Sztuczna inteligencja : Zbiory rozmyte cz. 2
|
|
- Wacława Cieślik
- 8 lat temu
- Przeglądów:
Transkrypt
1 Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012
2 Funkcja trójkątna:
3 Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek: Funkcja trójkątna
4 Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek: Funkcja trójkątna Rysunek: Funkcja γ
5 Funkcja klasy L:
6 Funkcja klasy L: Rysunek: Funkcja L Funkcja trapezowa::
7 Funkcja klasy L: Rysunek: Funkcja L Funkcja trapezowa:: Rysunek: Funkcja trapezowa
8 Zadanie 2 Następująca funkcja rozmyta ma być użyta do obliczania funkcji przynależności dla zbioru osób zdrowych. 1 - zdrowy, 0 - nie zdrowy. Wartość pomiędzy 0 a 1 ma określać stopień przynależności do klasy zdrowych. BMI z przedziału między 20 a 25 to przesłanka do tego, by uznać kogoś za zdrowego. BMI większe niż 27 albo mniejsze niż 18 na pewno świadczy o stanie zdrowym. Wartości BMI bliskie zakresowi wartości dla osób zdrowych - a więc od 20 do 25, to wartości z przedziału 0 a 1. Np. BMI = 19.6 to 0.8. Narysuj graficznie reprezentację funkcji rozmytej health(x). Jaki jest stopień przynależności rozmytego zbioru dla osób zdrowych w przypadku Marka, którego BMI wynosi 26.2? Oblicz swój własny BMI BMI = waga wzrost wzrost Rysunek: Przykład
9 Zadanie 3 Zaproponuj funkcję przynależności dla wartości zmiennej lingwistycznej z zadania 1. Oblicz wartość funkcji przynależności dla 3 wybranych przez siebie wartości. Np. dla wskaźnika BMI 28, 23.2, Zadanie 4 Funkcję zdefiniowaną w poprzednim zadaniu zapisz w programie excel w postaci funkcji. W jednej kolumnie powinny znajdować się wartości, nastomiast w kolumnie drugiej wartość funkcji przynależności. Rysunek: Przykład Rysunek: Przykład
10 Suma logiczna (ang. union) zbiorow A oraz B, o funkcjach przynależności µ A (x), µ B (x), to zbior rozmyty C o funkcji przynależności stanowiącej maksimum: µ C (x) = µ A+B (x) = max(µ A (x), µ B (x)) Iloczyn logiczny (ang. intersection), to zbiór rozmyty C o funkcji przynależności równej minimum: µ C (x) = µ A B (x) = min(µ A (x), µ B (x))
11 Iloczyn algebraiczny dwóch zbiorów: C = {(, x, µ A (x) µ B (x)) x X } Rysunek: Iloczyn algebraiczny
12 Dopełnienie zbioru rozmytego: µá(x) = 1 µ A (x) Rysunek: Dopełnienie zbioru rozmytego
13 Koncentracja zbioru: Rozcieńczenie zbioru: µ CON(A) (x) = (µ A (x)) 2 µ DIL(A) (x) = (µ A (x)) 0.5 Rysunek: Koncentracja i rozcieńczenie zbioru
14 Rysunek: Regułowy system wnioskowania rozmytego
15 Przetwarzanie wstępne (ang. preprocessing) polega na przekształceniu danych doprowadzonych do wejścia systemu do formatu akceptowanego przez moduł wnioskowania. Przetwarzanie końcowe (ang. postprocessing) służy do konwersji danych wyjściowych z tego modułu do postaci zgodnej z wymogami układów zewnętrznych. Procedura fuzyfikacji (z ang. fuzzification), polega na transformacji wartości z dziedziny liczb rzeczywistych na wartości z dziedziny zbiorów rozmytych. W tym celu dokonuje się wyznaczenia wartości funkcji przynależności dla kolejnych zmiennych lingwistycznych i dla danej rzeczywistej wartości wejściowej. Defuzyfikacja (ang. defuzzification), zwana również wyostrzaniem, jest przekształceniem odwrotnym do rozmywania, czyli transformacją informacji zawartej w zbiorze rozmytym do postaci pojedynczej wartości (crisp value)
16 Usuwanie danych odstających. Gdzie pewna wartość ze zbioru danych wejściowych znacznie odstaje od pozostałych. Może się tak zdarzyć min. na skutek błędnie odczytanych wejściowych, przekłamania w zapisie itp. Rysunek: Dane odstające na wykresie
17 Rysunek: Wartości obserwacji w tabeli
18 Skalowanie danych do zadanego przedziału. Np: Dane wejściowe należą do przedziału < x min : x max > Dane wyjściowe należą do przedziału < y min : y max > y = y min + (x x min) (y max y min ) x max x min Sieci neuronowe < 1, 1 > Rozmyte sieci kognitywne < 0, 1 > Normalizacja danych do przedziału < 0 : 1 > y = x/x max W przypadku danych ujemnych : przedział < x min, x max > na < 0, y max > Dyskretyzacja danych wejściowych podział zbioru początkowego na n równych części. podział zbioru w zależności od częstości występowania obiektów.
19 Projekt Przygotować aplikację - parser, gdzie: Wybór pliku z danymi format wejściowy dancych: chwila czasu tab nazwa pojęcia tab wartość pojęcia 1 Pojecie Pojecie Pojecie3 8 2 Pojecie1 7 2 Pojecie2 5 2 Pojecie Pojecie1 3 3 Pojecie Pojecie3 14 itd. Wybór pomiędzy normalizacją 0:1 oraz skalowaniem danych. W przypadku skalowania danych : wybór nowego zakresu zmiennych. Zapis znormalizowanych/przeskalowanych danych do pliku.
Sztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
Bardziej szczegółowoSystemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Bardziej szczegółowoWYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek
Bardziej szczegółowoSztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
Bardziej szczegółowoJeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Bardziej szczegółowoZadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Bardziej szczegółowoW narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.
Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Bardziej szczegółowoINŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Bardziej szczegółowoRozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Bardziej szczegółowoZadanie 0 gdy nie mamy logiki rozmytej
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Bardziej szczegółowoSTANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Bardziej szczegółowoZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Bardziej szczegółowoPodstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
Bardziej szczegółowoInteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
Bardziej szczegółowoPiotr Sobolewski Krzysztof Skorupski
Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady
Bardziej szczegółowoUniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Bardziej szczegółowoWnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Bardziej szczegółowoZasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Wykład 8 Przekształcenia wiedzy generalizacja/specjalizacja; abstrakcja/konkretyzacja; podobieństwo/kontrastowanie; wyjaśnianie/predykcja. Przetwarzanie danych Przetwarzanie wstępne
Bardziej szczegółowoTemat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium
Bardziej szczegółowoKurs logiki rozmytej - pomoc. Wojciech Szybisty
Kurs logiki rozmytej - pomoc Wojciech Szybisty 2009 Spis treści 1 Wymagania 3 2 Zawartość strony internetowej 3 3 Obsługa apletów 6 3.1 Aplet Rodzaje funkcji przynależności...................... 6 3.2
Bardziej szczegółowoSterowanie z wykorzystaniem logiki rozmytej
Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie
Bardziej szczegółowoSystemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Bardziej szczegółowoTemat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie System
Bardziej szczegółowoPODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Bardziej szczegółowoKurs logiki rozmytej - zadania. Wojciech Szybisty
Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania
Bardziej szczegółowoMETODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
Bardziej szczegółowoSystemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Bardziej szczegółowoZakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Bardziej szczegółowo6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Bardziej szczegółowoTemat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Bardziej szczegółowoTemat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Bardziej szczegółowoALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP
Bardziej szczegółowo7. Zagadnienie parkowania ciężarówki.
7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Bardziej szczegółowoJeśli przeszkoda jest blisko to przyhamuj
Rozmyte systemy regułowe Informacja, którą przetwarzają ludzie często (prawie zawsze) jest nieprecyzyjna, a mimo to potrafimy poprawnie wnioskować i podejmować decyzję, czego klasyczne komputery nie potrafią.
Bardziej szczegółowoMetody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym
System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym Sterowanie rozmyte jest sterowaniem za pomocą reguł Sterowanie rozmyte można sklasyfikować jako: -
Bardziej szczegółowoTworzenie rozmytego systemu wnioskowania
Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy
Bardziej szczegółowoZASTOSOWANIE LOGIKI ROZMYTEJ W BUDOWIE SYSTEMÓW ZARZĄDZANIA WIEDZĄ PRODUKCYJNĄ
ZASTOSOWANIE LOGIKI ROZMYTEJ W BUDOWIE SYSTEMÓW ZARZĄDZANIA WIEDZĄ PRODUKCYJNĄ Alfred PASZEK Streszczenie: W artykule przedstawiono przykłady zastosowania elementów logiki rozmytej w opracowaniu reprezentacji
Bardziej szczegółowoSztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
Bardziej szczegółowoSystemy rozmyte i ich zastosowania. Krzysztof Rykaczewski
Systemy rozmyte i ich zastosowania Krzysztof Rykaczewski 21 czerwca 2006 SPIS TREŚCI Spis treści 1 Wstęp 1 2 Podstawowe pojęcia i definicje logiki rozmytej 1 2.1 Przykłady funkcji przynależności..................
Bardziej szczegółowoLogika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Bardziej szczegółowoLogika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan
Bardziej szczegółowozaznaczymy na osi liczbowej w ten sposób:
1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb
Bardziej szczegółowoSieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte
Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,
Bardziej szczegółowoUkłady logiki rozmytej. Co to jest?
PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy
Bardziej szczegółowoMetody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Bardziej szczegółowoMet Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Bardziej szczegółowoImplementacja rozmytych systemów wnioskujących w zdaniach regulacji
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowoTemat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej
Wrocław, 13.01.2016 Metody sztucznej inteligencji Prowadzący: Dr hab. inż. Ireneusz Jabłoński Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej Wykonał: Jakub Uliarczyk, 195639
Bardziej szczegółowoMetoda zaburz-obserwuj oraz metoda wspinania
Metoda zaburz-obserwuj oraz metoda wspinania Algorytm zaburz-obserwuj mierzy się moc (zwykle modułu) przed i po zmianie na tej podstawie podejmuje się decyzję o kierunku następnej zmiany Metoda wspinania
Bardziej szczegółowoZagadnienia AI wykład 1
Zagadnienia AI wykład Podręcznik do wykładu: Leszek Rutkowski Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN Prezentacje do wykładu będą sukcesywnie umieszczane na stronie: http://merlin.fic.uni.lodz.pl/mskulimowski/
Bardziej szczegółowo1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
Bardziej szczegółowo1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Bardziej szczegółowoLogika Stosowana Ćwiczenia
Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15
Bardziej szczegółowo1 Moduł Modbus ASCII/RTU 3
Spis treści 1 Moduł Modbus ASCII/RTU 3 1.1 Konfigurowanie Modułu Modbus ASCII/RTU............. 3 1.1.1 Lista elementów Modułu Modbus ASCII/RTU......... 3 1.1.2 Konfiguracja Modułu Modbus ASCII/RTU...........
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Bardziej szczegółowoSchematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst.
Schematy blokowe I Jeżeli po schematach blokowych będzie używany język C, to należy używać operatorów: '&&', ' ', '!=', '%' natomiast jeśli Ruby to 'and', 'or', '%', '!='. 1. Dostępne bloki: a) początek:
Bardziej szczegółowoPrzetwarzanie obrazów wykład 4
Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)
Bardziej szczegółowoWykład 3. Rozkład normalny
Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary
Bardziej szczegółowoSID Wykład 7 Zbiory rozmyte
SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent
Bardziej szczegółowoTemat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Bardziej szczegółowoZadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Bardziej szczegółowoPracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz
Bardziej szczegółowoSpis treści. 1 Moduł Modbus TCP 4
Spis treści 1 Moduł Modbus TCP 4 1.1 Konfigurowanie Modułu Modbus TCP................. 4 1.1.1 Lista elementów Modułu Modbus TCP............ 4 1.1.2 Konfiguracja Modułu Modbus TCP.............. 5 1.1.3
Bardziej szczegółowoOperacje przetwarzania obrazów monochromatycznych
Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych
Bardziej szczegółowoZASTOSOWANIE LOGIKI ROZMYTEJ W ZARZĄDZANIU ZAPASAMI THE USE OF FUZZY LOGIC IN INVENTORY MANAGEMENT
orota Rogowska ZASTOSOWANIE LOGIKI ROZYTEJ W ZARZĄZANIU ZAPASAI Streszczenie Zagadnienie zarządzania zapasami zajmuje ważne miejsce w każdym przedsiębiorstwie. Zapasy stanowią bowiem podstawę zapewnienia
Bardziej szczegółowoĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Bardziej szczegółowoa[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76
. p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować
Bardziej szczegółowoMETODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI
METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI CELE PROJEKTU Transformacja dowolnej bazy danych w min. 3 postaci normalnej do postaci Asocjacyjnej Grafowej
Bardziej szczegółowoDefinicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
Bardziej szczegółowoSztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Bardziej szczegółowoRACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
Bardziej szczegółowoTRANSFORMACJE I JAKOŚĆ DANYCH
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING TRANSFORMACJE I JAKOŚĆ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Bardziej szczegółowoCel projektu: Wymogi dotyczące sprawozdania:
W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,
Bardziej szczegółowo3.3.1. Metoda znak-moduł (ZM)
3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym
Bardziej szczegółowoPodstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)
Bardziej szczegółowoAnaliza składowych głównych
Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoTechnologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Bardziej szczegółowoPython: JPEG. Zadanie. 1. Wczytanie obrazka
Python: JPEG Witajcie! Jest to kolejny z serii tutoriali uczący Pythona, a w przyszłości być może nawet Cythona i Numby Jeśli chcesz nauczyć się nowych, zaawansowanych konstrukcji to spróbuj rozwiązać
Bardziej szczegółowoSystemy ekspertowe - wiedza niepewna
Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoTeoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoKURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +
Bardziej szczegółowoNa rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].
Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji
Bardziej szczegółowoTeoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoLogika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Bardziej szczegółowo2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24
SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste
Bardziej szczegółowoArytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Bardziej szczegółowoELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej
ELEMENTY SZTUCZNEJ INTELIGENCJI 1 Wstęp do logiki rozmytej PLN 1. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte: 1. typu
Bardziej szczegółowo