Algebra z Geometrią Analityczną Informatyka WPPT Lista zadań
|
|
- Bogusław Marczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Algebra z Geometrią Analityczną Informatyka WPPT Lista zadań Jacek Cichoń, Wrocław 2015/16 1 Struktury algebraiczne Zadanie 1 Które z następujących struktur algebraicznych są grupami: (Z, +), (Z, ), (Q, +), (N, +), (R, ), ((0, ), ), (R \ {0}, )? Zadanie 2 Wyznacz tabliczki działań dla grup C 5 oraz Sym(3). Wyznacz dla tych grup tabliczki działania x 1. ( ) ( ) Zadanie 3 Niech π = oraz σ = Oblicz π 1 oraz σ Oblicz π σ oraz σ π. 3. Oblicz (π σ) 1 oraz (σ π) Znajdź takie permutacje x, y Sym(5), że π x = σ oraz y π = σ. 5. Rzędem elementu g w grupie (G, ) z elementem neutralnym e nazywamy najmniejszą liczbę naturalną k 1 taką, że g k = e (lub, jeśli takiej liczby k nie ma). Wyznacz rzędy permutacji σ oraz π w grupie Sym(5). Zadanie 4 Wyznacz rzędy wszystkich elementów w grupie C 12. Sformułuj jakąś rozsądną hipotezę o rzędach elementów w grupie. Zadanie 5 Pokaż, że grupy ({ 1, 1}, ) oraz C 2 są izomorficzne. Zadanie 6 Pokaż, że grupy (R, +) oraz ((0, + ), ) są izomorficzne. Zadanie 7 Spróbuj zbudować grupę (G, ) z elementem neutralnym e nieizomorficzną z grupą C 2 w której dla dowolnego elementu g mamy g g = e. Zadanie 8 Pokaż, że jeśli w grupie (G, ) z elementem neutralnym e mamy ( g G)(g g = e), to grupa ta jest abelowa. Zadanie 9 Które z następujących struktur algebraicznych są pierścieniami, a które ciałami: (Z, +, ), (Q, +, ), (N, +, ), (R, +, )? Zadanie 10 Wyznacz tabliczki działań dla pierścieni Z 5 oraz Z 6. Zadanie 11 Rozwiąż w ciałach Z 5, Z 7 oraz Z 11 następujące równania: 1. 2x = x + 3 = 1 1
2 3. 2x + 4 = 1 Rozwiąż w ciałach Z 5 oraz Z 7 następujące układy równań: Zadanie 12 { 1. 2x { x + 2y = 3 + 3y = 1 2. x + y = 3 3x + y = 1 Zadanie 13 Niech (R, +, ) będzie pierścieniem przemiennym. Pokaż, że dla dowolnych x, y R mamy: 1. (x + y)(x y) = x 2 y 2, 2. (x + y) 2 = x xy + y 2, 3. (x + y) 3 = x x 2 y + 3 xy 2 + y 3. Uwaga: Przez 2 x rozumiemy x + x a przez 3 x rozumiemy element x + x + x. 2 Liczby całkowite Zadanie 14 Udowodnij, stosując metodę indukcji matematycznej, następujące fakty: 1. ( n 1)(6 (n 3 n)), 2. ( n 3)(n 2 2n + 1), 3. ( n 4)(2 n n 2 ), (2n + 1) = (n + 1) 2. Zadanie 15 Oblicz, stosując algorytm Euklidesa, NWD oraz NWW dla następujących par liczb naturalnych: (12, 40), (11, 17), (570, 348), (12345, 67890). Zadanie 16 Oblicz, stosując rozkład liczb na czynniki pierwsze, NWD oraz NWW dla następujących par liczb naturalnych: (12, 40), (11, 17), (570, 348), (12345, 67890). Zadanie 17 Znajdź wszystkie pary (n, m) liczb naturalnych takich, że NWD(n, m) = 18 oraz NWW(n, m) = 108. Zadanie 18 Pokaż, że ( n N)(NDW(n, n + 1) = 1). Zadanie 19 Niech F 0, F 1, F 2,... będą liczbami Fibonacciego: F 0 = 1, F 1 = 1 i F n+1 = F n + F n 1 dla wszystkich n 1. Pokaż, że dla wszystkich n N mamy NWD(F n, F n+1 ) = 1. Wskazówka: Zastosuj metodę indukcji matematycznej; skorzystaj z tego, że NWD(a, b) = NWD(a b, b) dla a > b. Zadanie 20 Niech f(n) = n 2 + n Znajdź najmniejszą liczbę naturalną n taką, że f(n) nie jest liczbą pierwszą. Wskazówka: Wszyskie poprawne metody są dozwolone.. Zadanie 21 Niech A Z będzie podgrupą grupy (Z, +) (czyli A ma następujące własności: a, b A a + b A oraz a A a A). Pokaż, że istnieje liczba naturalna k taka, że A = {k x : x Z}. Wskazówka: Przyjrzyj się liczbie min(a (N \ {0})). 2
3 3 Liczby zespolone 3.1 Podstawowe własności Zadanie 22 Niech a = 2 + 3i oraz b = 1 i. 1. Oblicz a + b, a b, 1 a, 1 b, a b, b a 2. Zaznacz na płaszczyźnie zespolonej wszystkie powyższe liczby. 3. Oblicz a, b, a, b. Zadanie 23 Rozwiąż w ciele liczb zespolonych następujące równania: 1. (1 + i) (2 + z) = 3i, 2. (2 + i) (1 + 2z) = 3 + i Rozwiąż w ciele liczb zespolonych następujące układy równań: Zadanie 24 { 1. ix { x + 2iy = 3 + 3y = 1 2. ix + y = 1 + i 3x + 2y = i Zadanie 25 Rozwiąż w ciele liczb zespolonych następujące równania: 1. z 2 = 3, 2. z 2 + z + 1 = 0 Zadanie 26 Niech z 1, z 2 C. Pokaż, że 1. z 1 + z 2 = z 1 + z 2 2. z 1 z 2 = z 1 z 2 3. z 1 z 2 = z 1 z 2 4. z 1 z 1 = z 1 2 Zadanie 27 Pokaż, że struktura ({1, i, 1, i}, ) jest grupą izomorficzną z grupą C 4. Zadanie 28 Naszkicuj następujące zbiory: 1. {z C : z 1 i = 1}, 2. {z C : z 1 + i < 1}, 3. {z C : z i 2}, 4. {z C : 1 2 z 1 1}, 5. {z C : z 1 = z i }. Zadanie 29 Niech K = Z 3. Nad ciałem K budujemy zbiór liczb zespolonych modulo 3 : na zbiorze par K K określamy działania (a, b)+(c, d) = (a+c, b+d) oraz (a, b) (c, d) = (ac bd, ad+bc) (działania + i wewnątrz par oznaczają działania modulo 3). Pokaż, że struktura (K K, +, ) jest dziewięcio-elementowym ciałem. 1. W grupie (K K, +) wyznacz rząd elementu (1, 0). 2. Dlaczego ta sama konstrukcja zastosowana do ciała Z 5 nie daje ciała? 3. Uzasadnij, że po zastosowaniu tej konstrukcji do ciała Z 11 otrzymamy ciało o 121 elementach. Zadanie 30 Niech Z[i] = {a + bi : a, b Z}. 3
4 1. Pokaż, że (Z[i], +, ) jest pierścieniem 2. Wyznacz elementy odwracalne w Z[i], tzn. znajdź takie liczby x Z[i], ze istnieje y Z[i], taki że x y = Wyznacz elementy odwracalne w (Z, +, ). Uwaga: Rozważany pierścień nazywa się pierścieniem liczb Gaussa. Zadanie 31 Narysuj na płaszczyźnie zespolonej zbiór liczb zespolonych spełniających następujące warunki: 1. Re(z) Im(z) > 0 2. Re(z) 2 + Im(z) 2 = 9 3. z 2 i = z 2 + i Zadanie 32 Wyznacz takie liczby zespolone z dla których Re(z 2 ) = 1 oraz z = 3. Zadanie 33 Pokaż, że dla dowolnych liczb zepolonych z 1, z 2 C mamy z 1 + z z 1 z 2 2 = 2( z z 2 2 ). Zadanie 34 Pokaż, że struktura Q( 2) = ({a + b 2 : a, b Q}, +, ) jest ciałem. Zadanie 35 Niech G = (G, ) oraz H = (H, ) będą grupami. Rozważamy strukturę G H = (G H, ) (przez G H oznaczamy iloczyn kartezjański zbiorów G i H, czyli zbiór {(x, y) : x G y H}) z działaniem określonym wzorem (g 1, h 1 ) (g 2, h 2 ) = (g 1 g 2, h 1 h 2 ). Uwaga: Grupę tę nazywamy produktem grup G oraz H. 1. Pokaż, że G H jest grupą 2. Pokaż, że grupy C 4 oraz C 2 C 2 nie sa izomorficzne. 3. Pokaż, że jeśli G jest grupą cztero-elementową to G jest izomorficzna z grupą C 4 lub z grupą C 2 C Postać trygonometryczna Zadanie 36 Przedstaw w postaci trygonometrycznej następujące liczby: 2, 3i, 1+i, i, 1 i, 2 i, 5 5i. Zadanie 37 Oblicz (1 + i) 10, ( 5+7i 1 6i) 11, ( 3 + i) 12. Zadanie 38 Wyznacz moduły i argumenty główne następujących liczb: (1+i) 10 (, (1+i 3) i) 8 (1 i) 5 Zadanie 39 Wyznacz wszystkie takie liczby zespolone z C, że z 2 R. Zadanie 40 Korzystając ze wzoru de Moivre a wyraź sin(3t) za pomocą funkcji sin(t). Zadanie 41 Oblicz sumę 1 + (1 + i) + (1 + i) (1 + i) 10. Zadanie 42 Wyznacz następujące pierwiastki: Zadanie 43 Rozwiąż nastepujące równania 1. iz 2 + z + i = 0, 4 1, 4 i, 3 i, i. 4
5 2. iz 2 + z + 1 = 0. Zadanie 44 Znajdź takie liczby z C, że z 5 = 1 oraz z 7 = 1. * Zadanie 45 Na wszystkich bokach równoległoboku zbudowano zewnętrzne kwadraty. Pokaż, że środki tych kwadratów tworzą kwadrat. Zadanie 46 Niech n N będzie dodatnią liczbą naturalną. Pokaż, że zbiór {z C : z n = 1} z mnożeniem jest grupą izomorficzną z grupą C n. Zadanie 47 Załóżmy, że z jest taką liczbą zespoloną, że z + 1 z = 2 cos( π 100 ). Oblicz z Wskazówka: Zapisz rozwiązania równania z + 1 z = 2 cos(π/100) w postaci trygonometrycznej. 4 Wielomiany z 100. Zadanie 48 Oblicz sumy, różnice i iloczyny następujących par wielomianów w pierścieniu C[x]: 1. P (x) = 2x 4 x 3 + 1, Q(x) = x 3 + 2x 1 2. P (x) = 1 + x + x 2 + x 3 + x 4, Q(x) = x 1 3. P (x) = (1 + i)x 2 + 2x + 2i, Q(x) = x 3 + ix + 1 Zadanie 49 Oblicz sumy, różnice i iloczyny następujących par wielomianów w pierścieniu Z 5 [x]: 1. P (x) = 2x 4 + 4x 3 + 1, Q(x) = 4x 3 + 2x P (x) = 1 + x + x 2 + x 3 + x 4, Q(x) = x + 4 Zadanie 50 Oblicz ilorazy oraz reszty z dzieleń następujących par wielomianów w pierścieniu R[x]: 1. P (x) = 2x 4 x 3 + 1, Q(x) = x P (x) = x 4 + 2x 2 + 2, Q(x) = x 2 + x P (x) = x 5 + 2x + 1, Q(x) = x 3 + x + 1 Zadanie 51 Oblicz ilorazy oraz reszty z dzieleń następujących par wielomianów w pierścieniu Z 5 [x]: 1. P (x) = 2x 4 + 4x 3 + 1, Q(x) = x P (x) = x 4 + 2x 2 + 2, Q(x) = x 2 + x P (x) = x 5 + 2x + 1, Q(x) = x 3 + x + 1 Zadanie 52 Zastosuj schemat Hornera do podzielenia z resztą następujących par wielomianów w pierścieniu R[x]: 1. P (x) = 4x 5 + x 4 3x 2 + 2x 1, Q(x) = x 3 2. P (x) = x 5 x 4 + x 3 x 3 + x 1, Q(x) = x 1 Zadanie 53 Znajdź wszystkie pierwiastki całkowite następujących wielomianów: 1. 2x 4 8x 3 + 5x 2 + 4x 3 2. x 4 + 2x 3 4x 2 10x x 5x 2 + x 3 Zadanie 54 Znajdź wszystkie pierwiastki wymierne następujących wielomianów: 1. 2x 3 + x 2 + x 1 5
6 2. 6x 4 x 3 + 5x 2 x x 5 + 7x 4 + 3x 3 + 7x 2 3x Zadanie 55 Reszta z dzielenia wielomianu f(x) przez x 1 jest równa 3, a reszta z dzielenia f(x) przez x 4 jest równa 5. wyznacz resztę z dzielenia wielomianu f(x) przez (x 1)(x 4). Zadanie 56 Pokaż, że jeśli a b, to reszta z dzielenia wielomianu φ przez wielomian (x a)(x b) jest równa φ(a) φ(b) bφ(a) aφ(b) x +. a b b a Zadanie 57 Pokaż, że reszta w dzielenie wielomianu φ(x) przez (x a) 2 wynosi φ (a)(x a)+φ(a). Zadanie 58 Podaj warunki konieczne i wystarczające na to aby wielomiany x 2 +px+q i x 3 +px+q miały pierwiastki wielokrotne. Zadanie 59 Pokaż, że dla dowolnego wielomianu p(x) K[x] oraz dowolnego c K mamy p(x + c) = p (x + c). Zadanie 60 Pokaż, że jeśli φ (x) φ(x) to φ(x) = a(x b) n dla pewnych a, b K oraz n N. Wskazówka: Jeśli φ (x) φ(x) to φ(x) = φ (x)(x b) dla pewnego b. Skorzystaj następnie z poprzedniego zadania. Zadanie 61 Wyznacz: 1. NW D(x 4 4, x 4 + 4x 2 + 4), 2. NW D(x 5 1, x 4 1), 3. NW D(2x 5 1, x 4 1). Zadanie 62 Dla podanych par wielomianów P, Q R[x] wyznacz wielomiany α, β R[x] takie, że NW D(P, Q) = α P + β Q: 1. P (x) = x 3 1, Q(x) = x P (x) = x 4 1, Q(x) = x * Zadanie 63 Dla jakich liczb całkowitych p wielomian P (x) = x 13 + x + 90 jest podzielny przez wielomian Q(x) = x 2 x p? Wskazówka: Zauważ, że Q(0) = Q(1) = p. Zadanie 64 Pokaż, stosując czysto algebraiczne środki, że każdy wielomian z R[x] nieparzystego rzędu ma rzeczywisty pierwiastek. Zadanie 65. Niech ɛ n,k = e 2πik n. Pokaż, że n 1 x n 1 = (x ɛ n,k ). k=0 Zadanie 66 Znajdź rozkłady wielomianów x 5 1, x 6 1 i x 8 1 na iloczyn nierozkładalnych wielomianów z pierścienia R[x] Zadanie 67 Pokaż, że wielomiany następujące wielomiany są nierozkładalne w Q[x]: 1. x 7 + 6x 2 18x x
7 2. x 3 3x 1, 3. x 4 + x 2 1 Zadanie 68 Niech p(x) Z[x]. Niech a, b, c Z będą parami różne oraz, że p(a) = p(b) = p(c) = 1. Pokaż, że wielomian p(x) nie ma zer całkowitych. * Zadanie 69 Niech a 1, a 2,..., a n będą parami różnymi liczbami całkowitymi. Pokaż, że wielomian (x a 1 )(x a 2 ) (x a n ) 1 jest nierozkładalny w Q[x]. Wskazówka: Załóż, że w(x) = u(x)v(x); przyjrzyj się najpierw wartością u(a k )v(a k ), a potem wartością u(a k ) + v(a k ). * Zadanie 70 Załóżmy, że wielomian w(x) C[x] spełnia równanie funkcyjne w(x 2 ) = (w(x)) 2. Pokaż, że w = 0 lub w(x) = x n dla pewnego n N. Wskazówka: Zauważ, że jeśli w(x) = 0, to również w(x 2 ) = 0. Z tego wywnioskuj, że jeśli w jest niezerowy, to nie może mieć niezerowych pierwiastków zespolonych o module różnym od 1. Zauważ następnie, że jeśli w(x) = 0 oraz y 2 = x to również w(y) = 0. Zadanie 71 Znajdź niezerowy wielomian w Z[x] którego pierwiastkiem jest liczba Zadanie 72 Wyznacz wszystkie nierozkładalne wielomiany pierścienia Z 2 [x] stopnia 4 oraz 5. Zadanie 73 Pokaż, że charakterystyka ciała jest równa zero lub jest liczbą pierwszą. Zadanie 74 Rozwiąż równanie x 3 6x 6 = 0. 5 Przestrzeń R n Zadanie 75 Wyznacz zbiory 1. { x R 2 : x, (1, 1) = 0} 2. { x R 3 : x, (1, 1, 1) = 0} 3. { x R 3 : x (0, 0, 1) = 1} Zadanie 76 Pokaż, że dla dowolnych a, b R oraz x, y, z R n mamy a x + b y, z = a x, z + a x, z. Zadanie 77 Pokaż, że dla dowolnych x, y R n mamy x, y = x + y x y 4. Zadanie 78 Pokaż, że x y x y. Zadanie 79 Ustalmy punkty A = (0,..., 0), B, C R n. Rozważmy trójkąt o wierzchołkach A, B, C. Jaka jest długość wysokości w tym trójkącie opuszczonej z wierzchołka C na krawędź AB? Zadanie 80 Wyznacz współrzędne punktu środkowego trójkąta wyznaczonego przez końce wektorów x, y, z R n. 6 Przestrzenie wektorowe Zadanie 81 Niech K będzie ciałem. 7
8 1. Pokaż, że K[x] jest przestrzenią wektorową nad ciałem K. 2. Niech n N. Rozważmy zbiór K n [x] = {w K[x] : deg(w) n}. Pokaż, że że K n [x] jest przestrzenią wektorową nad ciałem K. Zadanie 82 Pokaż, że w dowolnej przestrzeni wektorowej V nad dowolnym ciałem K prawdziwe są następujące fakty: 1. ( x V )(0 x = 0), 2. ( λ K)(λ 0 = 0), 3. ( λ K)( x V ) (( λ) x = λ( x) = (λ x)). Zadanie 83 Pokaż, że jeśli B jest zbiorem liniowo niezależnym, to 0 / B. Zadanie 84 Załóżmy, że zbiór {f 1, f 2, f 3, f 4 } V jest liniowo niezależny. 1. Pokaż, że zbiór {f 1, f 1 + f 2, f 1 + f 2 + f 3, f 1 + f 2 + f 3 + f 4 } jest liniowo niezależny. 2. Pokaż, że zbiór {f 1, f 2, f 3, f 3 + f 4 } jest liniowo niezależny. 3. Pokaż, że zbiór {f 1, f 2, f 3 f 4, f 4 } jest liniowo niezależny. 4. Uogólnij powyższe fakty na większą liczbę elementów. Zadanie 85 Niech V = R 2, f 1 = (2, 1), f 2 = (1, 2) oraz B = {f 1, f 2 }. 1. Pokaż, że zbiór B jest bazą przestrzeni V. 2. Niech (x, y) V. Znajdź takie liczby rzeczywiste λ, µ, że (x, y) = λ f 1 + µ f 2. Zadanie 86 Rozszerz zbiór wektorów {(1, 1, 1), (2, 1, 3)} do bazy przestrzeni R 3. Wskazówka: Znajdź taki wektor a R 3, że a, (1, 1, 1) = 0 oraz a, (2, 1, 3) = 0. Zadanie 87 Niech K będzie k elementowym ciałem. Załóżmy, że zbiór F = {f 1,..., f n } jest liniowo niezależny. Pokaż, że wtedy zbiór Lin(F ) ma k n elementów. Zadanie 88 Niech K będzie ciałem. 1. Pokaż, że zbiór wielomianów {1, x, x 2,..., x n } jest bazą przestrzeni liniowej K n [x]. 2. Pokaż, że zbiór wielomianów {1, x 1, (x 1) 2,..., (x 1) n } jest również bazą przestrzeni liniowej K n [x]. Zadanie 89 Pokaż, że niepusty podzbiór H przestrzeni wektorowej V jest podprzestrzenią przestrzeni V wtedy i tylko wtedy, gdy Lin(H) = H. Zadanie 90 Pokaż, że jeśli S jest niepustą rodziną podprzestrzeni linowych przestrzeni V, to zbiór S jest również podprzestrzenia liniową przestrzeni V. Zadanie 91 Niech E będzie dowolnym niepustym podzbiorem przestrzeni wektorowej V. Niech S będzie rodziną wszystkich podprzestrzeni liniowych przestrzeni V które zawierają zbiór E. Pokaż, że Lin(E) = S. 7 Odwzorowania liniowe i macierze Zadanie 92 Niech F : V H będzie odwzorowaniem liniowym skończenie wymiarowych przestrzeni wektorowych V i K. 1. Pokaż, że dim(rng(f )) dim(v ). 2. Kiedy dim(v ) = dim(rng(f ))? 8
9 [ ] [ ] Zadanie 93 Niech A =, B =. Oblicz 2A + 3B, A B oraz B A Zadanie 94 Niech A = 1 1 1, B = Oblicz A 2B, A B oraz B A Zadanie 95 Oblicz [ ] Zadanie 96 Niech F : R 3 R 3 będzie zadana wzorem x F (x, y, z) = y z Wyznacz przestrzenie ker(f ) oraz rng(f ) oraz ich wymiary. Zadanie 97 Niech F : R 3 R 3 będzie odwzorowaniem liniowym zadanym wzorem F (x, y, z) = (2x + z, x y + z, x + 2y). Wyznacz macierz przekształcenia F w standardowej bazie przestrzeni R 3. Zadanie 98 Niech F : R 2 R 2 będzie odwzorowaniem liniowym zadanym wzorem F (x, y) = (x y, x + y). 1. Wyznacz macierz przekształcenia F w standardowej bazie przestrzeni R Wyznacz macierz przekształcenia F w bazie uporządkowanej {f 1 = (1, 1), f 2 = (1, 1)}. Zadanie 99 Niech A K m n oraz B K p,m. Pokaż, że (B A) T = A T B T. [ ] 1 0 Zadanie 100 Niech A =. Wyznacz kilka pierwszych potęg A 0 2 n, odgadnij ogólny wzór na A n i następnie udowodnij go, stosując metodę indukcji matematycznej. [ ] 0 1 Zadanie 101 Niech A =. Wyznacz kilka pierwszych potęg A 2 0 n, odgadnij ogólny wzór na A n i następnie udowodnij go, stosując metodę indukcji matematycznej. Zadanie 102 Niech F : R 2 R 2 będzie funkcją, która każdemu punktowi przyporządkowuje jego odbicie względem prostej zadanej równaniem y = 3x. Pokaż, że F jest transformacją liniową i wyznacz jej macierz w standardowej bazie. Wskazówka: 3 = tan(60 o ). [ ] cos α sin α Zadanie 103 Niech R α =. sin α cos α 1. Pokaż, że rodzina macierzy {R α : α R} jest grupą ze względu na operację mnożenia macierzy. 2. Pokaż, że powyższa grupa jest izomorficzna z grupą ({z C : z = 1}, ). Zadanie 104 Opisz wszystkie przekształcenia liniowe z R w R. Zadanie 105 Opisz wszystkie przekształcenia liniowe z R n w R. 9
10 Zadanie 106 Niech F : R 2 R 2 będzie określona wzorem F (x, y) = (ax, by), gdzie a, b > 0. Niech S = {(x, y) R 2 : x 2 + y 2 1}. 1. Wyznacz macierz odwzorowania F. 2. Wyznacz obraz F [S]. 3. Wyznacz powierzchnie zbioru F [S]. 4. Wyznacz macierz F 1 w standardowej bazie R 2. * Zadanie 107 Śladem macierzy kwadratowej A = [a i,j ] nazywamy liczbę tr(a) = i a ii. Pokaż, że dla dowolnych dwóch macierzy kwadratowych A i B tego samego rozmiaru mamy: 1. tr(a + B) = tr(a) + tr(b), 2. tr(a B) = tr(b A). Zadanie 108 Pokaż, że nie istnieją macierze kwadratowe A, B tego samego rozmiaru takie, że gdzie I oznacza macierz jednostkową. A B B A = I, Zadanie 109 Niech F : C M2 2 R będzie określone wzorem [ ] a b f(a + bi) =. b a Pokaż, że: 1. f(z 1 + z 2 ) = f(z 1 ) + f(z 2 ) 2. f(z 1 z 2 ) = f(z 1 ) f(z 2 ) 3. z = det(f(z)) Zadanie 110 Niech V 1, V 2 będą przestrzeniami liniowymi wymiarów n oraz m. Wyznacz wymiar przestrzeni L(V 1, V 2 ) odwzorowań liniowych z V 1 w V 2. Wskazówka: Ustal bazy B, C obu przestrzeni. Przyglądnij się przestrzeni macierzy {M C,B (F ) : F L(V 1, V 2 )}. Wystarczy, że wskażesz jedną bazę tej przestrzeni. Zadanie 111 Czy z równania macierzowego A B = A C wynika B = C, jeśli A 0? [ ] a b Zadanie 112 Niech A =. Oblicz c d A 2 tr(a) A + det(a) I. Zadanie 113 Wyznacz równanie obrotu płaszczyzny wokół punktu (x 0, y 0 ) o kąt α. Wskazówka: Zastosuj metodę zapisu transformacji afinicznych płaszczyzny z pomocą macierze rozmiaru 3 3. Przesuń najpierw punkt (x 0, y 0 ) do środka układu współrzędnych.. 8 Wyznaczniki ( ) n 1 n Zadanie 114 Wyznacz znak permutacji π = n 1 Wskazówka: Zapisz π jako superpozycję n 1 transpozycji. 10
11 Zadanie 115 Jaka jest złożoność obliczeniowa algorytmu wyznaczania znaku permutacji opartego na definicji sgn(π) = ( 1) I(π), gdzie I(π) oznacza liczbę inwersji w permutacji π? Zadanie 116 Niech n 2 oraz A n = {π S n : sgn(π) = 1}. Pokaż, że A n = 1 2 n!. Zadanie 117 Wyznacz wyznaczniki następujących macierzy: [ ] [ ] cos α sin α 1 a 1. A =, B = sin α cos α A = 1 2 1, B = i A = , B = 1 2i 2 i Zadanie 118 Oblicz wyznacznik macierzy a x 21 b A = x 31 x 32 c 0 0 x 41 x 42 x 43 d 0 x 51 x 52 x 53 x 54 e Zadanie 119 Oszacuj złożoność obliczeniową, mierzoną liczbą wykonywanych operacji arytmetycznych, algorytmu wyznaczania wyznacznika macierzy kwadratowej A rozmiaru n n opartego bezpośrednio na definicji det(a) = n sgn(π) a i,π(a). π S n i=1 Do ostatecznego oszacowania złożoności wykorzystaj wzór Stirlinga n! 2πn ( ) n n. e Zadanie 120 Zaproponuj algorytmu wyznaczania wyznacznika macierzy kwadratowej o złożoności O(n 3 ) (podobnie jak wyżej, mierzoną liczbą wykonywanych operacji arytmetycznych) gdzie n jest liczbą kolumn danej macierzy. Zadanie 121 Niech a a A = a n a n (w macierzy tej wszystkie wyrazy poza leżącymi na przekątnej łączącą lewy górny róg z prawym dolnym rogiem są równe zero). Uwaga: Macierz tej postaci nazywamy diagonalną i oznacza się ją często przez diag(a 1,..., a n ). 1. Oblicz det(a). 2. Pokaż, że diag(a 1,..., a n ) diag(b 1,..., b n ) = diag(a 1 b 1,..., a n b n ). 3. Wyznacz A k dla k N 11
12 Zadanie 122 Niech a n a n 1 0 A = a a (w macierzy tej wszystkie wyrazy poza leżącymi na przekątnej łączącą lewy dolny róg z prawym górnym rogiem są równe zero). Oblicz det(a). Zadanie 123 Oblicz wyznacznik macierzy Zadanie 124 Załóżmy, że A = [a i,j ] i,j=1,...,n jest taką macierzą rozmiaru n n taką, że a i,j {0, 2} dla wszystkich i, j {1,..., n}. Pokaż, że det A jest liczbą podzielną przez 2 n. Zadanie 125 Załóżmy, że A = [a i,j ] i,j=1,...,n jest taką macierzą rozmiaru n n taką, że a i,j { 1, 1} dla wszystkich i, j {1,..., n}. Pokaż, że det A jest liczbą podzielną przez 2 n 1. Zadanie 126 Znajdź macierze odwrotne do następujących macierzy: [ ] Zadanie 127 Rozwiąż, stosując wzory Cramera, następujące układy równań: { 2x + y = 1 x + y = 2, 2x + 3y + z = 1 x + y z = 2 3x 2y + 2z = 1, x y + z = 1 x + y z = 1 x y z = 2 Zadanie 128 Zastosuj wzory Cramera do znalezienia równanie paraboli przechodzącej przez punkty (1, 2), (2, 3) i (3, 1). Zadanie 129 Zastosuj wzory Cramera do wyznaczenia wielomianu trzeciego stopnia y = ax 3 + bx 2 + c x + d przechodzącego przez punkty (1, 1), ( 1, 0), (2, 0) (3, 1). Zadanie 130 Znajdź liczby a, b, c R takie, że 2x + 1 (x 2) 2 (x + 1) = a (x 2) 2 b x c x 2 Zadanie 131 Wyznacz rzędy następujących macierzy
13 Zadanie 132 Załóżmy, że macierze A i B są tego same go rozmiaru. Pokaż, że rank(a + B) rank(a) + rank(b) Wskazówka: Skorzystaj bezpośrednio z definicji: rank(a) = dim(lin([k 1,..., k n ])). Zadanie 133 Niech (a i ) i=1,...,n oraz (b i ) i=1,...,n będą dwoma ciągami elementów ustalonego ciała. Niech c i,j = a i b j. Niech C = [c i,j ] i,j=1,...,n Pokaż, że rank(c) 1. Zadanie 134 Dane jest sześć liczb rzeczywistych x 1, x 2, y 1, y 2, t 1, t 2 takich, że x 1 x 2. Pokaż, że istnieje wielomian w(x) R[x] stopnia 3 taki,że w(x 1 ) = y 1, w(x 2 ) = y 2 oraz w (x 1 ) = t 1, w (x 2 ) = t 2. Zadanie 135 Stosując metodą eliminacji Gaussa-Jordana rozwiąż następujące układy równań: { 2x + y = 1 x + 3y = 2 2x + 3y + z = 1 x + 2y z = 2 3x 2y + 2z = 1 x y + z = 1 x + y z = 1 3x + y z = 3 2x + 3y z = 2 2x + 4y + z = 4 x + 2y + z = 1 Zadanie 136 Niech 1 i < j n. Znajdź macierz E K n n taką, że E A jest macierzą powstającą z macierzy A K n n poprzez zamianę wierszy i oraz j. Zadanie 137 Stosując metodę eliminacji Gaussa wyznacz macierze odwrotne następujących macierzy: a 0 0 [ ] b 0 1 2,, 2 1 4, c Zadanie 138 Dla jakich wartości a, b następująca macierz a b b A = a a b a a a jest odwracalna? Dla a i b spełniających ten warunek wyznacz macierz A 1. Zadanie 139 Przetestuj polecenia typu solve x+y+z=1,x-y+z=2, x+2*y + 3*z = 3 inverse matrix {{1,1},{1,2}} w serwisie Wolfram Alpha. Zadanie 140 Załóżmy, że [ ] A11 A A = 12 A 21 A 22 [ ] B11 B, B = 12 B 21 B 22 gdzie A ij i B ij są macierzami rozmiaru k k (macierze A i B są więc rozmiaru (2k) (2k). Niech [ ] A11 B C = 11 + A 12 B 21 A 11 B 12 + A 12 B 22, A 21 B 11 + A 22 B 21 A 21 B 12 + A 22 B 22 Pokaż, że C = A B. Uwaga: Własność ta służy do pisanie rekurencyjnych procedur mnożenia macierzy: mnożenie macierzy rozmiaru (2n) (2n) można sprowadzić do mnożenia macierzy rozmiaru n n. Wykorzystywana jest, na przykład, w metodzie Strassena mnożenia macierzy. 13
14 9 Wektory i wartości własne Zadanie 141 Niech A = [ 2 ] Znajdź wartości i wektory własne macierzy A, A 2 oraz A Porównaj wartości λ 1 + λ 2 oraz λ 1 λ 2 ze śladami i wyznacznikami macierzy A i A Zapisz odwzorowanie F A w bazie złożonej z wektorów własnych macierzy A. 4. Wyznacz macierz odwzorowania (F A ) n w tej bazie dla dowolnego n N. 5. Wyznacz wzór na A n dla dowolnego n N. Zadanie 142 Wyznacz wielomian charakterystyczny, wartości własne oraz wektory własne następującej macierzy A: A = Sprawdź twierdzenie Cayley a-hamilton a na przykładziej tej macierzy. Zadanie 143 Niech A M 3 3 (C). Pokaż, że det(a) = 1 ( (tr(a)) 3 3tr(A)tr(A 2 ) + 2tr(A 3 ) ). 6 Wskazówka: Skorzystaj z twierdzenia Cayley a-hamilton a. Zadanie 144 Zastosuj twierdzenie Cayley a-hamilton a do wyznaczania macierzy odwrotnej macierzy odwrotnej do macierzy A = * Zadanie 145 Załóżmy, że R M 3 3 (R) jest taką macierzą, że R R T = R T R = I oraz det(r) > Pokaż, że det(r) = det(r 1 ) = Pokaż, że det( R) = det(r). 3. Pokaż, że det(r I) = det(r 1 I). Wskazówka: Skorzystaj z tego, że (R I) T = R T I. 4. Pokaż, że det(r 1 I) = det(r 1 ) det(r I) 5. Korzystając z poprzednich punktów pokaż, że det(r I) = det(r I). 6. Pokaż, że istnieje taki wektor x R 3, że R x T = x T. Uwaga: Udowodniliśmy (prawie) w ten sposób twierdzenie Eulera: każda izometria F przestrzeni R 3 nie zmieniająca punktu 0 (F (0) = 0) oraz orientacji przestrzeni (det(m F ) > 0) jest obrotem względem pewnej osi. Zadanie 146 Zastosuj proces ortogonalizacji Grama - Schmidt a do wektorów u 1 = [1, 2, 1, 1], u 2 = [2, 2, 0, 1], u 3 = [3, 2, 1, 0] w przestrzeni R 4. Zadanie 147 Zastosuj proces ortogonalizacji Grama - Schmidt a do wektorów u 1 = [1, i, 1], u 2 = [2, 2, 0], u 3 = [i, 1, 0] w przestrzeni C 4 z iloczynem skalarnym zadanym wzorem [u 1,..., u 4 ], [v 1,..., v 4 ] = 14 4 u i v i i=1
15 Zadanie 148 Zastosuj metodę ortogonalizacji Grama - Schmidt a do wielomianów u 0 = 1, u 1 = x, u 2 = x 2, u 3 = x 3 w przestrzeni wielomianów R[x] z iloczynem skalarnym zadanym wzorem u, v = 1 1 u(x)v(x)dx. Efektem końcowym ma być ortonormalny układ wielomianów. Uwaga: Otrzymamy kilka pierwszych wielomianów Legendra. c.d.n. Powodzenia, Jacek Cichoń 15
Algebra z Geometrią Analityczną Informatyka WPPT Lista zadań
Algebra z Geometrią Analityczną Informatyka WPPT Lista zadań Jacek Cichoń, Wrocław 2016/17 1 Podstawowe struktury algebraiczne Zadanie 1 Na zbiorze liczb rzeczywistych R określamy działanie x y = x+y 2.
Algebra z Geometrią Analityczną Informatyka, WPPT Lista zadań
Algebra z Geometrią Analityczną Informatyka, WPPT Lista zadań Jacek Cichoń, Wrocław, 2017/18 1 Podstawowe struktury algebraiczne Zadanie 1 Na zbiorze liczb rzeczywistych R określamy działanie x y = x+y
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Algebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,
Lista Algebra z Geometrią Analityczną Układy równań. Zadanie 1 Wyjaśnij na czym polega metoda elininacji Gaussa rozwiązując układ równań: { x + 2y = 5 x y = 9 Zadanie 2 Rozwiąż układ równań metodą eliminacji
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4
Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
1 Działania na zbiorach
Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie
Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),
Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Przy
Algebra z geometrią Lista 1 - Liczby zespolone
Algebra z geometrią Lista 1 - Liczby zespolone 1. Oblicz a) (1 + i)(2 i); b) (3 + 2i) 2 ; c) (2 + i)(2 i); d) (3 i)/(1 + i); e) (1 + i 3)/(2 + i 3); f) (2 + i) 3 ; g) ( 3 i) 3 ; h) ( 2 + i 3) 2 2. Korzystając
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.
Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
0.1 Pierścienie wielomianów
0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a
Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +
GAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9
Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
spis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.
Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16
DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Algebra liniowa z geometria
Algebra liniowa z geometria Materiały do ćwiczeń Zespół matematyków przy WEEiA Spis treści 1 Macierze i wyznaczniki 5 11 Macierze i ich rodzaje 5 12 Operacje na macierzach 6 13 Wyznacznik macierzy 8 14
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d),
Zestaw zadań 2: Ciało liczb zespolonych Układy równań liniowych () Ile działań można określić na zbiorze n-elementowym? Ile z nich to działania przemienne? (2) Zbadaj własności działania różnicy symetrycznej
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
Wydział Elektroniki i Technik Informacyjnych PW Algebra liniowa - konspekt wykładu
Wydział Elektroniki i Technik Informacyjnych PW Algebra liniowa - konspekt wykładu Anna Zamojska-Dzienio Spis treści 1 Liczby zespolone 4 11 Postać kanoniczna liczby zespolonej 4 12 Interpretacja geometryczna
Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
DB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
Pytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Dr Maciej Grzesiak, Instytut Matematyki
liczbowe Dr Maciej Grzesiak, Instytut Matematyki liczbowe Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.maciej.grzesiak.pracownik.put.poznan.pl podręcznik: i algebra liniowa
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
ALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas
ALGEBRA LINIOWA 2 Lista zadań 23/24 Opracowanie : dr Teresa Jurlewicz dr Zbigniew Skoczylas Lista pierwsza Zadanie Uzasadnić z definicji że zbiór wszystkich rzeczywistych macierzy trójkątnych górnych stopnia
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki
Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
Endomorfizmy liniowe
Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Maciej Grzesiak. Wielomiany
Maciej Grzesiak Wielomiany 1 Pojęcia podstawowe Wielomian definiuje się w szkole średniej jako funkcję postaci f(x) = a 0 + a 1 x + a 2 x + + a n x n Dogodniejsza z punktu widzenia algebry jest następująca
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Elementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Internetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch