~ stopni swobody
|
|
- Stanisław Kasprzak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Mrostan roład mroanoncn ~ 10 3 stopn swobod Uład cąste (lascn bądź wantow) Uład (roważan wantowomechancne) wonuje nesłchane sbe, chaotcne prejśca pomęd swom stanam wantowm; Jeśl patrm na uład lascne, możem powedeć, że cąst porusają sę po chaotcnch trajetorach.
2 H`» > = E HL» > HaL bór neoddałwującch osclatorów HwantowoL: H` = p` m + 1 m w x` 1 - osclator : H`» n > = ÑwIn + 1 M n >» >» n > - dentcnch osclatorów Ho tch samch cęstoścachl H`» n 1, n,... n > = ÑwIn 1 +n +... n + 1 M n 1, n,... n > 8n, n a = 0, 1,...<» >» n 1, n,... n >
3 Pomar marosopow jest cuł jedne na pewne uśrednone własnośc tego ogromu stanów wantowch. W onsewencj: uasadnon jest ops probablstcn uładów marosopowch. Zabeg ta prowad do nterpretacj mrosopowej pojęć wprowadonch na grunce termodnam fenomenologcnej. Prawdopodobeństwa wprowadane na prestren mrostanów uładu (na pocąte ne dsutowane są tw. statst wantowe) MIKROSTA: astaw wsstch lcb wantowch potrebnch do opsu stanu uładu. H` > = E > Zespół lcb wantowch charaterującch Stan (będem roważać repreentację energetcną)
4 HbL bór neoddałwującch cąste puntowch : H` = p` m H`» n 1, n,... n > = h In 1 + n ê3 8 mv n a ax, n a, n a D, n a = 1,, n M n 1, n,... n > ƒ» >» n 1, n,... n > HcL HaL + HbL lascne 8q 1,..., q 3 ; p 1,..., p 3 <
5 Prps cąsta w seścennm pudle o romarach L 3 quas-wantowe lcene stanów: ) ( 8 ) ( ) ( sn sn sn ) )sn( )sn( sn(,,,, x x n n n x x n n n n n n ml h m m L x n L x n L x n A x A x x + + = + + = = = = Ψ h h ε π π π
6 Uwaga: Klascne: dan punt w prestren faowej odpowada doładne jednemu mrostanow ruchu całego uładu Kwantowo: mrostan jednej cąstec wnacon tróją lcb wantowch, tach że L R = n = 8mε ε h
7 Lcba mrostanów jej wąe entropą: ech stan uładu» >» n 1, n,... n >, a ażd atomów może ajmować poom energetcne 8 e na <. Wted W HU, V, L : lcba mrostanów o energ U H EL dana jest pre lcbę rowąań równana U = e 8na < : W = 8a< 8n a < d j U - 8b< e 8nb < Zobacm tera, że entropa mus sę wąać W HU, V, L
8 1 W 1 ~ W 1 W W 1 W Bra oddałwana męd poduładam (lcba mrostanów dwóch oste do gr = 6. 6 podcas gd dla ażdej osobna mam 6
9 Entropa roładu prawdopodobeństwa Entropę wprowadć można użwając pojęć nformatcnch (mara neonaconośc, brau nformacj o ułade) Dane stan 1,,, r realowane w próbowanu ta, że obserwacja stanu p! H 0 H p p 1 = = = e r = 1 r = 1 λ 1 = 1/ r p p, re ln = d / dp H ln λ 1 p p = 1 + λp ln S p 1 λ = Ω 0 = r = 1 = H lm ( p )! 1 lnω
10 W stoce... [ ] p p p p p p p p p p p p p p p ln ) ln (ln } ln ln ln ln ln 1 ) )ln( ( ln )! ln(! ln )! ( ln!) ln( )! (! ln ln lm 1 1 = = = = Ω = Π = Π = Ω = =
11 Zatem, ab nterpretować entropę, potrebujem addtwnej welośc, tóra mer lcbę mrostanów dostępnch dla uładu. Jednm H! L rowąanem jest dentfacja entrop logartmem lcb dostępnch mrostanów: S = df B ln W HE, V, L (do agadnena addtwnośc jesce wrócm)
12 Roład mroanoncn S = df B ln W E, V, Ensten nawał tę formułę ZASADĄ BOLTZMAA Współcnn proporcjonalnośc B wbera sę ta, ab T = j U = 1ê H Sê UL V, S V, gadała sę e salą temperatur absolutnej, tórą popredno wprowadlśm: B = R A = â 10-3 Jê K
13 S = df B ln W E, V, Powżs wór na entropę jest jednm najważnejsch worów w fce. Został po ra perws apostulowan pre Boltmanna. Uwaga 1 Ab stnała addtwność entrop, potencjał oddałwana męd atomam HcąstamL etc. mus bć rótoasęgow, tn. anać sbcej nż r -d Hd - wmar prestren w tórej jest nas uład - wle d 3L
14 tn. lcm W HE, de,...l = df E E 8l< H,V,XL E+dE 1 Można równeż lcć Hpr presalowanu stanu podstawowego do energ E 0 = 0L pełną sumę stanów W 0 HE,...L = df 0 E 8l< H,V,XL E 1 Hwsste stan wewnątr sferl Wted defnuje sę tw. gęstość stanów : D HEL = W HE, de,...l = D HEL de E W 0 HE,,...L
15 Uwaga Mając S = B ln@ W 0 HELD> B ln@ W HELD Możem wlcć wsste poostałe funcje termodnamcne (prpomnene termodnam): S = 1 T U + p T V - m T U = E ds = 1 T du + p T dv - m T d p T = j S V U, ; 1 T = j S U V, ; m T = - j S U,V
16 III ZASADA TERMODYAMIKI Wprowadona entropa jest taże onsstentna III Zasadą Termodnam (ernst) Entropa ( na castę) uładu w ere bewględnm jest unwersalną stałą (neależną od żadnch parametrów) dla wsstch cał. Można węc prjąć S=0 (dla T=0): jest to podsumowane danch espermentalnch w poblżu T~0
17 onsewencje HćwcenaL C x ô TÆ0 0 ; j V T p, TÆ0 ô 0 j p T V, TÆ0 ô 0 Interpretacja statstcna W temperature era bewględnego uład najduje sę w stane podstawowm, tj. w stane o najnżsej energ. Jeśl stan podsta - wow ne jest degenerowan, wted W HE mn, V, L = 1 S = 0. Jeśl stan podstawow jest degenerowan a stopeń degene - racj g d, wted entropa S = B ln g d B ln Hatem na w prelcenu na cąstę - godne III. t.l
18 Prład: Model dwustanow Dgresja matematcna : Wór Strlnga : G HmL = 0 -x x m-1 x Hf.cja gamma EuleraL G H + 1L =! ~ " p HdoweśćL ln! ~ j + 1 ln - + ln " p, = ln - + Hln L
19 + E 0 H + - cąstel - E 0 H - - cąstel Zbór - neoddałwującch cąste, ażda może prjmować tlo jedną dwóch energ : -E 0, +E 0 jnp. neoddałwujące spn w awnętrnm polu magnetcnm mają energę: -hm 0 s`, s, = ± 1
20 + E 0 H + - cąstel - E 0 H - - cąstel ech całowta energa wnos : E = ME 0 = + E E 0 = H L E 0 9 = M = ô 9 - = 1 H - ML = 1 I1 - E E 0 M + = 1 H + ML = 1 I1 + E E 0 M wted W HE, L = W HME 0, L = J - =! -! +!
21 Zatem mam: ln! = ln - + Hln L S HE, L = B ln j! -! +! = ln! - ln -! - ln +!D wór Strlnga ª B 8 ln ln ln < = B 8 H L ln - - ln ln + < = - B 8 - lnh - ê L + + ln H + ê L < 9 - = 1 H - ML = 1 I1 - E E 0 M + = 1 H + ML = 1 I1 + E E 0 M
22 E = M E 0 = + E E 0 = H L E 0 9 = ô 9 - = M = = 1 1 H - ML H + ML S HE, L = - B 8 - lnh - ê L + + ln H + ê L < - = 1 H - ML = 1 I1 - E M E = 1 H + ML = 1 I1 + E M E 0 1 T = j S E E=ME 0 1 = E 0 S M = 1 E 0 A S - - M + S + + M E = 1 B E 0 ln - M + M = 1 B E 0 ln 1 - E E E E 0
23 S HE, L = ln HL - 1 B 9 j 1 - E E ln j 1-0 E E + j E E ln j E E = 0 E 0 B T = 1 ln 1 - E E E E 0 ln HL ª B T -1 E
24 E 0 B T = 1 ln 1 - E E E E 0 + E 0 H + - cąstel - E 0 H - - cąstel ln HL ª B T -1 E
25 E 0 B T = 1 ln 1 - E E E E 0 (E=U) HdU = TdS + mdl ; E E 0 = -tanh j E 0 B T C = T j S T = j U T î C B = j E 0 B T ì cosh j E 0 B T
26 HdU = TdS + mdl ; E E 0 = -tanh j E 0 B T C = T j S T = j U T î C B = j E 0 B T ì cosh j E 0 B T -0. E -0.4 E Cepło właścwe Shott ego: B T E 0 C B
27 Cm astąpć wantową sumę po stanach w granc lascnej : E H8<L ô E H H8p, q<l Chcelbśm ab wor wantowe prechodł w lascne gd h 0 (lub T bardo duże). Klascne stan uładu defnujem w 6 - wmarowej prestren faowej (p,q). Zatem 8<... ô 3 p 3 q Ale c to wstarc?
28 IE! Weźm np. wantową cąstę swobodną w pudle (aładam perodcne warun bregowe na ścanach). Wted stąd np. H` = p` p a = n a h m ; E n 1, n, n 3 = h L, n a = 0, ± 1, ±,... In m L 1 + n + n3 M W w 0 HEL df = 1 = E 8n< E n 1,n,n 3 j n 1 + n + n 3 ml h E 1 ~ 4 3 p ml j E 3 h = 4 3 p V 3 H mel h3
29 Dla porównana ta sama welość polcona lascne: W 0 l HEL = df p me 3 p 3 q = V 4 3 p H mel 3 W 0 l W 0 w ~ 1 h 3 ô 8<... ô 3 p 3 q h 3 Hdla 1 cąstl 8<... ô 3 p 3 q h 3 Hdla cąstel
30 W mechance wantowej cąst dentcne są neroróżnalne -co prowad do pojęca statst Bosego Fermego; W granc h 0 wede to do cnna 1/!. Zatem poprawna lascna suma stanów ma postać: 8<... ô 1! 3 p 3 q h 3 Hdla dentcnch cąstel Dowód ne jest łatw - trochę o nm powem pr oaj omawana macer gęstośc
31 Uwaga Cnn 1/! bł trudn do roumena pred wprowadenem asad neroróżnalnośc cąste na poome wantowm. emnej jedna od dawna wedano o onecnośc jego wprowadene, bowem be nego entropa ne bła weloścą estenswną w granc lascnej. dla nepuntowch cąste: dentfujem położena pęd uogólnone ja uc mechana lascna... ô 1! f p f q 8< h f dla cąste nedentcnch:... ô 8< 1 A! B!... 3 p 3 q h 3 ; A + B +... =
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych
WYKŁAD 4 dla zanteresowanych -Macerz gęstośc: stany czyste meszane (przykłady) -równane ruchu dla macerzy gęstośc -granca klasyczna rozkładów kwantowych Macerz gęstośc (przypomnene z poprzednch wykładów)
WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna
WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna (Zadaniem Fizyki Statystycznej jest zrozumienie własności (równowagowych i nierównowagowych materii w oparciu o oddziaływania międzymolekularne)
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
GAZY DOSKONAŁE I PÓŁDOSKONAŁE
TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene
Bogdan Żółtowski, doc. dr inż. Instytut Fizyki PŁ, Wólczańska 219, pokój 3.12 B14, III p.
Fa I ogdan Żółtows doc. dr nż. Insttut F PŁ Wólcańsa 9 poó 3. 4 III p. tel. 3664 http://www.f.p.lod.pl/bogdan.oltows/ Konsultace: pąte 4-6 Zares predmotu: Knemata Dnama puntu materalnego Dnama brł stwne
[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
Algebra z geometrią 2012/2013
Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce
Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Warunki równowagi i rozkład kanoniczny. H0 E 1 EL 8E 1 < W i HE i L ~ E i W 2 E - E 1 W 1 E 1. iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = E
Warunki równowagi i rozkład kanoniczny. W HEL = W 1 HE 1 L W 2 HE - E 1 L 8E 1 < H0 E 1 EL W i HE i L ~ E i N W 2 E - E 1 W 1 E 1 iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = 0 E 1 = E W 2 HE - E 1 L W 1 HE
ALGEBRA rok akademicki
ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane
XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ
W stronę bolog: dnama oulacj Martn. owa Evolutonar Dnamcs elna Press 6 SELEKCJ: JK JED POPULCJ (STRTEGI) WYPIER IĄ Model determnstczn ( a ) ( b ) : Dodając stronam mam a b czl średne dostosowane (ftness).
Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
dr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
ń ę ńń ń
ń ż ę Ą Ś Ó Ę ń ę ńń ń ę ż ż Ę ę Ń Ę ę ę Ń ń ż Ę ę Ą ę ń ż ę ć ę ć ń ń ę Ś ę ę ź ż ż ę ę ż ę ż ń ę Ę ę ż Ę ń ż ę ń ń ę ż ę ż ę ż ń ę ę ę ę ę ę ę ż Ę ę ę ć ę ź ę ę ź Ę ę ń ę ż Ę ę Ę ń ż ę ę Ę ń ę ż Ę ę
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =
St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
r r r m dt d r r r r 2 dt r m dt dt
Twedee o wale: Roważm cąstę P o mase m a tóą dała sła : W ecalm ułade odesea: dv m / dv m ( Moża auważć że: d d dv dv m ( v m v m mv m dv d m m ( v mv gde v est modułem pędośc Podstawaąc to do ówaa ( mam:
elektrostatyka ver
elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna
Ó Ą Ł Ń ń ć ń ń ć Ń Ń ń Ń ń Ń ć ć ć Ń ź ź
Ł Ą ń ń Ń ź Ą Ń Ń ź ń ń ń ń ź Ń ń Ń Ó Ą Ł Ń ń ć ń ń ć Ń Ń ń Ń ń Ń ć ć ć Ń ź ź ń ć ń Ń Ń ń ź ć ń Ń Ę ń Ń Ż Ń ń Ń ń Ń Ą Ń ć Ń Ń ź Ę ź ź ć ź ć ń ń ń ń ć ć ć Ń Ą ć Ą Ż Ó ć ń ć ń ć ć ź ź ć ć Ń Ń ć ń ń Ę ń ń
BUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
A B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać:
Rokład Boltmaa Roważm odosobo układ cąstek (cost Ucost Załóżm że cąstk układu mogą meć tlko ścśle okeśloe eege (eega cąstek est skwatowaa ech ( oaca lcbę cąstek maącch eegę Możem wted apsać: (* U cost
ść ś ń ś ś ź ś ć Ą ś Ą ś ń ś ń ń ń ń Ń ć ź ń ś ń ń Ń ć ń ś ś
Ł Ś ś Ą ś ć Ń ść ź ń ś ś ń Ę ńź ź ś ść ś ń ś ś ź ś ć Ą ś Ą ś ń ś ń ń ń ń Ń ć ź ń ś ń ń Ń ć ń ś ś ś ń ś Ń ź ź ś ć ź Ę ś ść ś ść ś Ń ń ń ś ść ć ś ń Ę ś Ń ś ść ś ś ś ś ś ś ń ś ć ś ś Ń ń ś ń Ą ń ś ń Ń Ę ś
Ó ć ź ź ę ń ę ź ń ę ć ź ć ę ę ć ń ć
Ą ę Ą Ó ÓŁ Ę ę ęć ń ę Ą ń Ł ć Ó ć ź ź ę ń ę ź ń ę ć ź ć ę ę ć ń ć ę Ę ń ęć ń ęć ęć ęć ć ć ć ć ć Ę ę ę ć ć ę ń ęć ń ęć ęć ęć ń ć ć ę ń ę ń ę ę ź ć ć ź ę ź ć ę ę ć ę ć ę ń ę ń ź ź ć ę ę ć ć ć ę ć ę ę ę ń
Podstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
X C V > \ zapisz się. do programu 9 # % & ( ) # % & * ( ) - + = { U} O P [ O WV E G H J GK H P [ ] A S D F Z X C V B M
p l X C V B N M, < \ / ; ę_ Ω w w w c e o o r g p l / / c y f r o w a s z k o l a ego w przedszkolach i szkołach jest realizowany u Edukacji Ośrodek Rozwoju Edukacji jest liderem partnerstwa o Funduszu
,..., u x n. , 2 u x 2 1
. Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać
Algebra WYKŁAD 2 ALGEBRA 1
Algebra WYKŁAD ALGEBRA Lcbę espoloną możemy predstawć w postac gde a b ab ( ) rcos sn r moduł lcby espolonej, argument lcby espolonej. Defncja Predstawene Lcby espolone r cos sn naywamy postacą trygonometrycną
Statystyki kwantowe. P. F. Góra
Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie
Z e s p ó ł d s. H A L i Z
C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
STATYSTYCZNY OPIS UKŁADU CZĄSTEK
WYKŁAD 6 STATYSTYCZNY OPIS UKŁADU CZĄSTK Zespół statcz moża opisać: ) Klasczie pzestzeń fazowa P ( P PN, q, q q N) q Każda kofiguacja N cząstek zespołu statczego opisaa jest puktem w pzestzei fazowej.
ć ć ź ć ć ć Ź ź Ź ź
ć Ż Ż ć ć ć ź ć ć ć Ź ź Ź ź ć ź ć ź ć ź ź ź ź ź ź ź ć ć ź ć źć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ć ć ć ć Ź ć ć ć Ó Ż ć ć Ź ć ć ć ć ć ć ć ć ć ć ć Ź ć ź ć ć ć ć ź ć ć ć
Warunki równowagi. Rozkłady: kanoniczny, wielki kanoniczny, izobaryczno-izotermiczny
Warunki równowagi. Rozkłady: kanoniczny, wielki kanoniczny, izobaryczno-izotermiczny 1 Niestety, rachunki przy użyciu rozkładu mikrokanonicznego nie są łatwe. Wprowadzimy teraz inne rozkłady, przy pomocy
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
Rozdział 9. Baza Jordana
Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,
ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś
ę ę Ą Ą ń Ó ś ś ś ń ń Ż ń Ą Ż śó ŚĆ ś ę ę ś ś ś Ż ś ść ń Ż Ś ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś ę ę ś ń Ż Ż Ż ę ś ć Ą Ż Ż ś Ś Ą Ż ś Ś Ą Ż ś ś ś Ę Ą ę ń ś ę ż Ż ć Ś ń ę
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej
ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna
Statystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
Ł ń Ż Ł ż Ą Ó Ś Ż ń ż ż ń ż Ń Ł Ą Ł Ą Ą Ą Ą ż
Ł Ł Ń Ń Ł ń Ż Ł ż Ą Ó Ś Ż ń ż ż ń ż Ń Ł Ą Ł Ą Ą Ą Ą ż Ł ń ż ż ż Ś Ż ŚĆ ż ń ź ż ć ń ż ż ż ć ż Ńż ń ż ć ż ć ż ż ż ć Ż Ś Ó ń ż ź ć ń ż ń ń ź Ą ż ż ń ż ć Ł ż ż ż ć ń ż Ż ż ż ć ń Ł Ś Ś Ł ź ć ż ń ż ż ć ń ń ż
7. M i s a K o ł o
S U P 4 1 2 v. 2 0 16 G R I L L K O C I O Ł E K 5 R E D N I C A 4 2 c m, R U C H O M Y S U P 4 1 2 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w n i P a
ż ć ż ń Ń Ż ń ń ć ż ż ć Ż
Ś Ą Ą Ł Ś Ł ż ć ż ń Ń Ż ń ń ć ż ż ć Ż ń Ż Ł ż ń ń ń Ę Ł Ż Ł Ł ż ż ć ń Ę ń ż Ć ń ŁĄ Ą ń ń Ć ć Ż ż Ń Ż Ż Ł ć Ę ń Ł ż Ś ć Ż ńę ń ż ń Ł Ż Ą ń ż Ź ż ć ż ń ć Ś Ż ń Ą ż Ą ć ć ńż Ś ń Ś Ż Ś ń ń Ł Ż Ł ż ń Ż Ś Ś
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż
Ń Ę Ę ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż Ę ż Ę ż ć ż Ę ż Ł ż ć ź Ę Ą ź ż Ź Ę ż Ę ź Ę ż ż ż ć ż ż ź ć Ę ż ż ż ż ź ć ż ż ć ź ż ć ź Ę ż Ę ć ź Ę ź ć Ę ź Ę Ą Ę ź ż ć ź ź ź Ę ż ć ć Ę Ę ż Ł ż ż ż
4. Podzielnica uniwersalna 4.1. Budowa podzielnicy
4. Podelnca unwersalna 4.. Budowa podelncy Podelnca jest pryrądem podałowym, który stanow specjalne wyposażene frearek unwersalnych. Podstawowym astosowanem podelncy jest dokonywane podału kątowego. Jest
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
ć ć ć ć ć ć ć ć ć ć ź
Ó ć Ś ź ź ć ć ć ć ź ć ź ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź Ó ć ć ć ć ź ź ć Ę ć ć ć ź ć ć ź ć Ę ć ć ź ć ź ć Ó ć ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć Ń ć Ą ź ź ć ć ź ć ć Ę ć ć ć ć ć ć ć ć ź
ń ń Ś Ż Ś ń
ń ń Ś Ż Ś ń ć Ż Ś Ż ń Ś Ż Ż ń Ś Ó ń ć ć ć ć ć Ść Ę ź Ó ć ć źń ć Ś Ć Ż Ś Ć ŚĆ ń ć ź Ś ń ń Ż ć ń ć ń Ś ź ń ź ć ź ć Ę ń ć ć ć Ę ć Ó ń ć ź Ó ŻÓ ź ń ń Ć ć ź ć ń ź ń ć ń Ą ń ć Ż ń Ś Ś ź Ą ć ŚĆ ń ć źć ć Ę Ż ć
obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3
TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu
σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź
ź Ó ć Ę ć Ó ć ć ć ć Ź ć ź ć ć Ź ć ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź ć Ą ć Ą ć ź ć ź ć Ę ć ć Ź ź Ę ć ć ć ć Ę Ę ź ć Ó ć ć ć ć ć ć ć ć ć Ź Ź ć ć ć ź Ę ć ć ć ć Ę Ąć ź Ź ć Ą ć ć
ć Ę ó ż ć
Ą Ł ż ż Ę ó ó ó ć ó ć ó ż ó ó ż ó ć Ę ó ż ć ó ź ó ó ó ć ó ć ó ć ó ó ó ó ó Ę ó ó ó ż ó Ę ó ó ż ó óż ó ó ć ć ż ó Ą ó ó ć ó ó ó ó ó ż ó ó ó ó Ą ó ó ć ó ó ź ć ó ó ó ó ć ó Ę ó ż ż ó ó ż ż ó ó ó ć ó ć ó ć ó
Parametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź
ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź ń ż ż ń ń ń ń Ę ż ż ż ż ż Ę ń Ę ż ż ż ńą ź ż ż ż Ę ń ż Ę ń ż ż ż ń ń ż ż ń Ę ź ż ż ż ż ń Ą ń Ę Ż ż ż ń Ł Ę ń ńń ż Ę ż ż ż ń Ę ż ż ńż ń ż ż Ś ż ń ż ż
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
Różne rozkłady prawdopodobieństwa
Różne rozłady prawdopodobieństwa. Rozład dwupuntowy D(p). Zmienna losowa ξ ma rozład D(p), jeżeli P p {ξ = 0} = p oraz P p {ξ = } = p. Eξ = p D ξ = p( p). Rozład dwumianowy Bin(n, p). Zmienna losowa ξ
Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu
Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna
Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności
Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam
C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w.
1. C e l s p o t k a n i a. C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w., ż e : B y d z b a w i o n y m
ż ć
Ł Ł ż ć ć ż ć Ą Ł ó ó ć ż ć ć ż ć Ę ć Ę ć ć Ę ć ć ć Ę ż ć ć ć Ś ć Ę Ę ż ż ć ż Ę ć ć Ę ż ż Ę Ł ć ć Ą Ę Ł ć ć ć ż ć Ę Ł Ść Ą Ę Ł ć ć ć ć Ę Ł Ść Ą Ę Ł ć ć ć Ł ć Ę Ę ć ć ć ć Ł Ść ć ć Ę Ę Ł Ś Ą Ś Ś Ł Ą Ą ż
ELEMENTY MECHANIKI ANALITYCZNEJ
ELEMENTY MECHANIKI ANALITYCZNEJ Roatuem układ o welu tonach wobod, n. układ łożon unktów matealnch. Na układ mogą bć nałożone wę. P unkt matealn o mae m Układ wobodn kładaąc ę unktów matealnch Wółędne