Bogdan Żółtowski, doc. dr inż. Instytut Fizyki PŁ, Wólczańska 219, pokój 3.12 B14, III p.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bogdan Żółtowski, doc. dr inż. Instytut Fizyki PŁ, Wólczańska 219, pokój 3.12 B14, III p."

Transkrypt

1 Fa I ogdan Żółtows doc. dr nż. Insttut F PŁ Wólcańsa 9 poó 3. 4 III p. tel Konsultace: pąte 4-6 Zares predmotu: Knemata Dnama puntu materalnego Dnama brł stwne Pole grawtacne Ruch drgaąc Ruch falow Pole eletrostatcne Prewodnctwo eletrcne Pole magnetcne Warun alcena predmotu Ćwc. rachunowe =40 pt. mn. 0) Kolowum ońcowe 90 mn. test) = 60 pt mn. 30) Wn = Ćwcena+Kolowum 40%+60%) FIZYK - 07 W-

2 Stron w sec: Lteratura materał Lteratura podstawowa: Robert Resnc Davd Hallda Fa tom Wd XIV PWN 999 Davd Hallda Robert Resnc Jearl Waler Fa tom 34 PWN 003 Lteratura pomocnca: ndre K. Wróblews Janus Zarews Wstęp do ftom PWN 976.Jawors.Detłaf L.Młowsa Kurs f tom PWN 984 Lteratura dla anteresowanch:.kttel W.D. Knght M..Ruderman Mechana PWN 973 R.P.FenmanR.Leghton M.Sands Fenmana Wład f tom PWN 97 E.M. Purcell erele Phscs ourse Eletrcność Magnetm.Jawors.Detłaf L.Młowsa Kurs f tom PWN 984 Zgmunt Klescews Fa lascna Wd. Poltechn Śląse 997 D.M.ourg Fa dla programstów ger Helon 003.Drewńs J.Wotewc Opoweśc hstor f PWN 00 urs f ang.).r. Nave smulace ang) wrtualne laboratorum ang) lustrace do sąż P.Tplera f.k.wróblews ln do materałów ddatcnch publac f FIZYK - 07 W-

3 Metoda badawca Wted bowem sądm żeśm daną rec ponal gdśm wrl perwse prcn perwse asad aż do ostatecnch elementów rstoteles Fa IV w.p.n.e Metoda badawca Ję Welośc Obserwaca nala Mar Jednost Worce Model Werfaca pre esperment Matemata Jeśl potrafce merć to o cm mówce ora wrać to w lcbach wówcas wece o cm mówce Lord Kelvn Zastosowane FIZYK - 07 W- 3

4 Prawa ależnośc fcne ao wą prcnowo sutowe II asada dnam: F F a ; m ma a F F a F m a m F; m a Poemność eletrcna: Q ; Q Q ; Q ; FIZYK - 07 W- 4

5 Interpretaca ależnośc predstawanch na wrese Zmenna neależna na os poome menna ależna na os ponowe Prawo Ohma: R tg R ; R R R ; R R R F Mm F G r r Mm F G r F r FIZYK - 07 W- 5

6 nala Wmarowa Welość Wmar/ednosta Welość Wmar/ednosta Długość [L] [m] ęstość [T - ] [s - ] Masa [M] [g] Sła [M][L]/[T ] [g][m]/[s ] as [T] [s] Praca [M][L ]/[T ] [][m ]/[s ] s nala wmarowa powala na sprawdene formalne poprawnośc ależnośc godnene wmarów powala na prewdwane postac ależnośc I a v F a t v m s a F? gm F s I e [ m ] o m m s s g m s M a F M FIZYK - 07 W- 6

7 Wetor salar Wróżn welośc wetorowe: Neależność od uładu współrędnch: wartośc erunu. Podlegane regułom specalnm dodawana: V ; F ; reguła równoległobou premenność ne spełnona np. dla obrotu) Wróżn welośc salarne: Neależność wartośc od uładu współrędnch. Podlegane regułom algebr. T ; E ; Wetorowe uęce praw f est neależne od uładu współrędnch Welośc tensorowe: ogólnon aps własnośc erunowch Salar: tensor rędu 0 Wetor: tensor rędu 3 sładowe) tensor II rędu 33 9 sładowch) Ops własnośc anotropowch naprężene moment bewładnośc polarowalność eletrcna FIZYK - 07 W- 7

8 Wetor b b Wetor ednostow a a a r r r a a a r r ) ) ) FIZYK - 07 W- 8

9 Sładowe wetora cos ) î ĵ ład arteańs ortogonaln î ĵ prawosrętn lewosrętn FIZYK - 07 W- 9

10 0 Wetor w ułade arteańsm î ĵ ] [ cos cos cos FIZYK - 07 W-

11 ] [ ] [ ) ) ) n n n n ) ) ) ) cos cos 0 // ] [ ] [ 0 Dałana na wetorach Ilocn salarn: ; ; ] [ Ilocn FIZYK - 07 W-

12 ] [ ] [ ) sn // ) ) ) Ilocn wetorow lewosrętn FIZYK - 07 W-

13 adane ruchu Ops ruchu pomnęcem prcn ruchu ego man asoprestreń ład odnesena Worcow uład odnesena Iotropowa prestreń euldesowa Punt materaln rła stwna Poęce ruchu FIZYK - 07 W- 3

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol

Bardziej szczegółowo

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI Włd 2: Wetor DR INŻ. ZIGNIEW SZKLRSKI SZKL@GH.EDU.PL HTTP://LYER.UCI.GH.EDU.PL/Z.SZKLRSKI/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, ntężene prądu eletrcnego, nprężene, ntężene

Bardziej szczegółowo

Warunki zaliczenia przedmiotu Ćwicz. rachunkowe =40 pkt. (min. 20) Kolokwium końcowe (90 min. test) = 60 pkt (min. 30)

Warunki zaliczenia przedmiotu Ćwicz. rachunkowe =40 pkt. (min. 20) Kolokwium końcowe (90 min. test) = 60 pkt (min. 30) zyka I Bogdan Żółtowk, doc. d nż. Intytut zyk PŁ, Wólczańka 9, pokój 3. B4, III p. tel. 3664, http://www.f.p.lodz.pl/bogdan.zoltowk/ Konultacje: pątek 4-6 Zake pzedotu: Kneatyka Dynaka punktu atealnego

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) MARIAŁY POMOCNICZ O WYKŁAU Z POAW ZAOOWAŃ ULRAŹWIĘKÓW W MYCYNI (włącne do celów ddatcnch aa ropowsechnana) b. Materał eletromechancne atwne, pretworn peoeletrcne peomagnetcne, anala prac pretworna peoeletrcnego.

Bardziej szczegółowo

1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty)

1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty) 1. Alger wetorów Welość wetorową chrterue wrtość, cl moduł, erune, wrot. Możn ą predstwć w sposó grfcn o odcne serown o długośc proporconlne do modułu lu te w sposó nltcn. Sposó nltcn poleg n podnu rutów,,

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

ELEMENTY RACHUNKU WEKTOROWEGO

ELEMENTY RACHUNKU WEKTOROWEGO Unwestet Wmńso- Mus w Ostne Złd Mehn onstu udownh ELEMENTY RCHUNU WETOROWEGO Włd d nż. Roet Smt Zen tetu 1. wtows J.: Stt ogón. Wsw : Wdw. Potehn Wswse, 1971. 2. wtows J.: Mehn tehnn. Wsw: Wdw.. Potehn

Bardziej szczegółowo

Macierze hamiltonianu kp

Macierze hamiltonianu kp Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej

Bardziej szczegółowo

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. MECHANIKA OŚRODKÓW CIĄGŁYCH Potr Konderla paźdzernk 2014 2 SPIS TREŚCI Oznaczena stosowane w konspekce...

Bardziej szczegółowo

Ł Ą ż ż Ę ż Ó Ł ź ż ż Ś ż Ę Ę Ś Ą ć ż Ź Ś Ę Ś ĄÓ Ę Ź ż Ń ć ć ć ć ż ć ć Ę Ś ż ż ć ć ć Ę ć ż Ć Ś ć ć Ś ć ć ż ż ż Ź Ś ż ć ć ć ć ć ć Ś ć Ę ż Ę ć Ó ć ć ć ć Ę ć ć ć Ę Ś ż ć Ę Ź ć Ę Ć Ź ż ż Ś Ę ź ć Ź ż ć Ą ć

Bardziej szczegółowo

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b = St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow

Bardziej szczegółowo

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe Leu. D. Hlld, R. Resnc, J. Wle, Podsw f, om -5, PWN, 7. D. Hlld, R. Resnc F om,, PWN, 974. 3. J. Blnows, J. Tls F dl nddów n wŝse ucelne PWN 986 4. P. W. Ans Chem fcn, PWN, 3. Pln włdu ) Podswowe wdomośc

Bardziej szczegółowo

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne)

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne) Naprężena wywołane cężarem własnym gruntu (n. geostatycne) wór ogólny w prypadku podłoża uwarstwonego: h γ h γ h jednorodne podłoże gruntowe o cężare objętoścowym γ γ h n m γ Wpływ wody gruntowej na naprężena

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,

Bardziej szczegółowo

EPR. W -1/2 =-1/2 gµ B B

EPR. W -1/2 =-1/2 gµ B B Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s

Bardziej szczegółowo

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż.

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż. SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE CZĘŚĆ: I DR INŻ. TOMASZ LASKOWSKI Animacje na slajdach 13-30 prgotował mgr inż. Marcin Płosiński MOTTO WYKŁADU Nie treba końcć studiów na kierunku elektronika, ab

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

Jeśli m = const. to 0 P 1 P 2

Jeśli m = const. to 0 P 1 P 2 1 PRAWA NEWTONA Prawo perwse. Każde cało trwa w spocnku lub ruchu jednostajn prostolnow, dopók sł nań dałające tego stanu ne eną. Prawo druge. Zana lośc ruchu (pędu) jest proporcjonalna wględe sł dałającej

Bardziej szczegółowo

Mechaniki Płynów wybrane równania

Mechaniki Płynów wybrane równania Mechan Płnów wbrane równana amescone materał ne est werfowane pod wględem mertorcnm tego wględu ne należ nego orstać do celów nnch a naua możlwośc paet MS Word W nawasach {} podano nformace dotcące astosowanch

Bardziej szczegółowo

ZASADY ZALICZANIA PRZEDMIOTU:

ZASADY ZALICZANIA PRZEDMIOTU: WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

Wymagania na poszczególne oceny z przedmiotu Informatyka kl. IV

Wymagania na poszczególne oceny z przedmiotu Informatyka kl. IV Wymagana na poscególne oceny predmotu Inormatyka kl. IV 1. 2. 3. 4. 5. Wymagana kontynuowane nauk..... Stope dopuscający Uce w pracown komputerowej, jest komputer, komputeroweg o, komputera, system operacyjny

Bardziej szczegółowo

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie

Bardziej szczegółowo

~ stopni swobody

~ stopni swobody Mrostan roład mroanoncn ~ 10 3 stopn swobod Uład cąste (lascn bądź wantow) Uład (roważan wantowomechancne) wonuje nesłchane sbe, chaotcne prejśca pomęd swom stanam wantowm; Jeśl patrm na uład lascne, możem

Bardziej szczegółowo

Geometria analityczna przestrzeni

Geometria analityczna przestrzeni ALGEBRA LINIOWA 1 Wydział Mechaniczny / AIR, MTR Semestr zimowy 2009/2010 Prowadzący: dr Teresa Jurlewicz Wetory, długość wetora Geometria analityczna przestrzeni Zadanie 1 [5.1] Obliczyć długości podanych

Bardziej szczegółowo

x od położenia równowagi

x od położenia równowagi RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania Mrosław Gdlews esze Jeoł Reonstrucja zderzena dwóch saochodów osobowch podstawowe zasad prata ch stosowana treszczene RóŜnorodność złoŝoność wpadów drogowch polegającch na zderzenu dwóch saochodów sprawają,

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

Ń Ł Ł Ś ć Ż ń Ś ń Ą ś ń ś ń ń ń ś Ą ź ś ś ś ń Ą ś ś Ż ś ś ź Ć ń ś ś ś ń Ą Ą Ą ś Ą ś ś ć ść Ą ś ć ść ś ź Ę Ś ć Ą Ą ś Ą ś ś ść ń Ą ś ś Ś Ś ś Ą ść Ę ść ść Ę ść Ą ń Ą ń Ę ś ś Ś ś ść Ę ś Ą ś ń ś ś Ę ś Ą ś ść

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

Algebra WYKŁAD 1 ALGEBRA 1

Algebra WYKŁAD 1 ALGEBRA 1 Algebra WYKŁAD ALGEBRA Realacja predmotu Wykład 30 god. Ćwcena 5 god. Regulamn alceń: www.mn.pw.edu.pl/~fgurny ALGEBRA Program ajęć Lcby espolone Algebra macery Układy równań lnowych Geometra analtycna

Bardziej szczegółowo

ż Ę ń Ś ó ź ó ń Ę ó ó ź ó Ń ó ó ż ż ó ż ń ó ć ń ź ó ó ó Ę Ę ó ź ó ó Ł Ł Ą Ś ó ń ó ń ó Ł Ł ó ó ó ń Ś Ń ń ń ó ó Ś ó ć ó Ą Ą ń ć ć ó ż ó ć Ł ó ń ó ó ż ó ó ć ż ż Ą ż ń ó Śó ó ó ó ć ć ć ń ó ć Ś ć ó ó ż ó ó

Bardziej szczegółowo

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE Zasady wyznazana depozytów zabezpezaąyh po wprowadzenu do obrotu op w rela lent-buro malerse ZAADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERKIE

Bardziej szczegółowo

Dokument pochodzi z cyfrowego archiwum PTN, Odział we Wrocławiu. Wszelkie prawa zastrzeżone - wykorzystanie bez zgody Właściciela zabronione.

Dokument pochodzi z cyfrowego archiwum PTN, Odział we Wrocławiu. Wszelkie prawa zastrzeżone - wykorzystanie bez zgody Właściciela zabronione. ń ń Dokument pochodzi z cyfrowego archiwum PTN, Odzia we Wrocawiu. Wszelkie prawa zastrzeone - wykorzystanie bez zgody Waściciela zabronione. ń Ą Ł Ś ń ń ó ń ńę Dokument pochodzi z cyfrowego archiwum PTN,

Bardziej szczegółowo

Wykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne

Wykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne Element cfrowe i układ logicne Wkład Literatura M. Morris Mano, Charles R. Kime Podstaw projektowania układów logicnch i komputerów, Wdawnictwa Naukowo- Technicne Giovanni De Micheli - Sntea i optmaliacja

Bardziej szczegółowo

Ą ź ń Ś Ź ń Ę Ś ź Ę ń ć ć ż ż ż ż ć ń Ę Ż ń ż ć ć Ł Ż Ż ćń Ą ć ć Ą Ż Ź Ą ż Ż ż Ą Ą Ę ń ć ć ń ń Ę ń ź ń Ż ż ć ń Ż ż ć Ż ń ż Ą ć ć Ą Ż Ą Ż Ł ź Ą ń Ź ń Ę ż Ń Ę Ń ż ć ż Ń ń ń Ę Ę ż Ź Ż ć Ą Ż ń ń Ż ć ż Ż ń

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

Ę ć ń ż ć Ń ń ż ć ć ń ż ć ń ź ń Ę Ń ń ń ż ć ż ć ć Ń ż ć ń ć ż ń ż ć ć Ń ż ć Ń ż Ń Ń Ń ż ż Ń ż ż Ń ń ź Ń ń Ń ń ń Ą ń ń ź ń Ń Ń ć Ę ż Ń ż ć ć ć Ę ńż ń Ą ć ć Ę ż ż ć ż ć Ń ż Ń ż Ń ż ż ń ć ń Ń ń Ę ż Ł Ń ż

Bardziej szczegółowo

Ą Ż Ł ś ż ńż ż ż ś ź ź ć ź ś ń ż ć ź ź ź ż ź ś ź ń ź Ę ż ź ź ź ż ż ś ń ż ż ś ż ź ż ź źń ż ż ż ź ś ś ż ś ż ż Ż Ł ń ż ś ż ń ź ź ż żń ść ż ż ń ń ń ń ń ż ś ź ż ń ż ś ń ż ć ż ś ż ż ć ń ż ż ź ż ć ż ż ś ż ż ć

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

Matematyka 2. Elementy analizy wektorowej cz I Pole wektorowe

Matematyka 2. Elementy analizy wektorowej cz I Pole wektorowe Matematka Element anali wektorowej c I Pole wektorowe Literatura M.Gewert Z.Skoclas; Element anali wektorowej; Oficna Wdawnica GiS Wrocław 000 W.Żakowski W.Kołodiej; Matematka c II; WNT Warsawa 1984 W.Leksiński

Bardziej szczegółowo

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania Reonstrucja zderzenia dwóch saochodów osobowch podstawowe zasad i prata ich stosowania dr inŝ. Mirosław Gidlewsi Politechnia Radosa, WŜsza zoła Biznesu, RN RTiRD gr inŝ. Lesze Jeioł Politechnia Radosa

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Moment siły (z ang. torque, inna nazwa moment obrotowy)

Moment siły (z ang. torque, inna nazwa moment obrotowy) Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene

Bardziej szczegółowo

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D).

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Wektor Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Adam Szmagli«ski (IF PK) Wykªad z Fizyki dla I roku WIL Kraków, 10.10.2015 1 / 13 Wektor Uporz dkowany

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

7.5.1. Ruch bryły swobodnej

7.5.1. Ruch bryły swobodnej 751 Ruch brł swobone Swobona brła stwna ma w prestren seść stopn swobo o oreślena e ruchu potreba seścu równań ruchu Ruch brł możem robć na ruch śroa mas wwołan pre ałane wetora głównego sł ewnętrnch obrót

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Prawa Zachowania. Zasady zachowania odgrywaj w fizyce szczególn rol.

Prawa Zachowania. Zasady zachowania odgrywaj w fizyce szczególn rol. izya 1: Wyad II Prawa Zachowania 1 Zasady zachowania odgrywaj w fizyce szczególn rol. Orócz zasad zachowania oznanych w szole: zasady zachowania du zasady zachowania momentu du zasady zachowania energii

Bardziej szczegółowo

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)). MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),

Bardziej szczegółowo

Ś Ł Ó Ó ć ć Ń ć Ą ć ć Ń Ń Ł Ńź Ą Ą Ł Ś Ń Ó Ó ź ć ć ć ć ć Ł Ż Ą Ł Ł Ś Ń Ó ć ć Ń Ą Ą ć ć ć Ś Ń ć ć Ą Ą ź ć Ś Ą Ą Ó ć Ą Ń ź Ą ć Ą ź Ą ź Ń ć ź ć Ą ź ć ć ć Ą ź ź ź Ą ź ź Ą Ą ź ź Ś Ś ć Ł ć ź Ą Ą ź Ą ć Ś ź

Bardziej szczegółowo

Układy równań - Przykłady

Układy równań - Przykłady Układy równań - Prykłady Dany układ równań rowiąać trea sposobai: (a) korystając e worów Craera, (b) etodą aciery odwrotnej, (c) etodą eliinacji Gaussa, + y + = y = y = (a) Oblicy wynacnik deta aciery

Bardziej szczegółowo

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

R w U R + R R V = U1. grr2 = V U U. P pobiera energię + R. R 1 g V s U 2 U 1. I z

R w U R + R R V = U1. grr2 = V U U. P pobiera energię + R. R 1 g V s U 2 U 1. I z adane W obwode, o schemace pokaanym na rysnk, oblcyć moc reystora. Dane: 4,5,,. ( ) K: [] G [W] adane Wynacyć stosnek napęć k / w obwode o schemace pokaanym na rysnk. Dane: k, 4 k, 5 k, g,5. g s s g s

Bardziej szczegółowo

SPRAWDZANIE PRAWA MALUSA

SPRAWDZANIE PRAWA MALUSA INSTYTUT ELEKTRONIKI I SYSTEMÓW STEROWANIA WYDZIAŁ ELEKTRYCZNY POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM FIZYKI ĆWICZENIE NR O- SPRAWDZANIE PRAWA MALUSA I. Zagadnena do przestudowana 1. Fala elektromagnetyczna,

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Ą Ł ń Ł ś ś Ą ś Ę Ś ś ź Ę ń Ę Ę ń ź Ę ź ś ń ś ś Ś ś ń Ó Ó ś ś ś Ę ś ń Ę Ó Ę ś ś Ą Ź Ę ń ś ś Ó ść ś ś ń Ę Ł Ą ź Ę ś Ś ś Ą Ą Ó ń ś ś Ę Ź ń Ę Ó Ę Ź ź ś ś ś śń ś ń Ó Ł Ł Ą ś ś Ę ś Ę Ę Ó ś ś Ę Ł ń Ó ś ś Ę Ó

Bardziej szczegółowo

Równania Lagrange a II r.

Równania Lagrange a II r. Mechania Analityczna i Dgania Równania Lagange a II. pzyłay Równania Lagange a II. pzyłay mg inż. Sebastian Pauła Aaemia Góniczo-Hutnicza im. Stanisława Staszica w Kaowie Wyział Inżynieii Mechanicznej

Bardziej szczegółowo

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2 T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

KINEMATYKA MANIPULATORÓW

KINEMATYKA MANIPULATORÓW KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można

Bardziej szczegółowo

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo