Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
|
|
- Ignacy Chrzanowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Oblicz prawdopodobieństwo, że czas trwania rozmowy osoby telefonującej będzie (a) dłuższy ni ż minut =5 = 5 P T = F = e,2 =e 2,35 > exp(-2) [] > pexp(, rate=.2, lower.tail=false) [] (b) dłuższy ni ż 5 minut i krótszy ni ż 5 minut. P 5 T 5 =F 5 F 5 = e,2 5 e,2 5 =e e 3,38 > exp(-)-exp(-3) [] > pexp(5, rate=.2)-pexp(5, rate=.2) [] Odp. Prawdopodobieństwo, że czas trwania rozmowy osoby telefonującej -2 będzie dłuższy ni ż minut wynosi e. Prawdopodobieństwo, że czas trwania rozmowy osoby telefonującej będzie -2 dłuższy ni ż minut wynosi e. Zadanie 2. Dla danych z zadania oblicz prawdopodobieństwo, że losowo wybrana osoba będzie prowadziła rozmow ę telefoniczn ą dłuższ ą niż minut pod warunkiem, że rozmawia ju ż co najmniej 5 minut. Niech A oznacza zdarzenie polegające na rozmowie dłuższej ni ż 5 minut; B oznacza zdarzenie polegające na rozmowie dłuższej ni ż minut. P B A = P B A = P A P {T 5 } {T } P T = P T 5 P T 5 = e 2 e = e e = 2 e
2 > exp(-) [] > pexp(, rate=.2, lower.tail=false) / pexp(5, rate=.2, lower.tail=false) [] Zadanie 3 Czas rozwiązania zadania z programowania przez losowo wybranego uczestnika konkursu jest zmienn ą losow ą X o gęstości (a) Oblicz stał ą C. 45 f x dx= f x dx= 45 Cx dx=c x dx=c x =C =C C= (b) Oblicz prawdopodobieństwo, że uczestnik konkursu będzie rozwiązywał zadanie krócej ni ż 3 minut. 3 2 x 32 P X 3 = dx= ,44 (c) Oblicz prawdopodobieństwo, że uczestnik konkursu będzie rozwiązywał zadanie krócej ni ż 3 minut i dłużej ni ż 2 minut. 2 2 x 22 P X 2 = dx= ,2, zatem P 2 X 3 = ,247 (d) Oblicz prawdopodobieństwo, że uczestnik konkursu będzie rozwiązywał zadanie krócej ni ż 3 minut pod warunkiem, że rozwiązuje zadanie ju ż co najmniej 5 minut.
3 P {X 3 } {X 5 } P X 3 P X 3 X 5 = = P X 5 P X 5 = = P X 3 X 5 = = = = = 4 9 =,5 (e) Oblicz wartości dystrybuanty: F(3), F(4). F 3 =P X 3 = ,44 F 4 =P X 4 = ,79 Zadanie 4 W zadaniu 3, oblicz średni czas rozwiązania zadania przez uczestnika konkursu? X = 45 x f x dx= Zadanie 5 45 x 2 x 225 dx= 2 x dx= =2 =2 5 =3 2 3 W zadaniu 3, jaki procent uczestników konkursu rozwiąże zadanie w czasie krótszym ni ż 2 minut? 2 2 x 22 P X 2 = dx= ,2 Odp. około 2% uczestników konkursu rozwiąże zadanie w czasie krótszym niż 2 minut. Zadanie 6 Czas dojazdu do pracy ( w minutach ) Pana Kowalskiego w losowo wybranym dniu jest zmienn ą losow ą T o rozkładzie jednostajnym na przedziale [3, 6]. Oblicz prawdopodobieństwo, że w pewnym dniu Pan Kowalski będzie w drodze do pracy (a) co najmniej 4 minut, f x dx= 6 3 = 3 4 P X 4 = 3 Sprawdzenie w języku R: dla x [3, 6] 3 dx= = 3 =2 3
4 > punif(4, min=3, max=6, lower.tail=false) [] (b) co najwyżej 5 minut i co najmniej 4 minut, 5 P 4 X 5 = 4 3 dx= = 3 > punif(5, min=3, max=6) - punif(4, min=3, max=6) [] (c) co najwyżej 5 minut pod warunkiem, że podróżuje ju ż co najmniej 3 minut. P X 5 X 3 = dzielenia przez! P {X 5 } {X 3 } P X 3 5 P X 5 = P X 3 = dx 3 dx = dx :Błąd Zadanie 7 6 a W zadaniu 6, oblicz (a) w jakim zakresie czasu znajduje si ę 5% najdłużej trwających dojazdów do pracy Pana Kowalskiego, 3 dx=,5 6 3 a 3 =,5 6 a = a=6 5 =45 > qunif(.5, min=3, max=6) [] 45 Odp. 5% najdłużej trwających dojazdów do pracy Pana Kowalskiego znajduje si ę w zakresie 45-6 minut. (b) w jakim zakresie czasu znajduje si ę 25% najdłużej trwających dojazdów do pracy Pana Kowalskiego,
5 6 a 3 dx=, a 3 = 4 6 a = 7,5 3 3 a=6 7,5 =52,5 > qunif(.75, min=3, max=6) [] 52.5 > qunif(.25, min=3, max=6, lower.tail=false) [] 52.5 Odp. 25% najdłużej trwających dojazdów do pracy Pana Kowalskiego znajduje si ę w zakresie między 52 minuty 3 sekund a 6 minut. (d) średni czas dojazdu do pracy Pana Kowalskiego. X = 3 6 =45 2 Odp. średni czas dojazdu do pracy Pana Kowalskiego wynosi 45 minut. Zadanie 8 Z bada ń wagi uczestników masowych maratonów wynika, że jest ona zmienn ą losow ą o rozkładzie normalnym o wartości średniej 6 kg i wariancji 9 kg2. Oblicz prawdopodobieństwo, że losowo wybrany uczestnik maratonu waży (a) mniej ni ż 55 kg, Zamiast standaryzowania gęstości i sprawdzania wyniku w tablicach obliczę przy użyciu języka R, co da większ ą dokładność. Najpierw obliczam odchylenie standardowe (którego jako argument wymagają zamiast wariancji funkcje języka R): 9=3 > sqrt(9) [] 3 > pnorm(55, mean=6, sd=3) [] (b) co najmniej 55 kg i co najwyżej 65 kg. > pnorm(65, mean=6, sd=3) - pnorm(55, mean=6, sd=3) [] Jaki procent uczestników maratonu ma wag ę przekraczając ą 66 kg?
6 > pnorm(66, mean=6, sd=3, lower.tail=false) [] Jak ą wag ę przekracza 7 % najwięcej ważących uczestników maratonu? > qnorm(.7, mean=6, sd=3) [] Zadanie 9 Długość trasy przejechanej taksówk ą w losowo wybranym dniu przez Pana Janka jest zmienn ą losow ą o rozkładzie normalnym ze średnią 5 km i standardowym odchyleniu 2 km. (a) Oblicz prawdopodobieństwo, że w ciągu dnia Pan Janek przejedzie więcej ni ż 25 km. > pnorm(25, mean=5, sd=2, lower.tail=false) [] (b) Jaki jest procent dni, w których Pan Janek przejeżdża mniej niż km. > pnorm(, mean=5, sd=2) [] Odp. Pan Janek przejeżdża mniej ni ż km w około,62% dni. Zadanie Zużycie paliwa na km pewnego modelu samochodu jest zmienną losow ą o rozkładzie normalnym N(6,,4). Oblicz prawdopodobieństwo, że na trasie km samochód zużyje więcej ni ż 5,5 litra i mniej ni ż 6 litrów paliwa. > pnorm(6, mean=6, sd=.4) - pnorm(5.5, mean=6, sd=.4) [] Zadanie Zmienna losowa X ma dystrybuant ę określon ą wzorem F(x) = gdy (a) Jaka jest wartość stałej A? Odp. A =.
7 b) Oblicz P(X = 2), P(X=). Odp. Jeśli potraktować zmienn ą losow ą jako stricte ciągł ą, to z definicji zmiennej losowej ciągłej oba prawdopodobieństwa wynosz ą. Jednak zmienna nie jest ciągła w punkcie X = 2 (co wynika ze specyfikacji dystrybuanty), zatem P(X=2) =,5 =,5 (notka: pierwsze,5 to granica funkcji,5(x-) w punkcie 2). Zadanie 2 Zmienna losowa X ma dystrybuant ę określon ą wzorem F(x) = gdy (a) Jak ą wartość może przyjąć stała A? Odp. A może przyjąć wartości pomiędzy,5 a. (b) Oblicz P(X=2), P(X=3). Analogicznie, jak w poprzednim zadaniu, jeśli zmienn ą potraktujemy jako ciągłą to oba prawdopodobieństwa wynosz ą. Jeśli potraktować zmienn ą jako dyskretn ą, to P(X=2) = A, P(X=3) = A lub (co trudno wywnioskować, bo dystrybuanta nie została określona dla tego punktu). Zadanie 3 Zmienna losowa X ma rozkład normalny o średniej 5 i odchyleniu standardowym 2. Jaki rozkład prawdopodobieństwa ma zmienna losowa Y = 4X + 2. Odp. rozkład normalny o średniej 5+2=7 i odchyleniu standardowym 2*4=8. Zadanie 4 Zmienna losowa X ma rozkład N(3,). Jaki rozkład prawdopodobieństwa ma zmienna losowa Y = X Odp. rozkład N(,). Zadanie 5 Z ostatnich bada ń CBOS - u wynika, że 67% Polaków popiera wejście Polski do Unii Europejskiej. Oblicz prawdopodobieństwo, że wśród trzech losowo wybranych Polaków (a) 2 osoby popieraj ą wejście Polski do UE.
8 Niech zmienna losowa X oznacza liczb ę odpowiedzi tak w pytaniu o poparcie. Mamy do czynienia z rozkładem dwumianowym zmiennej dyskretnej. P X=2 =b 2 ;3,.67 = 3 2,672, = 3! 2!!,672,33,67 2,449 > dbinom(2, size=3, prob=.67) [].4444 Odp. prawdopodobieństwo, że wśród trzech losowo wybranych Polaków 2 osoby popieraj ą wejście Polski do UE wynosi około 44,4%. (b) nie ma osoby popierającej wejście Polski do UE. P X= =b ;3,.67 = 3,67,67 3 =,33 3,35 > dbinom(, size=3, prob=.67) [] Odp. prawdopodobieństwo, że wśród trzech losowo wybranych Polaków żadna osoba nie popiera wejścia Polski do UE wynosi około 3,59%. (c) 3 osoby popieraj ą wejście Polski do UE. P X=3 =b 3 ;3,.67 = 3 3,673,33 =,67 3,3 > dbinom(3, size=3, prob=.67) [].3763 Odp. prawdopodobieństwo, że wśród trzech losowo wybranych Polaków wszystkie popieraj ą wejście Polski do UE wynosi około 3%. Zadanie 6 W zadaniu 22 załóżmy, że wybrano losowo 4 Polaków. Niech zmienna losowa X oznacza liczb ę osób spośród nich, które popieraj ą wejście Polski do UE. (a) Jaka jest wartość średnia E(X) i wariancja Var(X)?. Odp. Wartość średnia wynosi X =4,67 =268. Wariancja wynosi 2 X =4,67,67 =88,44. (b) Jaki rozkład prawdopodobieństwa ma zmienna losowa X?. Odp. rozkład dwumianowy z 4 doświadczeniami i prawdopodobieństwem sukcesu,67. (c) Ze wzgl du na du liczebno ć próby, mo na przyj ć, e ę żą ś ż ą ż standaryzowana zmienna losowa
9 ma w przybliżeniu rozkład normalny. Jakie są parametry tego rozkładu?. Odp. (,); Jak dla każdego standardowego rozkładu normalnego... Jeśli natomiast pominąć standaryzowanie zmiennej losowej, to przybliża ją rozkład N(268, 88.44). Oto program w R porównujący rozkład dwumianowy i normalny dający pojęcie o dokładności przybliżenia: png(filename ="zadania6_6_%2d.png", width = 8, height = 6, pointsize = 2, bg = "white") par(mfcol=c(2,)) prawdoptak=.67 liczbaosob=4 zad6binom<-function(x) { return(dbinom(x, size=liczbaosob, prob=prawdoptak)) } zad6norm<-function(x) { return(dnorm(x, mean=liczbaosob*prawdoptak, sd=sqrt(liczbaosob*prawdoptak*(- prawdoptak)))) } wykresod<-22 wykresdo<-32 plot(zad6binom, wykresod, wykresdo, main="rozklad dwumianowy dla zadania 6") plot(zad6norm, wykresod, wykresdo, main="rozklad normalny (przyblizajacy rzeczywiste dane) dla zadania 6") dev.off() I jego wynik:
10 (d) Oblicz przybliżone prawdopodobieństwo, że wśród wylosowanych osób nie więcej ni ż 3 osób popiera wejście Polski do UE. W oparciu o rozkład normalny, w języku R: > pnorm(3, mean=4*.67, sd=sqrt(4*.67*(-.67))) [] W oparciu o rozkład dwumianowy, w języku R: > pbinom(3, size=4, prob=.67) []
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Bardziej szczegółowoZmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny
Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:
Bardziej szczegółowoJeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Bardziej szczegółowoRozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Bardziej szczegółowoKURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest
Bardziej szczegółowog) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.
TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności
Bardziej szczegółowoRozkłady zmiennych losowych
Rozkłady zmiennych losowych 1 Zmienne losowe dyskretne 1.1 Rozkład dwumianowy Zad.1.1.1 Prawdopodobieństwo dziedziczenia pewnej cechy wynosi 0,7. Jakie jest prawdopodobieństwo, że spośród pięciu potomków
Bardziej szczegółowoStatystyczna Analiza Danych - Zadania 5
Zadanie 1 Statystyczna Analiza Danych - Zadania 5 Aleksander Adamowski (s1869) Liczba nie zdanych egzaminów w ciągu semestru przez losowo wybranego studenta pewnej uczelni jest zmienn ą losow ą X o funkcji
Bardziej szczegółowoRozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Bardziej szczegółowoLiteratura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Bardziej szczegółowoEstymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Bardziej szczegółowoKwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
Bardziej szczegółowoStatystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
Bardziej szczegółowoWykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Bardziej szczegółowoPrzykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Bardziej szczegółowoRozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń
Bardziej szczegółowoZestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Bardziej szczegółowoRozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Bardziej szczegółowoPrzestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Bardziej szczegółowoBiostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Bardziej szczegółowoa)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.
Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów
Bardziej szczegółowoZmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Bardziej szczegółowoTemat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Bardziej szczegółowoZmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
Bardziej szczegółowoPODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH
Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej
Bardziej szczegółowoZwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X
Własności EX, D 2 X i DX przy przekształceniach liniowych Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Przemnożenie wartości zmiennej losowej przez wartość stałą: Y=a*X
Bardziej szczegółowoElementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Bardziej szczegółowoPODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Bardziej szczegółowoRozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Bardziej szczegółowoStatystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Bardziej szczegółowoRachunek Prawdopodobieństwa MAP1181 Wydział Matematyki, Matematyka Stosowana Projekt - Czas dojazdu autobusem Opracowanie: Klaudia Karpińska
Zadanie Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Projekt - Czas dojazdu autobusem Opracowanie: Klaudia Karpińska Z pracy do domu możemy dojechać autobusem jednej z trzech
Bardziej szczegółowoAKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoSTATYSTYKA wykład 5-6
TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy
Bardziej szczegółowoZmienne losowe zadania na sprawdzian
Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoĆwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoPEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Bardziej szczegółowoWykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Bardziej szczegółowoMETODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Bardziej szczegółowoRozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)
Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz
Bardziej szczegółowoLABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Bardziej szczegółowoModelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Bardziej szczegółowoRozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
Bardziej szczegółowoZ Wikipedii, wolnej encyklopedii.
Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to
Bardziej szczegółowoR ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we
Bardziej szczegółowoRozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
Bardziej szczegółowoDokładne i graniczne rozkłady statystyk z próby
Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Bardziej szczegółowoTemat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
Bardziej szczegółowoP (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Bardziej szczegółowoJednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Bardziej szczegółowoW rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Bardziej szczegółowoZmienne losowe skokowe
Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.
Bardziej szczegółowo6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
Bardziej szczegółowo4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY Próba losowa prosta To taki dobór elementów z populacji, że każdy element miał takie samo prawdopodobieństwo znalezienia się w próbie Niezależne
Bardziej szczegółowoDyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoŚrodowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze
Bardziej szczegółowoZmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski
Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,
Bardziej szczegółowoZ poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Bardziej szczegółowoAkademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Bardziej szczegółowoMatematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowo1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Bardziej szczegółowoWYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Bardziej szczegółowox x 0.5. x Przykłady do zadania 4.1 :
Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.
Bardziej szczegółowoElektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy
Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5
Bardziej szczegółowoCentralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Bardziej szczegółowoZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Bardziej szczegółowoĆwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa
Bardziej szczegółowoModelowanie komputerowe
Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Bardziej szczegółowoTemat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Bardziej szczegółowoLiczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Bardziej szczegółowo07DRAP - Zmienne losowe: dyskretne i ciągłe
07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego
Bardziej szczegółowoMetody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Bardziej szczegółowoWykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Bardziej szczegółowoMariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski
Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska Zmienna losowa i jej rozkład Statystyka matematyczna Podstawowe pojęcia Zmienna losowa (skokowa, ciągła) Rozkład
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Bardziej szczegółowoPrzykłady do zadania 3.1 :
Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 3: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala,
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
Bardziej szczegółowoZmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Bardziej szczegółowoWnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Bardziej szczegółowoII WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Bardziej szczegółowoStatystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Bardziej szczegółowo