Tworzenie rozmytego systemu wnioskowania
|
|
- Marta Czerwińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy łatwiej jest przenieśd naturalną ludzka wiedzę (często niepewna i niejednoznaczną) do systemów ekspertowych umożliwiających automatyczne wnioskowanie. Poniżej przedstawiono przykład wykorzystania Fuzzy Logic Toolbox do budowy w/w rozmytego systemu wnioskowania. Budowa systemu FIS (Fuzzy Inference System rozmyty system wnioskowania) Lista poleceo j. matlab służących budowie rozmytego systemu wnioskowania: Fis = newfis( nazwa ) tworzy nowy rozmyty system wnioskowania o nazwie nazwa fis = newfis( Smak jabłka ); fis jest w rzeczywistości strukturą o postaci: name: 'przykład' nazwa system rozmytego type: 'mamdani' typ modelu wnioskowania (mamdani/sugeno) andmethod: 'min' sposób obliczania operacji I ormethod: 'max' sposób obliczania operacji lub defuzzmethod: 'centroid' sposób realizacji operacji defazyfikacji impmethod: 'min' sposób realizacji operatora implikacji aggmethod: 'max' sposób realizacji operatora agregacji input: [1x2 struct] zbiór zmiennych wejściowych output: [1x1 struct] zbiór zmiennych wyjściowych rule: [] zbiór reguł fis = addvar(fis,typ,nazwa,zakres) dodaje do rozmytego systemu wnioskowania fis nową zmienną lingwistyczną typu typ ( input, output ), która przyjmuje zakres zmienności zakres fis = addvar(fis, input, kolor,[0 255]); fis = addvar(fis, input, Średnica,[0 20]);
2 fis = addvar(fis, output, smak,[0 1]); fis = addmf(fis,typ,nr,nazwa_wartosci,typ_mf,param) dodaje do istniejącej struktury fis, do jej wejścia lub wyjścia typ = ( input / output ), o odpowiednim numerze nr nowej funkcji przynależności czyli wartości rozmytej o nazwie nazwa, która ma kształt typ_mf i parametry param. Możliwe typy funkcji przynależności: gaussmf, trimf, bellmf, trapmf, sigmf, smf, zfm. Każdy z tych typów ma swój własny zestaw parametrów np.dla gaussmf, param przyjmuje wartości *a b], gdzie a- położenie funkcji Gaussa, b-szerokośd funkcji Gaussa. fis = addmf(fis, input,2, mała, zmf,[3 7]); %dodaje do wejścia drugiego czyli średnica wartośd lingwistyczna mała, która ma kształt jak na rysunku: zmf, P=[3 7] W podobny sposób można dodad kolejne wartości lingwistyczne: fis = addmf(fis, input,2, średnia, gaussmf,[10 7]); fis = addmf(fis, input,2, duża, smf,[13 17]); fis = addf(fis, output,1, smaczne, smf,[ ]); fis = addf(fis, output,1, niedobre, zmf,* ]);
3 Degree of membership 1 mała średnia duża Średnica plotmf(fis,typ,nr) rysuje wykres funkcji przynależności struktury fis powiązanych z odpowiednim numerem zmiennej danego typu ( input, output ) Plotmf(fis, input,2) system powinien narysowad rysunek jak wyżej fis = addrule(fis,[m n a b]) dodaje do struktury fis nowej reguły o parametrach: m lista funkcji przynależności związana z danym wejściem w naszym przypadku [0 2] oznacza to że dla zmiennej 1 (kolor) nie korzystamy z żadnej funkcj przynalezności, natomiast dla drugiej zmiennej (średnica) wybieramy 2 funkcje przynależności średnia n lista funkcji przynależności z związana z danym wyjściem (ponieważ mamy tylko jedno wyjście to podajemy nr funkcji przynależności n=2 a wartośd wagi naszej reguły (na ile ufamy naszej regule) a=1 b typ operacji zachodzących między przesłankami 1 -> AND, 2->OR Ogólnie więc drugi parametr funkcji addrule ma m+n+2 parametrów fis = addrule(fis,[ ]); powoduje dodanie reguły: If (Średnica is średnia) then (smak is niedobre) (1) showrule(fis) funkcja wyświetla listę utworzonych reguł (patrz wyżej) wyn = evalfis(data,fis) uruchamia zbudowany system fis dla danych data (uwaga dane musza mied odpowiednią ilośd zmiennych, czyli taką jaką zdefiniowano podczas definicji zmiennych typu input). Wyn to wynik predykcji dla danych data
4 evalfis([45 5],fis) zwróci wartość oznaczającą że smak przyjmuje wartość około 0.3 czyli dane jabłko jest raczej nie zmaczne ruleview(fis) funkcja umożliwia graficzną analizę zbudowanego zbioru reguł: gensurf(fis) rysuje kształt funkcji decyzyjnej fis = setfis(fis,'fispropname','newfisprop') umożliwia modyfikację wybranej właściwości struktury fis fis = setfis(fis, impmethod, prod ) fis = parserule(fis, textrule ) umozliwia parsowanie reguły zapisanej jako tekst Zadanie Zad 1. Stwórz własny rozmyty system wnioskowania umożliwiający wnioskowanie na temat płci na podstawie rozmiaru stopy oraz wzrostu człowieka. Założenia duże osoby o dużym rozmiarze stopy to mężczyźni małe osoby o małym rozmiarze stopy to kobiety W budowanym systemie zaproponuj przedział zmienności danych zmiennych wejściowych (wzrost, rozmiar stopy), zdefiniuj odpowiednie wartości lingwistyczne dla tych zmiennych oraz określ dla nich funkcje przynależności, następnie utwórz odpowiednie reguły umożliwiające wnioskowanie na temat płci.
5 Zad 2. Na powyższym przykładzie zbadaj działanie różnych operatorów koniunkcji. Możliwe wartośd jakie może przyjąd operator koniunkcji Fuzzy Logic Toolbox znajdź w Helpie Zad 3. Na powyższym przykładzie zbadaj działanie różnych operatorów alternatywy. Możliwe wartośd jakie może przyjąd operator koniunkcji Fuzzy Logic Toolbox znajdź w Helpie Zad 4. Na powyższym przykładzie zbadaj działanie różnych operatorów implikacji. Możliwe wartośd to min oraz prod Zad 5. Na powyższym przykładzie zbadaj działanie różnych operatorów agregacji. Możliwe wartośd to : max maksimum spośród wartości do agregacji sum suma agregowanych wartości pro bor dla dwóch argumentów funkcji probor a i b wynikiem jest y = a + b - ab Zad 6. Na powyższym przykładzie zbadaj działanie różnych operatorów wyostrzania. Możliwe wartośd to: centroid środek obszaru bisector- bisekcja obszaru (podział obszaru za pomocą prostej na dwa o równej powierzchni) mom wartośd średnia maksimum som - najmniejsza wartośd maximum lom największa wartośd maksimum UWAGA Do realizacji powyższych zadao porównania najlepiej jest wykorzystad funkcje gensurf oraz ruleview
Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Logika rozmyta typu 2
Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia
Podstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Sztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
Rozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
MATERIAŁY POMOCNICZE OPIS BIBLIOTEKI NARZĘDZIOWEJ IMPLEMENTACJI SYSTEMÓW ROZMYTYCH FUZZY LOGIC TOOLBOX. VERSION PAKIETU MATLAB R2015
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki MATERIAŁY POMOCNICZE OPIS BIBLIOTEKI NARZĘDZIOWEJ IMPLEMENTACJI SYSTEMÓW ROZMYTYCH FUZZY LOGIC TOOLBOX. VERSION 2.2.22 PAKIETU
Jeśli przeszkoda jest blisko to przyhamuj
Rozmyte systemy regułowe Informacja, którą przetwarzają ludzie często (prawie zawsze) jest nieprecyzyjna, a mimo to potrafimy poprawnie wnioskować i podejmować decyzję, czego klasyczne komputery nie potrafią.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Jeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Cel projektu: Wymogi dotyczące sprawozdania:
W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Implementacja rozmytych systemów wnioskujących w zdaniach regulacji
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.
Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności
Zadanie 0 gdy nie mamy logiki rozmytej
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
KOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej
Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 6 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procedurą projektowania
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Układy logiki rozmytej. Co to jest?
PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy
Metody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym
System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym Sterowanie rozmyte jest sterowaniem za pomocą reguł Sterowanie rozmyte można sklasyfikować jako: -
Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie System
Piotr Sobolewski Krzysztof Skorupski
Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady
Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Sztuczna inteligencja : Zbiory rozmyte cz. 2
Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:
Wnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Inteligencja obliczeniowa
Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
Sztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek
ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP
Inteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
LABORATORIUM KOMPUTEROWYCH UKŁADÓW STEROWANIA. Ćwiczenie 2 Projektowanie układu regulacji rozmytej
Wydział Elektryczny Zespół Automatyki (ZTMAiPC) LABORATORIUM KOMPUTEROWYCH UKŁADÓW STEROWANIA Ćwiczenie 2 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z
Kurs logiki rozmytej - zadania. Wojciech Szybisty
Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
ELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej
ELEMENTY SZTUCZNEJ INTELIGENCJI 1 Wstęp do logiki rozmytej PLN 1. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte: 1. typu
7. Zagadnienie parkowania ciężarówki.
7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
SID Wykład 7 Zbiory rozmyte
SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent
PROJEKTOWANIE KLASYCZNEGO I ROZMYTEGO UKŁADU STEROWANIA NAPĘDU ELEKTRYCZNEGO W ŚRODOWISKU MATLAB/SIMULINK
Metody Sztucznej Inteligencji w utomatyzacji Procesów, pp 3845, edytor L. Bukowski, Rabka, kwiecień 2, Wyd. Politechnika Krakowska (preprint) PROJEKTOWNIE KLSYCZNEGO I ROZMYTEGO UKŁDU STEROWNI NPĘDU ELEKTRYCZNEGO
Elżbieta RADZISZEWSKA-ZIELINA, Bartłomiej SZEWCZYK
Scientific Review Engineering and Environmental Sciences (2017), 26 (2), 219 225 Sci. Rev. Eng. Env. Sci. (2017), 26 (2) Przegląd Naukowy Inżynieria i Kształtowanie Środowiska (2017), 26 (2), 219 225 Prz.
Funkcje w PL/SQL Funkcja to nazwany blok języka PL/SQL. Jest przechowywana w bazie i musi zwracać wynik. Z reguły, funkcji utworzonych w PL/SQL-u
Funkcje w PL/SQL Funkcja to nazwany blok języka PL/SQL. Jest przechowywana w bazie i musi zwracać wynik. Z reguły, funkcji utworzonych w PL/SQL-u będziemy używać w taki sam sposób, jak wbudowanych funkcji
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
EXCEL. Diagramy i wykresy w arkuszu lekcja numer 6. Instrukcja. dla Gimnazjum 36 - Ryszard Rogacz Strona 20
Diagramy i wykresy w arkuszu lekcja numer 6 Tworzenie diagramów w arkuszu Excel nie jest sprawą skomplikowaną. Najbardziej czasochłonne jest przygotowanie danych. Utworzymy następujący diagram (wszystko
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Interwałowe zbiory rozmyte
Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku
MODELOWANIE CZĘSTOŚCI TRANSMISJI DANYCH Z WYKORZYSTANIEM FUZZY TOOLBOX MATLAB
DAMIAN FILIPKOWSKI doi: 10.12716/1002.29.06 Akademia Morska w Gdyni Katedra Nawigacji MODELOWANIE CZĘSTOŚCI TRANSMISJI DANYCH Z WYKORZYSTANIEM FUZZY TOOLBOX MATLAB Ten artykuł powstał podczas prac nad
Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan
ANALIZA I PROGNOZA WODOCHŁONNOŚCI SEKTORÓW GOSPODARKI Z ZASTOSOWANIEM WNIOSKOWANIA ROZMYTEGO
IZABELA GODYŃ ANALIZA I PROGNOZA WODOCHŁONNOŚCI SEKTORÓW GOSPODARKI Z ZASTOSOWANIEM WNIOSKOWANIA ROZMYTEGO APPLICATION OF FUZZY REASONING IN THE ANALYSIS AND FORECAST OF WATER CONSUMPTION IN ECONOMY Streszczenie
THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS
Journal of KONES Internal Combustion Engines 2005, vol. 12, 3-4 THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Mariusz Topolski Politechnika Wrocławska,
OPRACOWANIE ZAŁOŻEŃ I REALIZACJA LABORATORYJNEGO SYMULATORA DO BADANIA MODUŁU PODPOWIEDZI
IEN 2013 wszelkie prawa zastrzeżone www.ien.gda.pl e-mail: ien@ien.gda.pl OPRACOWANIE ZAŁOŻEŃ I REALIZACJA LABORATORYJNEGO SYMULATORA DO BADANIA MODUŁU PODPOWIEDZI (SYSTEMU EKSPERTOWEGO) SYSTEMÓW OBSZAROWEJ
Logika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Sreszczenie. Słowa kluczowe: sterowanie, poziom cieczy, regulator rozmyty
Ewa Wachowicz Katedra Systemów Sterowania Politechnika Koszalińska STEROWANIE POZIOMEM CIECZY W ZBIORNIKU Z WYKORZYSTANIEM REGULATORA ROZMYTEGO Sreszczenie W pracy omówiono układ regulacji poziomu cieczy,
Logika Stosowana Ćwiczenia
Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15
Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.
Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych
Elementy cyfrowe i układy logiczne
Elementy cyfrowe i układy logiczne Wykład Legenda Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Optymalizacja układów wielopoziomowych Układy wielopoziomowe układy
ZASTOSOWANIE LOGIKI ROZMYTEJ W INŻYNIERII MECHANICZNEJ NA PRZYKŁADZIE HYDRAULICZNEGO UKŁADU POZYCJONOWANIA ŁADUNKU
EDWARD LISOWSKI, GRZEGORZ FILO ZASTOSOWANIE LOGIKI ROZMYTEJ W INŻYNIERII MECHANICZNEJ NA PRZYKŁADZIE HYDRAULICZNEGO UKŁADU POZYCJONOWANIA ŁADUNKU APPLICATION OF FUZZY LOGIC IN MECHANICAL ENGINEERING ON
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Reprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Projektowanie regulatorów rozmytych w środowisku MATLAB-Simulink
Pomiary Automatyka Robotyka /2 Projektowanie regulatorów rozmytych w środowisku MATLAB-Simulink Bogumiła Mrozek Celem pracy jest pokazanie możliwości projektowania regulatorów rozmytych, w tym doboru ich
Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
Logika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Tematy lekcji informatyki klasa 4a wrzesień 2011
Tematy lekcji informatyki klasa 4a wrzesień 2011 1. Program nauczania informatyki. Program nauczania. 7.09 2. Zastosowania komputerów Str. 8 12 10 zawodów w których wykorzystywany jest komputer. Wyjaśnij
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Method of determination of the current liquidity ratio with the use of fuzzy logic in hard coal mines
76 PRZEGLĄD GÓRNICZY 2014 UKD 622.333: 622.338.24: 622.652.2 Metoda określania płynności bieżącej w kopalniach węgla kamiennego z wykorzystaniem systemu rozmytego Method of determination of the current
Skrypty i funkcje Zapisywane są w m-plikach Wywoływane są przez nazwę m-pliku, w którym są zapisane (bez rozszerzenia) M-pliki mogą zawierać
MatLab część III 1 Skrypty i funkcje Zapisywane są w m-plikach Wywoływane są przez nazwę m-pliku, w którym są zapisane (bez rozszerzenia) M-pliki mogą zawierać komentarze poprzedzone znakiem % Skrypty
WPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Kinga GÓRNIAK* układy z opóźnieniem, regulacja rozmyta, model Mamdaniego,
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym
LABORATORUM 1 Układy logiki rozmytej
LABORATORUM 1 Układy logiki rozmytej 1. Cel ćwiczenia Poznanie narzędzia: Fuzzy Logic Toolbox z systemu Matlab. Prosty układ wnioskowania rozmytego. 2. Wprowadzenie Sterowanie rozmyte oferuje wygodne moŝliwości
Architektura komputerów Wykład 2
Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana
Inteligentny model wskaźnika zagrożenia pożarowego w kopalni węgla
Inteligentny model wskaźnika zagrożenia pożarowego w kopalni węgla Bogumiła Mrozek*, Dariusz Felka** *Instytut Informatyki, Politechnika Krakowska **Instytut Technik Innowacyjnych EMAG w Katowicach Streszczenie:
Arytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Sterowanie z wykorzystaniem logiki rozmytej
Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie
RAPORT Z BADANIA ANKIETOWEGO NA TEMAT WPŁYWU CENY CZEKOLADY NA JEJ ZAKUP. Katarzyna Szady. Sylwia Tłuczkiewicz. Marta Sławińska.
RAPORT Z BADANIA ANKIETOWEGO NA TEMAT WPŁYWU CENY CZEKOLADY NA JEJ ZAKUP Katarzyna Szady Sylwia Tłuczkiewicz Marta Sławińska Karolina Sugier Badanie koordynował: Dr Marek Angowski Lublin 2012 I. Metodologia
Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)
ODWZOROWANIE PRZEBIEGU PULSACJI METODAMI SZTUCZNEJ INTELIGENCJI
Inżynieria Rolnicza 9(107)/2008 ODWZOROWANIE PRZEBIEGU PULSACJI METODAMI SZTUCZNEJ INTELIGENCJI Katedra Energetyki Rolniczej, Uniwersytet Rolniczy w Krakowie Streszczenie. Przedstawiono metodykę odwzorowania
Technologia Informacyjna. Arkusz kalkulacyjny
Technologia Informacyjna Arkusz kalkulacyjny Arkusz kalkulacyjny Arkusz kalkulacyjny - program komputerowy służący do wykonywania obliczeń i wizualizacji otrzymanych wyników. Microsoft Excel Quattro Pro
Programowanie w CLIPS
Programowanie w CLIPS CLIPS - środowisko open source do tworzenia systemów ekspertowych. Stworzone w NASA - Johnson Space Center. System ekspertowy - jest to program lub zestaw programów komputerowych
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba
Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym
Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd. Włodzimierz Bielecki WI ZUT
Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd Analiza Syntaktyczna Wstęp Parser dostaje na wejściu ciąg tokenów od analizatora leksykalnego i sprawdza: czy ciąg ten może być generowany przez gramatykę.
3. Metoda diagnozy i sterowania relacjami partnerskimi przedsiębiorstwa budowlanego
Elżbieta Radziszewska-Zielina 4 3. Metoda diagnozy i sterowania relacjami partnerskimi przedsiębiorstwa budowlanego 3.1. Wprowadzenie Można powiedzieć w dużym uproszczeniu, że partnerstwo, w odróżnieniu
REGUŁOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE
REGUŁOWO-MODELOWE SKORUPOWE SYSTEMY EKSPERTOWE Część 3: Systemy elementarne i rozwinięte z ocenami Antoni Niederliński Uniwersytet Ekonomiczny w Katowicach antoni.niederlinski@ue.katowice. pl Koniec pewnego
Układy VLSI Bramki 1.0
Spis treści: 1. Wstęp... 2 2. Opis edytora schematów... 2 2.1 Dodawanie bramek do schematu:... 3 2.2 Łączenie bramek... 3 2.3 Usuwanie bramek... 3 2.4 Usuwanie pojedynczych połączeń... 4 2.5 Dodawanie
Podstawowe I/O Liczby
Podstawowe I/O Liczby Informatyka Jolanta Bachan Implementacja algorytmów, cd. I/O: Keyboard in, screen out, no loops Jolanta Bachan 2 Implementacja algorytmów, cd. I/O: Keyboard in, screen out, no loops
Obróbka po realnej powierzchni o Bez siatki trójkątów o Lepsza jakość po obróbce wykańczającej o Tylko jedna tolerancja jakości powierzchni
TEBIS Wszechstronny o Duża elastyczność programowania o Wysoka interaktywność Delikatne ścieżki o Nie potrzebny dodatkowy moduł HSC o Mniejsze zużycie narzędzi o Mniejsze zużycie obrabiarki Zarządzanie
Metoda zaburz-obserwuj oraz metoda wspinania
Metoda zaburz-obserwuj oraz metoda wspinania Algorytm zaburz-obserwuj mierzy się moc (zwykle modułu) przed i po zmianie na tej podstawie podejmuje się decyzję o kierunku następnej zmiany Metoda wspinania
Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności