ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
|
|
- Władysława Witkowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP Coraz szersze zainteresowanie i zastosowanie teorii zbiorów rozmytych w wielu dziedzinach nauki i techniki, skłoniło autorów do podjęcia próby przedstawienia algorytmu projektowania nieadaptacyjnych sterowników rozmytych oceniających efektywność wykonania zadania bojowego, np. dla bojowych wozów piechoty, z wykorzystaniem programu MATLAB. Przestawiono krok po kroku, projekt sterownika rozmytego, czyli proces definiowania funkcjonalnych i operacyjnych charakterystyk niezbędnych przy ocenie efektywności wykonania zadania bojowego, określenie funkcji przynależności oraz granic zbiorów rozmytych, określenie reguł wnioskowania oraz jednoczesną inferencję wszystkich reguł wnioskowania przy użyciu wartości sygnałów wejściowych, jak również wyostrzenie, czyli defuzyfikację w celu uzyskania konkretnej wartości sygnału wyjściowego (w tym przypadku efektywność wykonania zadania bojowego). Przedstawiony projekt jest integralną częścią opracowywanej przez autorów większej pracy badawczej. Ma ona dowieść, że przy wykorzystaniu odpowiedniej ilości i jakości informacji, projekt ten mógłby być praktycznie wykorzystany. 2. PROJEKT STEROWNIKA ROZMYTEGO (ROZMYTEGO SYSTEMU EKSPERCKIEGO) Za pomocą zbiorów rozmytych można stworzyć rozmyty model systemu (układu), reprezentującego interesujące nas cechy (takim układem może być sterownik rozmyty określający efektywność zadania bojowego). Podstawą takiego systemu jest pojęcie kodowania rozmytego informacji. Systemy rozmyte operują na zbiorach rozmytych zamiast na liczbach, co umożliwia uogólnienie informacji. Schemat takiego modelowania znajduje się na poniższym rysunku: BAZA REGUL WNIOSKOWANIA x Zbiór nierozmyty FUZYFIKATOR µ(x) DEFUZYFIKATOR µ(y) y Zbiór nierozmyty WNIOSKOWANIE Zbiór rozmyty Zbiór rozmyty Rys.. Schemat wnioskowania rozmytego. Ppłk dr inż. Mirosław ADAMSKI, por. mgr inż. Norbert GRZESIK Wyższa Szkoła Oficerska Sił Powietrznych, Dęblin
2 Mirosław ADAMSKI, Norbert GRZESIK Nasza wiedza o systemie znajduje się w bazie reguł, które wykorzystujemy przy modelowaniu systemu. Końcowym etapem jest przetworzenie wyjść z powrotem na zmienne ilościowe. Proces obliczeń w logice rozmytej jest naszkicowany na Rys. 2. Kolejność obliczeń może być podzielona na dwie zasadnicze funkcje - wnioskowanie i wyostrzanie. Definiowanie funkcjonalnych i operacyjnych charakterystyk procesu Definiowanie zakresu kontroli (funkcji przynaleznosci oraz granic zbioru rozmytego) Definiowanie zachowania powierzchni kontrolnych (zasady wnioskowania) Jednoczesna ocena wszystkich zasad wnioskowania przy uzyciu wartosci zmiennych wejsciowych Wyostrzenie w celu uzyskania konkretnej wartosci wyjsciowej Rys. 2. Proces obliczeń w logice rozmytej. proces definiowania funkcjonalnych i operacyjnych charakterystyk niezbędnych przy ocenie efektywności wykonania zadania bojowego; Na wstępie należy określić, jakie parametry (sygnały wejściowe) będą nas interesowały, tzn. miały wpływ na wykonanie zadania bojowego i na podstawie, których dokonana zostanie ocena (Rys. 3.) 2
3 Algorytm projektowania rozmytych systemów eksperckich typu MAMDANI ZADEH NIE CELU Rys. 3. Ilustracja procesów wejściowych procesu. określenie funkcji przynależności oraz granic zbiorów rozmytych; Tak wygląda przykładowy przebieg funkcji przynależności np. dla odległości (trzy) oraz ich granice (Rys. 4.). µf(odleglosc) MALA SREDNIA DUZA 3 5 ODLEGLOSC [m] Rys. 4. Przykładowy przebieg funkcji przynależności. 3
4 Mirosław ADAMSKI, Norbert GRZESIK Rys. 5. Okno dialogowe sygnałów wejściowych i wyjściowych. Dla pozostałych sygnałów wejściowych i wyjściowych należy również określić funkcje przynależności oraz ich granice. Przyporządkowaniu konkretnych zakresów funkcji przynależności sygnałom wejściowym towarzyszyć będzie fuzyfikacja, (czyli rozmywanie). Służy do tego blok fuzyfikatora (Rys. 6.). NIE CELU FUZYFIKATOR Rys. 6. blok fuzyfikatora. 4
5 Algorytm projektowania rozmytych systemów eksperckich typu MAMDANI ZADEH określenie reguł wnioskowania oraz jednoczesna inferencja wszystkich reguł wnioskowania przy użyciu wartości sygnałów wejściowych; Kolejnym krokiem jest stworzenie bazy reguł wnioskowania (ich ilość uzależniona jest od ilości sygnałów wejściowych). Postać reguły wnioskowania to np.: Jeśli ODLEGŁOŚĆ OD jest MAŁA i PRĘDKOŚĆ WŁASNA jest MAŁA i PRĘDKOŚĆ CELU jest MAŁA to EFEKTYWNOŚĆ WYKONANIA ZADANIA jest., itd. Rys. 7. Okno dialogowe bazy reguł wnioskowania. NIE BAZA REGUL WNIOSKOWANIA CELU FUZYFIKATOR WNIOSKOWANIE Rys. 8. Schemat blokowy bazy reguł wnioskowania. 5
6 Mirosław ADAMSKI, Norbert GRZESIK wyostrzenie, czyli defuzyfikacja w celu uzyskania konkretnej wartości sygnału wyjściowego; Następnie zakładamy parametry wejściowe (mieszczące się w przedziałach funkcji przynależności), dla których zostanie oceniona efektywność (stopień) wykonania zadania bojowego. NIE BAZA REGUL WNIOSKOWANIA CELU FUZYFIKATOR DEFUZYFIKATOR WNIOSKOWANIE NIE BAZA REGUL WNIOSKOWANIA NIE CELU FUZYFIKATOR DEFUZYFIKATOR EFEKTYWNOSC WYKONANIA ZADANIA [%] WNIOSKOWANIE Rys. 9. Schematy blokowe bazy reguł wnioskowania. 6
7 Algorytm projektowania rozmytych systemów eksperckich typu MAMDANI ZADEH Rys.. Okno dialogowe parametrów reguł wnioskowania. Efektywność wykonania zadania bojowego, czyli zniszczenia obiektu celu dla zadanych parametrów wejściowych przedstawiona jest w postaci reguł bądź płaszczyzn. Przykład: - dla jednej reguły wnioskowania (w postaci reguł); µf(odległość) MAŁA MAŁA ŚREDNIA MIN 5 µf(prędkość SP) ODLEGŁOŚĆ [m] 5 2 MAŁA MAŁA ŚREDNIA MIN µf(efektywność SP) MAX 2 µf(wysokość SP) PRĘDKOŚĆ [km/h] MAŁA MAŁA ŚREDNIA MIN EFEKTYWNOŚĆ [%] WYSOKOŚĆ [m] 2 FUZYFIKACJA OCENA PRZESŁANEK DEFUZYFIKACJA Rys.. Prezentacja wyników reguł wnioskowania. 7
8 Mirosław ADAMSKI, Norbert GRZESIK - dla wszystkich reguł wnioskowania (w postaci reguł); - dla wszystkich reguł wnioskowania (w postaci płaszczyzn); Rys. 2. Okno dialogowe i końcowe wyników reguł wnioskowania. 8
9 Algorytm projektowania rozmytych systemów eksperckich typu MAMDANI ZADEH 3. PODSUMOWANIE Wykonane projekty charakteryzują się precyzyjną i niezawodną pracą. Mała ilość sygnałów wejściowych pozwala na otrzymywanie wyników w czasie rzeczywistym (ten parametr zależy również od szybkości maszyny liczącej japończycy opracowali procesory rozmyte liczące ponad dwa miliony reguł wnioskowania na sekundę, to daje duży zakres możliwości wykonywanego projektu). Mogą być one wykorzystywane zarówno jako człony wspomagająco decyzyjne, bezpośrednio w trakcie realizacji zadania, jak również np. podczas treningów na symulatorach do określenia optymalnych rozwiązań, bądź do oceny wykonywanych przez załogę symulowanych zadań bojowych. Duża ilość założeń upraszczających spowoduje określenie jedynie przybliżonej wartości efektywności. Jednak zalety tego typu rozwiązań skłaniają do przeprowadzenia dalszych badań i sukcesywne zmniejszanie ilości założeń upraszczających, które niewątpliwie obarczają wynik końcowy błędami. 4. LITERATURA [] Lotfi Zadeh: The concept of linguistic variable and its applications to approximate reasoning. Part -3. Information Sciences, 975 r. [2] Lotfi Zadeh: Fuzzy Sets. Information and Control, 965 r. [3] CZOGAŁA E., PEDRYCZ W.: Elementy i metody teorii zbiorów rozmytych PWN, Warszawa 985 r. [4] YAGER R., FILEV D.: Podstawy modelowania i sterowania rozmytego Wydawnictwo Naukowo-Techniczne Warszawa 995 r. [5] TAKAGI T., SUGENO M.: Fuzzy identyfikation of systems and its application to modeling and control IEEE Trans. SMC, 985r. [6] Praca zbiorowa: Poradnik inżyniera Automatyka Warszawa 973 r. [7] PEATMAN John B.: Projektowanie systemów cyfrowych. 9
Jeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Cel projektu: Wymogi dotyczące sprawozdania:
W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,
Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
7. Zagadnienie parkowania ciężarówki.
7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Rozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Wnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie System
Inteligencja obliczeniowa
Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe
Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Piotr Sobolewski Krzysztof Skorupski
Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Sterowanie z wykorzystaniem logiki rozmytej
Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek
Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Język naturalny jako pomost między danymi cyfrowymi maszyny a rozumieniem człowieka
Język naturalny jako pomost między danymi cyfrowymi maszyny a rozumieniem człowieka Wstęp Współczesna rzeczywistość wymaga gromadzenia olbrzymich ilości danych. Lawinowo rosną archiwa informacji dotyczących
Kryteria optymalizacji w systemach sterowania rozmytego piecami odlewniczymi
A R C H I V E S of F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 14 Special Issue 2/2014 95 100
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Sreszczenie. Słowa kluczowe: sterowanie, poziom cieczy, regulator rozmyty
Ewa Wachowicz Katedra Systemów Sterowania Politechnika Koszalińska STEROWANIE POZIOMEM CIECZY W ZBIORNIKU Z WYKORZYSTANIEM REGULATORA ROZMYTEGO Sreszczenie W pracy omówiono układ regulacji poziomu cieczy,
Podstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electrical Engineering 2013 Łukasz NIEWIARA* Krzysztof ZAWIRSKI* AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ Zagadnienia
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza (114)/29 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ II OPRACOWANIE PREDYKCYJNYCH MODELI RELACYJNYCH
Implementacja rozmytych systemów wnioskujących w zdaniach regulacji
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte
Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,
ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia
PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM
Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania
Sztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
Sztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
ZASTOSOWANIE LOGIKI ROZMYTEJ W BUDOWIE SYSTEMÓW ZARZĄDZANIA WIEDZĄ PRODUKCYJNĄ
ZASTOSOWANIE LOGIKI ROZMYTEJ W BUDOWIE SYSTEMÓW ZARZĄDZANIA WIEDZĄ PRODUKCYJNĄ Alfred PASZEK Streszczenie: W artykule przedstawiono przykłady zastosowania elementów logiki rozmytej w opracowaniu reprezentacji
Układy logiki rozmytej. Co to jest?
PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy
Sztuczna inteligencja : Zbiory rozmyte cz. 2
Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:
Jeśli przeszkoda jest blisko to przyhamuj
Rozmyte systemy regułowe Informacja, którą przetwarzają ludzie często (prawie zawsze) jest nieprecyzyjna, a mimo to potrafimy poprawnie wnioskować i podejmować decyzję, czego klasyczne komputery nie potrafią.
Inteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
Nowoczesne techniki informatyczne Program: 1. Sztuczna inteligencja. a) definicja; b) podział: Systemy ekspertowe Algorytmy ewolucyjne Logika rozmyta Sztuczne sieci neuronowe c) historia; 2. Systemy eksperckie
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
WPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Kinga GÓRNIAK* układy z opóźnieniem, regulacja rozmyta, model Mamdaniego,
Najprostszy schemat blokowy
Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano
Interwałowe zbiory rozmyte
Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku
Reprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS
Journal of KONES Internal Combustion Engines 2005, vol. 12, 3-4 THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Mariusz Topolski Politechnika Wrocławska,
PODSTAWY INŻYNIERI WIEDZY
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Metodyka i system dopasowania protez słuchu w oparciu o badanie percepcji sygnału mowy w szumie
Metodyka i system dopasowania protez w oparciu o badanie percepcji sygnału mowy w szumie opracowanie dr inż. Piotr Suchomski Koncepcja metody korekcji ubytku Dopasowanie szerokiej dynamiki odbieranego
Logika Stosowana Ćwiczenia
Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15
ODWZOROWANIE PRZEBIEGU PULSACJI METODAMI SZTUCZNEJ INTELIGENCJI
Inżynieria Rolnicza 9(107)/2008 ODWZOROWANIE PRZEBIEGU PULSACJI METODAMI SZTUCZNEJ INTELIGENCJI Katedra Energetyki Rolniczej, Uniwersytet Rolniczy w Krakowie Streszczenie. Przedstawiono metodykę odwzorowania
Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy
Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do
Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej
Wrocław, 13.01.2016 Metody sztucznej inteligencji Prowadzący: Dr hab. inż. Ireneusz Jabłoński Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej Wykonał: Jakub Uliarczyk, 195639
ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż.
1 ZARZĄDZANIE PROCESAMI I PROJEKTAMI 2 ZAKRES PROJEKTU 1. Ogólna specyfika procesów zachodzących w przedsiębiorstwie 2. Opracowanie ogólnego schematu procesów zachodzących w przedsiębiorstwie za pomocą
ZASTOSOWANIE ZBIORÓW ROZMYTYCH W OCENIE OSIĄGNIĘCIA EFEKTÓW KSZTAŁCENIA
IZABELA JÓZEFCZYK ROMUALD MAŁECKI ROMAN RUMIANOWSKI Politechnika Warszawska, Filia Płock ZASTOSOWANIE ZBIORÓW ROZMYTYCH W OCENIE OSIĄGNIĘCIA EFEKTÓW KSZTAŁCENIA Streszczenie. Praca przedstawia propozycję
SID Wykład 7 Zbiory rozmyte
SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent
Logika rozmyta typu 2
Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe
WYKORZYSTANIE ZBIORÓW ROZMYTYCH DO OCENY SKUTECZNOŚCI DOSTAWCY MATERIAŁÓW BUDOWLANYCH W PROCESIE LOGISTYCZNYM
Nabi IBADOV Janusz KULEJEWSKI 2 łańcuch dostaw, ocena dostawców, logika rozmyta, wnioskowanie rozmyte WYKORZYSTANIE ZBIORÓW ROZMYTYCH DO OCENY SKUTECZNOŚCI DOSTAWCY MATERIAŁÓW BUDOWLANYCH W PROCESIE LOGISTYCZNYM
Metoda zaburz-obserwuj oraz metoda wspinania
Metoda zaburz-obserwuj oraz metoda wspinania Algorytm zaburz-obserwuj mierzy się moc (zwykle modułu) przed i po zmianie na tej podstawie podejmuje się decyzję o kierunku następnej zmiany Metoda wspinania
UKŁADY MIKROPROGRAMOWALNE
UKŁAD MIKROPROGRAMOWALNE Układy sterujące mogą pracować samodzielnie, jednakże w przypadku bardziej złożonych układów (zwanych zespołami funkcjonalnymi) układ sterujący jest tylko jednym z układów drugim
Tworzenie rozmytego systemu wnioskowania
Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy
Szybkie prototypowanie w projektowaniu mechatronicznym
Szybkie prototypowanie w projektowaniu mechatronicznym Systemy wbudowane (Embedded Systems) Systemy wbudowane (ang. Embedded Systems) są to dedykowane architektury komputerowe, które są integralną częścią
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek:
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: obowiązkowy
Sterownik (regulator) rozmyty przykład [1]
Sterownik (regulator) rozmyty przykład [1] zadanie: przywracanie ustalonej pozycji wózka na platformie masa siła siła -2 m 0 m 2 m tarcie 1 Sterownik (regulator) rozmyty przykład (2) zmienne: x pozycja
Podstawowe systemy wnioskowania sztucznej inteligencji
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania Podstawowe systemy wnioskowania sztucznej inteligencji Urszula SOWA Seminarium Dyplomowe
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
THE USE OF FUZZY SET THEORY IN EXPLOITATION MANAGEMENT PROCESS ON THE WATER SUPPLY NETWORK
Journal of KONBiN 3(35)2015 ISSN 1895-8281 DOI 10.1515/jok-2015-0044 ESSN 2083-4608 THE USE OF FUZZY SET THEORY IN EXPLOITATION MANAGEMENT PROCESS ON THE WATER SUPPLY NETWORK WYKORZYSTANIE TEORII ZBIORÓW
W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.
Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
PORÓWNANIE PRZYDATNOŚCI WYBRANYCH MODELI ROZMYTYCH DO PREDYKCJI ZAPOTRZEBOWANIA ENERGII ELEKTRYCZNEJ NA TERENACH WIEJSKICH
InŜynieria Rolnicza 7/2005 Małgorzata Trojanowska, Jerzy Małopolski* Zakład Energetyki Rolniczej *Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie PORÓWNANIE PRZYDATNOŚCI WYBRANYCH
Wykorzystanie rozmytych baz danych i baz wiedzy do wspomagania przedsięwzięć inżynieryjnych
Budownictwo i Architektura 12(1) (2013) 69-76 Wykorzystanie rozmytych baz danych i baz wiedzy do wspomagania przedsięwzięć inżynieryjnych Janusz Szelka 1, Zbigniew Wrona 2 1 Wyższa Szkoła Oficerska Wojsk
ROZMYTY REGULATOR PRĘDKOŚCI OBROTOWEJ ODPORNY NA ZMIANY BEZWŁADNOŚCI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Michał JAKUBOWSKI* Krystian NOWAKOWSKI* Krzysztof ZAWIRSKI* ROZMYTY REGULATOR PRĘDKOŚCI OBROTOWEJ ODPORNY NA ZMIANY
System wspomagania harmonogramowania przedsięwzięć budowlanych
System wspomagania harmonogramowania przedsięwzięć budowlanych Wojciech Bożejko 1 Zdzisław Hejducki 2 Mariusz Uchroński 1 Mieczysław Wodecki 3 1 Instytut Informatyki, Automatyki i Robotyki Politechnika
Porównanie wyników symulacji wpływu kształtu i amplitudy zakłóceń na jakość sterowania piecem oporowym w układzie z regulatorem PID lub rozmytym
ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 15 Special Issue 4/2015 133 138 28/4 Porównanie wyników
MODELE I MODELOWANIE
MODELE I MODELOWANIE Model układ materialny (np. makieta) lub układ abstrakcyjny (np..rysunki, opisy słowne, równania matematyczne). Model fizyczny (nominalny) opis procesów w obiekcie (fizycznych, również
OPRACOWANIE ZAŁOŻEŃ I REALIZACJA LABORATORYJNEGO SYMULATORA DO BADANIA MODUŁU PODPOWIEDZI
IEN 2013 wszelkie prawa zastrzeżone www.ien.gda.pl e-mail: ien@ien.gda.pl OPRACOWANIE ZAŁOŻEŃ I REALIZACJA LABORATORYJNEGO SYMULATORA DO BADANIA MODUŁU PODPOWIEDZI (SYSTEMU EKSPERTOWEGO) SYSTEMÓW OBSZAROWEJ
Method of determination of the current liquidity ratio with the use of fuzzy logic in hard coal mines
76 PRZEGLĄD GÓRNICZY 2014 UKD 622.333: 622.338.24: 622.652.2 Metoda określania płynności bieżącej w kopalniach węgla kamiennego z wykorzystaniem systemu rozmytego Method of determination of the current
Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r.
Metody prognozowania: Podstawy logiki rozmytej Literatura do wykładu: Piegat A.: Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999 r. D. Rutkowska, M. Pilinski, L. Rutkowski,
ROK LIV NR 3 (194) 2013
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 2013 Krzysztof Ficoń Akademia Marynarki Wojennej Wydział Dowodzenia i Operacji Morskich 81-103 Gdynia, ul. J. Śmidowicza 69 e-mail: F.Ficon@amw.gdynia.pl
KRÓTKOTERMINOWE PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH PRZY WYKORZYSTANIU MODELI MAMDANIEGO
Problemy Inżynierii Rolniczej nr 3/2007 Małgorzata Trojanowska Katedra Energetyki Rolniczej Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie KRÓTKOTERMINOWE PROGNOZOWANIE
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód
MODEL INTELIGENTNEGO SYSTEMU REGULACJI PRZENOŚNIKA TAŚMOWEGO
MODELOWANIE INŻYNIERSKIE IMPN 1896-771X 37, s. 249-256, Gliwice 2009 MODEL INTELIGENTNEGO SYSTEMU REGULACJI PRZENOŚNIKA TAŚMOWEGO JERZY ŚWIDER, DARIUSZ JASIULEK, JOANNA ROGALA, KRZYSZTOF STANKIEWICZ Instytut
OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak
OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie
Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, Spis treści
Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, 2017 Spis treści Przedmowa 11 ROZDZIAŁ 1 Wstęp 13 1.1. Rys historyczny 14 1.2. Norma IEC 61131 19 1.2.1. Cele i
K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz
K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie
ANALIZA I PROGNOZA WODOCHŁONNOŚCI SEKTORÓW GOSPODARKI Z ZASTOSOWANIEM WNIOSKOWANIA ROZMYTEGO
IZABELA GODYŃ ANALIZA I PROGNOZA WODOCHŁONNOŚCI SEKTORÓW GOSPODARKI Z ZASTOSOWANIEM WNIOSKOWANIA ROZMYTEGO APPLICATION OF FUZZY REASONING IN THE ANALYSIS AND FORECAST OF WATER CONSUMPTION IN ECONOMY Streszczenie
Zadanie 0 gdy nie mamy logiki rozmytej
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Wybór dostawcy w realizacji przedsięwzięcia budowlanego przy nieprecyzyjnie określonych kryteriach oceny
IBADOV Nabi 1 KULEJEWSKI Janusz 2 Wybór dostawcy w realizacji przedsięwzięcia budowlanego przy nieprecyzyjnie określonych kryteriach oceny WSTĘP Z elementami logistyki, a mianowicie z zarządzaniem łańcuchem
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
MODELOWANIE ROZMYTE ZASTOSOWANIE WNIOSKOWANIA ROZMYTEGO DO OCENY RYZYKA KREDYTOWEGO PRZEDSIĘBIORSTW
ODEOWANIE ROZYTE aweł Konopka Uniwersytet w Białymstoku ZASTOSOWANIE WNIOSKOWANIA ROZYTEGO DO OCENY RYZYKA KREDYTOWEGO EDSIĘBIORSTW Wprowadzenie W artykule przedstawiono teoretyczną koncepcję modelu oceny
Maciej Piotr Jankowski
Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza