Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników

Wielkość: px
Rozpocząć pokaz od strony:

Download "Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników"

Transkrypt

1 Insrukcja do ćwiczenia laboraoryjnego Badanie liczników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: Budowa licznika cyfrowego. zielnik częsoliwości, różnice między licznikiem i dzielnikiem. Liczniki asynchroniczne binarne, dziesięne, na przykładzie rodziny TTL: 7490, Liczniki synchroniczne binarne, dziesięne, na przykładzie rodziny TTL: Lieraura: Pieńkos J., Turczyński J. - Układy scalone TTL w sysemach cyfrowych, WKiŁ, Warszawa Kalisz J. - Podsawy elekroniki cyfrowej, WKiŁ, Warszawa Horowiz P., Hill W. - Szuka elekroniki cz.ii, WKiŁ, Warszawa Maeriały z wykładu. Kary kaalogowe producenów układów scalonych badanych w ćwiczeniu. 1

2 1 Liczniki asynchroniczne Badanie binarnego licznika asynchronicznego. Korzysając z kary kaalogowej układu scalonego podwójnego przerzunika ypu 7474 połączyć na plaformie ELVIS II układ pomiarowy według schemau z rysunku Na schemacie należy oznaczyć numery wyprowadzeń (pinów) układu scalonego. LE y LE x IO n! LE z!! Rys. Schema ideowy układu badania asynchronicznego licznika 3-biowego. Wejście licznika IO n będzie serowane sygnałem wywarzanym przy pomocy narzędzia programowego igial Wrier plaformy ELVIS II. Okno panelu serującego przedsawione jes na rysunku Suwaki w polu Manual Paern odpowiadają za san logiczny linii IO x, kórych wyjścia są dosępne w gniazdach prawej górnej liswy sygnałowej plaformy. odakowo wysoki san logiczny linii sygnalizowany jes jasnozielonym kolorem odpowiedniego punku pola Line Saes. a) b) Rys. a) - Widok okna narzędzia programowego igial Wrier plaformy ELVIS II. b) widok prawej, górnej liswy sygnałowej z gniazdami IO n 2

3 Sany logiczne wyjść obserwowane są przy pomocy wskaźników LE, kórych wejścia są dosępne w gniazdach prawej, dolnej liswy sygnałowej plaformy. Rys. 3. Widok prawej, dolnej liswy sygnałowej plaformy z gniazdami wejściowymi wskaźników LE. W połączonym układzie należy podawać sygnał wejściowy i rejesrować sany wyjść licznika. Badanie należy zilusrować przebiegami czasowymi. IO n (1) Rys. 4. Przykładowe przebiegi czasowe przerzunika RS. Na podsawie zarejesrowanych przebiegów czasowych określić pojemność licznika. Badanie licznika asynchronicznego Badanie podsawowej aplikacji licznika Korzysając z kary kaalogowej badanego elemenu zaprojekować i połączyć na plaformie ELVIS II układ obserwacji przebiegów czasowych licznika Na schemacie należy oznaczyć numery wyprowadzeń (pinów) układu scalonego. W połączonym układzie zarejesrować przebiegi czasowe sygnałów wyjściowych A, B, C, i, w odpowiedzi na sygnał wejściowy A (INPUT A). Sprawdzić funkcje wejść R0(n) i R9(n). Na podsawie zarejesrowanych przebiegów uworzyć ablicę sanów licznika. 3

4 Badanie układów ograniczania pojemności licznika 7490 Częso konieczne jes zasosowanie licznika o pojemności innej niż dosępna w sandardowych licznikach. Można zaprojekować licznik o żądanej pojemności konsruując auoma mający właściwą liczbę sanów lub użyć sandardowego licznika binarnego lub dziesięnego, z dołączonym układem kombinacyjnym realizującym funkcję deekora sanu, przy kórym nasąpi wyzerowanie licznika. Spowoduje o zakończenie cyklu zliczania po osiągnięciu żądanego sanu, czyli ograniczenie pojemności licznika. Pojemność użyego licznika musi być większa niż pojemność żądana. Schema blokowy akiego rozwiązania przedsawiony jes na rysunku 5. eekor sanu końcowego Wyjście licznika N A Licznik binarny / ekada licząca fwe We Zer. Rys. 5. Schema blokowy licznika o ograniczonej pojemności Scalony licznik asynchroniczny ypu 7490 zawiera w srukurze dwie dwuwejściowe bramki AN: bramka zerująca ma wejścia R0(1) i R0(2); sany High na obu wejściach powodują wyzerowanie licznika bramka usawiająca san 9 ma wejścia R9(1) i R9(2); sany High na obu wejściach powodują usawienie licznika w san 9, binarnie 100 Na podsawie kary kaalogowej licznika 7490 zaprojekować i połączyć na plaformie ELVIS II układ obserwacji przebiegów czasowych licznika o pojemności = 6. Określić kod sanu wyjścia niezbędny do uzyskania założonej pojemności, przy wykorzysaniu wejść zerujących. Na schemacie należy oznaczyć numery wyprowadzeń (pinów) układu scalonego. W połączonym układzie zarejesrować przebiegi czasowe sygnałów wyjściowych A, B, C, i, w odpowiedzi na sygnał wejściowy A (INPUT A). Na podsawie zarejesrowanych przebiegów uworzyć ablicę sanów licznika. Na podsawie kary kaalogowej licznika 7490 zaprojekować i połączyć na plaformie ELVIS II układ obserwacji przebiegów czasowych licznika o pojemności = 7. Określić kod sanu wyjścia niezbędny do uzyskania założonej pojemności, przy wykorzysaniu wejść usawiających san 9. Na schemacie należy oznaczyć numery wyprowadzeń (pinów) układu scalonego. W połączonym układzie zarejesrować przebiegi czasowe sygnałów wyjściowych A, B, C, i, w odpowiedzi na sygnał wejściowy A (INPUT A). Na podsawie zarejesrowanych przebiegów uworzyć ablicę sanów licznika. 4

5 3. Badanie dzielnika częsoliwości z wykorzysaniem licznika 7490 Wykorzysując wybrany układ z punku połączyć układ oscyloskopowej obserwacji pracy dzielnika częsoliwości według schemau z rysunku 6. Oscyloskop Ch1 SYNC (Gn. L34) We Badany licznik Ch2 Wy Rys. 6. Schema ideowy układu pomiarowego dzielnika częsoliwości. Źródłem sygnału serującego badaną bramkę jes przebieg prosokąny dosępny w gnieździe SYNC plaformy ELVIS II, kórego częsoliwość jes równa nasawionej w panelu narzędzia Funcion Generaor, przy wybranym sinusoidalnym kszałcie przebiegu, naomias ampliuda jes zgodna ze sandardem rodziny TTL. Zarejesrować z ekranu oscyloskopu kszał uzyskanych przebiegów, sprawdzić poprawność pracy dzielnika częsoliwości. 3. Badanie licznika synchronicznego Badanie licznika synchronicznego ypu w konfiguracji zliczania w górę. Na podsawie kary kaalogowej licznika zaprojekować i połączyć na plaformie ELVIS II układ obserwacji przebiegów czasowych licznika liczącego w górę (dodającego), o pojemności = 13. Określić kod sanu wyjścia niezbędny do uzyskania założonej pojemności, przy wykorzysaniu wyjścia CARRY OUTPUT. Na schemacie należy oznaczyć numery wyprowadzeń (pinów) układu scalonego. W połączonym układzie zarejesrować przebiegi czasowe sygnałów wyjściowych A, B, C, i, w odpowiedzi na sygnał wejściowy CPU (UP COUNT). Na podsawie zarejesrowanych przebiegów uworzyć ablicę sanów licznika. 3. Badanie licznika synchronicznego ypu w konfiguracji zliczania w dół. Na podsawie kary kaalogowej licznika zaprojekować i połączyć na plaformie ELVIS II układ obserwacji przebiegów czasowych licznika liczącego w dół (odejmującego), o pojemności równej 13. Określić kod sanu wyjścia niezbędny do uzyskania założonej pojemności, przy wykorzysaniu wyjścia BORROW OUTPUT. Na schemacie należy oznaczyć numery wyprowadzeń (pinów) układu scalonego. W połączonym układzie zarejesrować przebiegi czasowe sygnałów wyjściowych A, B, C, i, w odpowiedzi na sygnał wejściowy CP (OWN COUNT). Na podsawie zarejesrowanych przebiegów uworzyć ablicę sanów licznika. 4. Wnioski. Opracować uzyskane wyniki. Sprawozdanie powinno zawierać rysowane ręcznie schemay układów pomiarowych, zarejesrowane przebiegi czasowe, oscylogramy, ocenę poprawności pracy badanych układów. 5

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników Insrukcja do ćwiczenia laboraoryjnego Badanie przerzuników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. 2. Właściwości, ablice sanów, paramery sayczne przerzuników RS, D, T, JK.

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego

Instrukcja do ćwiczenia laboratoryjnego Instrukcja do ćwiczenia laboratoryjnego adanie parametrów statycznych i dynamicznych ramek Logicznych Opracował: mgr inż. ndrzej iedka Wymagania, znajomość zagadnień: 1. Parametry statyczne bramek logicznych

Bardziej szczegółowo

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3 I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

Układy sekwencyjne asynchroniczne Zadania projektowe

Układy sekwencyjne asynchroniczne Zadania projektowe Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.

Bardziej szczegółowo

Obsługa wyjść PWM w mikrokontrolerach Atmega16-32

Obsługa wyjść PWM w mikrokontrolerach Atmega16-32 Zachodniopomorski Uniwersye Technologiczny WYDZIAŁ ELEKTRYCZNY Kaedra Inżynierii Sysemów, Sygnałów i Elekroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA Obsługa wyjść PWM w mikrokonrolerach Amega16-32 Opracował:

Bardziej szczegółowo

Technika Cyfrowa. Badanie pamięci

Technika Cyfrowa. Badanie pamięci LABORATORIUM Technika Cyfrowa Badanie pamięci Opracował: mgr inż. Andrzej Biedka CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się studentów z budową i zasadą działania scalonych liczników asynchronicznych

Bardziej szczegółowo

TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA. Badanie rejestrów

TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA. Badanie rejestrów LABORATORIUM TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA Badanie rejestrów Opracował: Tomasz Miłosławski Wymagania, znajomość zagadnień: 1. Typy, parametry, zasada działania i tablice stanów przerzutników

Bardziej szczegółowo

TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA. Układy czasowe

TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA. Układy czasowe LABORATORIUM TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA Układy czasowe Opracował: Tomasz Miłosławski Wymagania, znajomość zagadnień: 1. Parametry impulsu elektrycznego i metody ich pomiarów. 2. Bramkowe

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki

Podstawy Elektroniki dla Elektrotechniki AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Klucze Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2015 r. 1 1. Wsęp. Celem ćwiczenia jes ugrunowanie

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

P.Rz. K.P.E. Laboratorium Elektroniki 2FD 2003/11/06 LICZNIKI CYFROWE

P.Rz. K.P.E. Laboratorium Elektroniki 2FD 2003/11/06 LICZNIKI CYFROWE P.Rz. K.P.E. Laboratorium Elektroniki 2F 2003/11/06 LIZNIKI YFROWE 1. WSTĘP elem ćwiczenia zilustrowanie zasad pracy wybranych realizacji układowych liczników oraz scalonych programowanych układów liczników.

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017 Poliechnika Wrocławska Klucze analogowe Wrocław 2017 Poliechnika Wrocławska Pojęcia podsawowe Podsawą realizacji układów impulsowych oraz cyfrowych jes wykorzysanie wielkosygnałowej pacy elemenów akywnych,

Bardziej szczegółowo

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Technika Cyfrowa Badanie Bramek Logicznych Opracował: mgr inż. Andrzej Biedka 1 BADANIE FUNKCJI LOGICZNYCH 1.1 Korzystając

Bardziej szczegółowo

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania). Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM.

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI ELWIS Rev.1.0 1. Wprowadzenie Celem

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Układy cyfrowe - bramki logiczne i przerzutniki

Podstawy Elektroniki dla Elektrotechniki. Układy cyfrowe - bramki logiczne i przerzutniki AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Układy cyfrowe - bramki logiczne i przerzutniki Ćwiczenie 6a, 6b Instrukcja do ćwiczeń symulacyjnych (6a) Instrukcja do ćwiczeń sprzętowych

Bardziej szczegółowo

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania. Badanie liczników asynchronicznych - Ćwiczenie 4 1. el ćwiczenia Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich

Bardziej szczegółowo

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2 tatyczne i dynamiczne badanie przerzutników - ćwiczenie 2. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest

Bardziej szczegółowo

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki Politechnika Wrocławska, Wydział PP 1. Cel ćwiczenia Zapoznanie z wybranymi cyfrowymi układami sekwencyjnymi. Poznanie właściwości, zasad działania i sposobów realizacji przerzutników oraz liczników. 2.

Bardziej szczegółowo

PODSTAWY PROGRAMOWANIA STEROWNIKÓW PLC

PODSTAWY PROGRAMOWANIA STEROWNIKÓW PLC PODSTAWY PROGRAMOWANIA STEROWNIKÓW PLC SPIS TREŚCI WSTĘP JĘZYK SCHEMATÓW DRABINKOWYCH JĘZYK SCHEMATÓW BLOKÓW FUNKCYJNYCH JĘZYK INSTRUKCJI JĘZYK STRUKTURALNY SEKWENCYJNY SCHEMAT FUNKCYJNY PRZYKŁADY PROGRAMÓW

Bardziej szczegółowo

U 2 B 1 C 1 =10nF. C 2 =10nF

U 2 B 1 C 1 =10nF. C 2 =10nF Dynamiczne badanie przerzutników - Ćwiczenie 3. el ćwiczenia Zapoznanie się z budową i działaniem przerzutnika astabilnego (multiwibratora) wykonanego w technice TTL oraz zapoznanie się z działaniem przerzutnika

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY Cel ćwiczenia Zapoznanie się z budową i zasadą działania rejestrów cyfrowych wykonanych w ramach TTL. Zestawienie przyrządów i połączenie rejestru by otrzymać

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Liczniki scalone

Podstawy Techniki Cyfrowej Liczniki scalone Podstawy Techniki Cyfrowej Liczniki scalone Liczniki scalone są budowane zarówno jako asynchroniczne (szeregowe) lub jako synchroniczne (równoległe). W liczniku równoległym sygnał zegarowy jest doprowadzony

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe.

Przetworniki analogowo-cyfrowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI INSTYTUT MASZYN I UZĄDZEŃ ENEGETYCZNYCH LABOATOIUM ELEKTYCZNE Przeworniki analogowo-cyfrowe. (E 11) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI. Komputerowa symulacja liczników

LABORATORIUM ELEKTRONIKI. Komputerowa symulacja liczników ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 29 Komputerowa symulacja

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie sudenów z podsawowymi właściwościami ów przebiegów elekrycznych o jes źródeł małej mocy generujących przebiegi elekryczne. Przewidywane jes również (w miarę

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo

LICZNIKI Liczniki scalone serii 749x

LICZNIKI Liczniki scalone serii 749x LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających

Bardziej szczegółowo

Badanie właściwości multipleksera analogowego

Badanie właściwości multipleksera analogowego Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera

Bardziej szczegółowo

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

6. SYNTEZA UKŁADÓW SEKWENCYJNYCH

6. SYNTEZA UKŁADÓW SEKWENCYJNYCH 6. SYNTEZA UKŁADÓW SEKWENCYJNYCH 6.1. CEL ĆWICZENIA Układy sekwencyjne są to układy cyfrowe, których stan jest funkcją nie tylko sygnałów wejściowych, ale również historii układu. Wynika z tego, że struktura

Bardziej szczegółowo

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby

Bardziej szczegółowo

Synteza częstotliwości z pętlą PLL

Synteza częstotliwości z pętlą PLL Synteza częstotliwości z pętlą PLL. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z zasadą działania pętli synchronizacji fazowej (PLL Phase Locked Loop). Ćwiczenie polega na zaprojektowaniu, uruchomieniu

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp:

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Licznik elektroniczny - układ cyfrowy, którego zadaniem jest zliczanie wystąpień sygnału zegarowego. Licznik złożony

Bardziej szczegółowo

Ćw. 7: Układy sekwencyjne

Ćw. 7: Układy sekwencyjne Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy

Bardziej szczegółowo

LABORATORIUM Z ELEKTRONIKI

LABORATORIUM Z ELEKTRONIKI LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5

Bardziej szczegółowo

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,

Bardziej szczegółowo

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska Poliechnika Wrocławska Insyu elekomunikacji, eleinformayki i Akusyki Zakład kładów Elekronicznych Insrukcja do ćwiczenia laboraoryjnego ZASOSOWANIE WZMACNIACZY OPEACYJNYCH DO LINIOWEGO PZEKSZAŁCANIA SYGNAŁÓW

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4 Ćwiczenie 4 Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk statycznych układów scalonych CMOS oraz ich własności dynamicznych podczas procesu przełączania. Wiadomości podstawowe. Budowa i działanie

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elekryczny, Kaedra Maszyn, Napędów i Pomiarów Elekrycznych Laboraorium Przewarzania i Analizy Sygnałów Elekrycznych (bud A5, sala 310) Insrukcja dla sudenów kierunku Auomayka i Roboyka do zajęć

Bardziej szczegółowo

LICZNIKI. Liczniki asynchroniczne.

LICZNIKI. Liczniki asynchroniczne. LICZNIKI Liczniki asynchroniczne. Liczniki buduje się z przerzutników. Najprostszym licznikiem jest tzw. dwójka licząca. Łatwo ją otrzymać z przerzutnika D albo z przerzutnika JK. Na rys.1a został pokazany

Bardziej szczegółowo

NAPĘD I STEROWANIE PNEUMATYCZNE

NAPĘD I STEROWANIE PNEUMATYCZNE NPĘD I STEROWNIE PNEUMTYCZNE Ćwiczenie laboraoryjne nr 2 Syneza pneumaycznych układów serowania siłownikiem dwusronnego działania na podsawie cyklogramów pracy. - - Opracował: Dariusz Grzybek Cele:. Zapoznanie

Bardziej szczegółowo

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Układy przełączające

Podstawy Elektroniki dla Elektrotechniki. Układy przełączające AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Układy przełączające Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2017 r. 1. Wsęp. Celem ćwiczenia

Bardziej szczegółowo

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia CYFROWE PRZEWARZANIE SYGNAŁÓW Laboraorium Inżynieria Biomedyczna sudia sacjonarne pierwszego sopnia ema: Wyznaczanie podsawowych paramerów okresowych sygnałów deerminisycznych imei Insyu Merologii Elekroniki

Bardziej szczegółowo

Norma IEC Do grupy języków graficznych opisanych w normie IEC należą:

Norma IEC Do grupy języków graficznych opisanych w normie IEC należą: Norma IEC 63-3 Norma IEC 63-3 definiuje pojęcia podsawowe, zasady ogólne, model programowy i model komunikacyjny (wymiana danych między elemenami oprogramowania) oraz podsawowe ypy i srukury danych. Określono

Bardziej szczegółowo

Rozdział 4 Instrukcje sekwencyjne

Rozdział 4 Instrukcje sekwencyjne Rozdział 4 Insrukcje sekwencyjne Lisa insrukcji sekwencyjnych FBs-PLC przedsawionych w niniejszym rozdziale znajduje się w rozdziale 3.. Zasady kodowania przy zasosowaniu ych insrukcji opisane są w rozdziale

Bardziej szczegółowo

W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres

W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres PROJEKTOWANIE LICZNIKÓW (skrót wiadomości) Autor: Rafał Walkowiak W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres rafal.walkowiak@cs.put.poznan.pl 1. Synchroniczne łączenie liczników

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Pętla fazowa

Podstawy Elektroniki dla Informatyki. Pętla fazowa AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Pętla fazowa Ćwiczenie 6 2015 r. 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem pętli fazowej. 2. Konspekt

Bardziej szczegółowo

NAPĘD I STEROWANIE PNEUMATYCZNE

NAPĘD I STEROWANIE PNEUMATYCZNE NPĘD I STEROWNIE PNEUMTYCZNE Ćwiczenie laboraoryjne nr 2. Syneza pneumaycznych układów serowania siłownikiem dwusronnego. 2. Syneza działania pneumaycznych układów serowania na podsawie cyklogramów pracy.

Bardziej szczegółowo

Ćw. 7 Przetworniki A/C i C/A

Ćw. 7 Przetworniki A/C i C/A Ćw. 7 Przetworniki A/C i C/A 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadami przetwarzania sygnałów analogowych na cyfrowe i cyfrowych na analogowe poprzez zbadanie przetworników A/C i

Bardziej szczegółowo

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2.

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2. POLIECHNIK WROCŁWSK, WYDZIŁ PP I- LBORORIUM Z PODSW ELEKROECHNIKI I ELEKRONIKI Ćwiczenie nr 9. Pomiary podsawowych paramerów przebiegów elekrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących

Bardziej szczegółowo

... nazwisko i imię ucznia klasa data

... nazwisko i imię ucznia klasa data ... nazwisko i imię ucznia klasa daa Liczba uzyskanych punków Ocena TEST SPRAWDZAJĄCY Z PRZYRZĄDÓW POMIAROWYCH W dniu dzisiejszym przysąpisz do esu pisemnego, kóry ma na celu sprawdzenie Twoich umiejęności

Bardziej szczegółowo

PRZERZUTNIKI CYFROWE BISTABILNE I MONOSTABILNE

PRZERZUTNIKI CYFROWE BISTABILNE I MONOSTABILNE PRZERZUTNIKI CYFROWE BISTABILNE I MONOSTABILNE 1. CEL ĆWICZENIA Celem ćwiczenia jest eksperymentalne zilustrowanie sposobu działania i rodzajów pracy scalonych przerzutników TTL w układach cyfrowych. 2.

Bardziej szczegółowo

Elektronika. Wzmacniacz operacyjny

Elektronika. Wzmacniacz operacyjny LABORATORIUM Elektronika Wzmacniacz operacyjny Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych wzmacniaczy operacyjnych. 2. Układów pracy wzmacniacza

Bardziej szczegółowo

Laboratorium Techniki Cyfrowej i Mikroprocesorowej

Laboratorium Techniki Cyfrowej i Mikroprocesorowej Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych Laboratorium Techniki Cyfrowej i Mikroprocesorowej Liczniki i dzielniki częstotliwości Ćwiczenie

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h)

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) ĆWICZENIE LABORATORYJNE TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego

Bardziej szczegółowo

Projektowanie i badanie liczników synchronicznych i asynchronicznych

Projektowanie i badanie liczników synchronicznych i asynchronicznych Laboratorium Podstaw Techniki Cyfrowej dr Marek Siłuszyk mgr Arkadiusz Wysokiński Ćwiczenie 08 PTC Projektowanie i badanie liczników synchronicznych i asynchronicznych opr. tech. Mirosław Maś Uniwersytet

Bardziej szczegółowo

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny AGH Katedra Elektroniki Podstawy Elektroniki dla Teleinformatyki 2014 r. Generator relaksacyjny Ćwiczenie 6 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów

Bardziej szczegółowo

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ

Bardziej szczegółowo

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI.. Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.

Bardziej szczegółowo

Światłowodowy kanał transmisyjny w paśmie podstawowym

Światłowodowy kanał transmisyjny w paśmie podstawowym kanał transmisyjny w paśmie podstawowym Układ do transmisji binarnej w paśmie podstawowym jest przedstawiony na rys.1. Medium transmisyjne stanowi światłowód gradientowy o długości 3 km. Źródłem światła

Bardziej szczegółowo

INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 54603

INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 54603 ZAŁĄCZNIK NR 1 INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 5463 Do rejesracji przebiegów czasowych i charakerysyk służy oscyloskop cyfrowy. Drukarka przyłączona do oscyloskopu umożliwia wydrukowanie zarejesrowanych

Bardziej szczegółowo

UKŁADY CYFROWE. Układ kombinacyjny

UKŁADY CYFROWE. Układ kombinacyjny UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje

Bardziej szczegółowo

Opis ćwiczenia. PRZERZUTNIKI. Nazwą "przerzutniki" określa się grupę układów elektronicznych

Opis ćwiczenia. PRZERZUTNIKI. Nazwą przerzutniki określa się grupę układów elektronicznych Opis ćwiczenia. PZEZUTNIKI Nazwą "przerzuniki" określa się grupę układów elekronicznych posiadających jedno albo więcej wejść oraz wyjście, zbudowanych ak, Ŝe poencjał wyjścia, mogący przybierać - na pewien

Bardziej szczegółowo

Podział układów cyfrowych. rkijanka

Podział układów cyfrowych. rkijanka Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych

Bardziej szczegółowo

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie:

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie: Wydział EAIiIB Kaedra Merologii i Elekroniki Laboraorium Podsaw Elekroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw.. Wprowadzenie do obsługi przyrządów pomiarowych cz. Daa wykonania:

Bardziej szczegółowo

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych .Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić

Bardziej szczegółowo

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia Wydział Mechaniczno-Energeyczny Laboraorium Elekroniki Badanie zasilaczy ze sabilizacją napięcia 1. Wsęp eoreyczny Prawie wszyskie układy elekroniczne (zarówno analogowe, jak i cyfrowe) do poprawnej pracy

Bardziej szczegółowo

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Poznanie zasad działania układów koderów. Budowanie koderów z podstawowych bramek logicznych i układu scalonego Czytanie schematów elektronicznych,

Bardziej szczegółowo

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL. CEL ĆWICZENIA Celem ćwiczenia jest poznanie zasad działania, budowy i właściwości podstawowych funktorów logicznych wykonywanych w jednej z najbardziej rozpowszechnionych

Bardziej szczegółowo

Bramki TTL i CMOS 7400, 74S00, 74HC00, 74HCT00, 7403, 74132

Bramki TTL i CMOS 7400, 74S00, 74HC00, 74HCT00, 7403, 74132 Skład zespołu: 1. 2. 3. 4. KTEDR ELEKTRONIKI G Wydział EIiE LBORTORIUM TECNIKI CYFROWEJ Data wykonania: Suma punktów: Grupa Ocena 1 Bramki TTL i CMOS 7400, 74S00, 74C00, 74CT00, 7403, 74132 I. Konspekt

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

Komputerowa symulacja bramek w technice TTL i CMOS

Komputerowa symulacja bramek w technice TTL i CMOS ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 27 Komputerowa symulacja

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

Komputerowa symulacja bramek w technice TTL i CMOS

Komputerowa symulacja bramek w technice TTL i CMOS ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 27 Komputerowa symulacja

Bardziej szczegółowo

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu Temat: Sprawdzenie poprawności działania przerzutników. Wstęp: Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego

Bardziej szczegółowo

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU 5. Cel ćwiczenia Celem ćwiczenia jes poznanie podsawowych meod pomiaru częsoliwości, okresu, czasu rwania impulsu, czasu przerwy, ip. 5.2 Wprowadzenie Częsoliwością

Bardziej szczegółowo

Wyznaczanie charakterystyk częstotliwościowych

Wyznaczanie charakterystyk częstotliwościowych Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych meod

Bardziej szczegółowo

LABORATORIUM TECHNIKA CYFROWA BRAMKI. Rev.1.0

LABORATORIUM TECHNIKA CYFROWA BRAMKI. Rev.1.0 LABORATORIUM TECHNIKA CYFROWA BRAMKI Rev..0 LABORATORIUM TECHNIKI CYFROWEJ: Bramki. CEL ĆWICZENIA - praktyczna weryfikacja wiedzy teoretycznej z zakresu działania bramek, - pomiary parametrów bramek..

Bardziej szczegółowo

Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia

Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia Poznanie zasad budowy działania komparatorów cyfrowych. Konstruowanie komparatorów

Bardziej szczegółowo

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/6 Pętla synchronizacji fazowej W tym ćwiczeniu badany będzie układ pętli synchronizacji fazowej jako układu generującego przebieg o zadanej

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 5 Rok akademicki: Wydział:

Bardziej szczegółowo

FDM - transmisja z podziałem częstotliwości

FDM - transmisja z podziałem częstotliwości FDM - transmisja z podziałem częstotliwości Model ten pozwala na demonstrację transmisji jednoczesnej dwóch kanałów po jednym światłowodzie z wykorzystaniem metody podziału częstotliwości FDM (frequency

Bardziej szczegółowo

Ćw. 8 Bramki logiczne

Ćw. 8 Bramki logiczne Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKA I ENERGOELEKTRONIKA BADANIE UKŁADÓW CZASOWYCH

LABORATORIUM ELEKTRONIKA I ENERGOELEKTRONIKA BADANIE UKŁADÓW CZASOWYCH LABORATORIUM ELEKTRONIKA I ENERGOELEKTRONIKA BADANIE UKŁADÓW CZASOWYCH Opracował: mgr inż. Andrzej Biedka 1. Zapoznać się ze schematem ideowym płytki ćwiczeniowej 2. Badanie układów różniczkujących Vcc

Bardziej szczegółowo