przypadkac daje się opisać tylko w sposób nieprecyzyjny, np. W dużym mieście, powinien istnieć regionalny port

Bardziej szczegółowo

SID Wykład 7 Zbiory rozmyte

SID Wykład 7 Zbiory rozmyte SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent

Bardziej szczegółowo

Tworzenie rozmytego systemu wnioskowania

Tworzenie rozmytego systemu wnioskowania Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy

Bardziej szczegółowo

Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania

Bardziej szczegółowo

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie System

Bardziej szczegółowo

Metody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym

Metody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym Sterowanie rozmyte jest sterowaniem za pomocą reguł Sterowanie rozmyte można sklasyfikować jako: -

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Metoda zaburz-obserwuj oraz metoda wspinania

Metoda zaburz-obserwuj oraz metoda wspinania Metoda zaburz-obserwuj oraz metoda wspinania Algorytm zaburz-obserwuj mierzy się moc (zwykle modułu) przed i po zmianie na tej podstawie podejmuje się decyzję o kierunku następnej zmiany Metoda wspinania

Bardziej szczegółowo

Jeśli przeszkoda jest blisko to przyhamuj

Jeśli przeszkoda jest blisko to przyhamuj Rozmyte systemy regułowe Informacja, którą przetwarzają ludzie często (prawie zawsze) jest nieprecyzyjna, a mimo to potrafimy poprawnie wnioskować i podejmować decyzję, czego klasyczne komputery nie potrafią.

Bardziej szczegółowo

Interwałowe zbiory rozmyte

Interwałowe zbiory rozmyte Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku

Bardziej szczegółowo

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

KOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej

KOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 6 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procedurą projektowania

Bardziej szczegółowo

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,

Bardziej szczegółowo

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy

Bardziej szczegółowo

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia

Bardziej szczegółowo

Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan

Bardziej szczegółowo

Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski

Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski Systemy rozmyte i ich zastosowania Krzysztof Rykaczewski 21 czerwca 2006 SPIS TREŚCI Spis treści 1 Wstęp 1 2 Podstawowe pojęcia i definicje logiki rozmytej 1 2.1 Przykłady funkcji przynależności..................

Bardziej szczegółowo

Method of determination of the current liquidity ratio with the use of fuzzy logic in hard coal mines

Method of determination of the current liquidity ratio with the use of fuzzy logic in hard coal mines 76 PRZEGLĄD GÓRNICZY 2014 UKD 622.333: 622.338.24: 622.652.2 Metoda określania płynności bieżącej w kopalniach węgla kamiennego z wykorzystaniem systemu rozmytego Method of determination of the current

Bardziej szczegółowo

Kurs logiki rozmytej. Wojciech Szybisty

Kurs logiki rozmytej. Wojciech Szybisty Kurs logiki rozmytej Wojciech Szybisty 2009 Spis treści 1 Co to jest logika rozmyta 3 1.1 Podstawy teorii zbiorów rozmytych........................ 3 1.2 Historia.......................................

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Zagadnienia AI wykład 1

Zagadnienia AI wykład 1 Zagadnienia AI wykład Podręcznik do wykładu: Leszek Rutkowski Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN Prezentacje do wykładu będą sukcesywnie umieszczane na stronie: http://merlin.fic.uni.lodz.pl/mskulimowski/

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

1 Wprowadzenie do algorytmiki

1 Wprowadzenie do algorytmiki Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

PODSTAWY INŻYNIERI WIEDZY

PODSTAWY INŻYNIERI WIEDZY Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma

Bardziej szczegółowo

Kurs logiki rozmytej - pomoc. Wojciech Szybisty

Kurs logiki rozmytej - pomoc. Wojciech Szybisty Kurs logiki rozmytej - pomoc Wojciech Szybisty 2009 Spis treści 1 Wymagania 3 2 Zawartość strony internetowej 3 3 Obsługa apletów 6 3.1 Aplet Rodzaje funkcji przynależności...................... 6 3.2

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

Kurs logiki rozmytej - zadania. Wojciech Szybisty

Kurs logiki rozmytej - zadania. Wojciech Szybisty Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,

Bardziej szczegółowo

Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r.

Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r. Metody prognozowania: Podstawy logiki rozmytej Literatura do wykładu: Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r. D. Rutkowska, M. Pilinski, L. Rutkowski,

Bardziej szczegółowo

ROK LIV NR 3 (194) 2013

ROK LIV NR 3 (194) 2013 ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 2013 Krzysztof Ficoń Akademia Marynarki Wojennej Wydział Dowodzenia i Operacji Morskich 81-103 Gdynia, ul. J. Śmidowicza 69 e-mail: F.Ficon@amw.gdynia.pl

Bardziej szczegółowo

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania

Bardziej szczegółowo

Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej

Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej Wrocław, 13.01.2016 Metody sztucznej inteligencji Prowadzący: Dr hab. inż. Ireneusz Jabłoński Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej Wykonał: Jakub Uliarczyk, 195639

Bardziej szczegółowo

4 Klasyczny rachunek zdań

4 Klasyczny rachunek zdań 4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo

Bardziej szczegółowo

Sterownik rozmyty (na przykładzie parkowania samochodu)

Sterownik rozmyty (na przykładzie parkowania samochodu) Sterownik rozmyty (na przykładzie parkowania samochodu) 06 kwietnia 2010 Idea ogólna Celem programu jest symulacja zachowania się jakiegoś obiektu, zasymulowanie jakiegoś zjawiska, czynności, na podstawie

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

WPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ

WPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Kinga GÓRNIAK* układy z opóźnieniem, regulacja rozmyta, model Mamdaniego,

Bardziej szczegółowo

THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS

THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Journal of KONES Internal Combustion Engines 2005, vol. 12, 3-4 THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Mariusz Topolski Politechnika Wrocławska,

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

KARTA PRZEDMIOTU. 17. Efekty kształcenia:

KARTA PRZEDMIOTU. 17. Efekty kształcenia: Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CYBERNETYKA 2. Kod przedmiotu: CYB 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia:

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta

Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Wprowadzenie Problemy

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

WYKORZYSTANIE ZBIORÓW ROZMYTYCH DO OCENY SKUTECZNOŚCI DOSTAWCY MATERIAŁÓW BUDOWLANYCH W PROCESIE LOGISTYCZNYM

WYKORZYSTANIE ZBIORÓW ROZMYTYCH DO OCENY SKUTECZNOŚCI DOSTAWCY MATERIAŁÓW BUDOWLANYCH W PROCESIE LOGISTYCZNYM Nabi IBADOV Janusz KULEJEWSKI 2 łańcuch dostaw, ocena dostawców, logika rozmyta, wnioskowanie rozmyte WYKORZYSTANIE ZBIORÓW ROZMYTYCH DO OCENY SKUTECZNOŚCI DOSTAWCY MATERIAŁÓW BUDOWLANYCH W PROCESIE LOGISTYCZNYM

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Wykład 2. Relacyjny model danych

Wykład 2. Relacyjny model danych Wykład 2 Relacyjny model danych Wymagania stawiane modelowi danych Unikanie nadmiarowości danych (redundancji) jedna informacja powinna być wpisana do bazy danych tylko jeden raz Problem powtarzających

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo