LABORATORIUM SYMSE Układy liniowe
|
|
- Zbigniew Kubicki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Tomasz Czarck, Warszawa, 2017 LABORATORIUM SYMSE Układy low Dyskrt systmy low, zm względm przsuęca Wśród systmów prztwarzaa sygałów ważą rolę odgrywają systmy low, zm względm przsuęca. Dcyduj o tym ch względa prostota oraz fakt, ż okazują sę często dogodym modlm, opsującym użytcz praktycz prztworza sygałów. Ćwcz jst pośwęco przdstawu właścwośc oraz mtod opsu dyskrtych systmów lowych (fltrów) zmych względm przsuęca. Dyskrty systm prztwarzaa, który będzmy azywać krótko systmm prztwarzaa, jst przkształcm T[.], jakmu poddaj sę dyskrty sygał wjścowy {x }, zway sygałm prztwarzaym, prowadząc do wytworza sygału wyjścowgo {y }, azyway sygałm prztworzoym. Rys.1. Przkształc odwzorowując cąg wjścowy {x } w cąg wyjścowy {y } {y } = T[{x }] 1 Załóżmy, ż systm prztwarzaa T{.}, pobudzay a wjścu sygałm {x 1 } lub {x 2 }, wytwarza a swym wyjścu odpowdo sygały {y 1 } lub {y 2 }. {y 1 } = T[{x 1 }] {y 2 } = T[{x 2 }] 2 Dfcja 1 Systm prztwarzaa jst azyway systmm lowym jśl pobudzoy sygałm a{x 1 }+ b{x 2 } wytwarza a wyjścu sygał a{y 1 }+ b{y 2 } (Rys.2). Dyskrty systm lowy moż być opsay lowym rówam różcowym o stałych współczykach, wążącym z sobą cąg sygału wjścowgo {x } wyjścowgo{y }.
2 M y = a x + N b y k k k k = 0 k=1 3 Wśród klasy systmów lowych wyróża sę systmy zm względm przsuęca. W przypadku, gdy wskaźk dtyfkuj sę z czasm, systmy t charaktryzują sę zmoścą właścwośc w czas Rys. 2. Odpowdź systmu lowgo a pobudz - suprpozycja. 2
3 Dfcja 2 Systm ragujący sygałm {y } a pobudz {x } jst zmy względm przsuęca jśl, pobudzoy sygałm {x -0 }, wytwarza a wyjścu sygał {y -0 } (Rys.3). W systmach lowych zmych względm przsuęca zwązk mędzy sygałm wjścowym {x } wyjścowym {y } przyjmuj astępującą postać y {y } = {x }*{h } = xkhk = hk xk 4 k= k= Rys. 3. Odpowdź systmu a pobudz - zmość względm przsuęca. gdz cąg {h }, zway odpowdzą mpulsową, jst rakcją systmu a pobudz sygałm jdostkowym {d } 3
4 d 0; = 1; = Rys. 4. Sygał jdostkowy Systm prztwarzaa jst systmm przyczyowym jśl jgo odpowdź mpulsowa jst cągm przyczyowym, a węc jśl h = 0 dla < 0. Systm prztwarzaa jst stably jśl sygał wjścowy {x } o ograczoym co wartośc bzwzględj lmtach wywołuj powsta a jgo wyjścu sygału wyjścowgo {y }, którgo lmty mają rówż ograczo wartośc bzwzględ x < M y N 6 < Aby systm lowy był stably w tym ss jgo odpowdź mpulsowa powa być bzwzględ sumowala h < S 7 = Przkształc Fourra pozwala przyporządkować fukcjom czasu, spłającym okrślo waruk, odpowd fukcj zmj, zwa trasformatam Fourra. W przypadku cągu {f } przkształc Fourra przyporządkowuj mu fukcję F( j ) w postac: F( j ) = = f j 8 Borąc to pod uwagę, moża przyjąć zalżośc (4) rówoważy zwązk Y( j ) = X( j ) H( j ) 9 gdz 4
5 X ( Y ( j j ) = ) = = = x y j j 10 H ( j ) = = h j Zakłada sę oczywśc, ż wszystk trasformaty (8) stją, ż wszystk sumy w (8) są skończo. Nasuwa sę zatm oczywsty wosk, ż właścwośc systmów lowych zmych względm przsuęca mogą być opsywa za pomocą ch odpowdz mpulsowych {h } lub jdozacz przyporządkowywaych m trasformat H( j ), azywaych trasmtacjam systmu. Trasmtacja systmu jst fukcją przyjmującą wartośc zspolo jst z rguły przdstawaa za pomocą dwóch rówoważych jj fukcj A( j ) F( j ) o wartoścach rzczywstych H ( j j j jφ( ) ) = A( ) 11 Fukcj A( j ) F( j ) są azywa odpowdo charaktrystyką ampltudową fazową systmu. 5
6 Rys. 5. Przykładow charaktrystyk częstotlwoścow (okrsow) systmu doloprzpustowgo, pasmowgo góroprzpustowgo. Trasmtacja, jako fukcja okrsowj fukcj j, jst okrsową fukcją pulsacj kołowj z okrsm 2π. W koskwcj, rówż charaktrystyk częstotlwoścow A( j ) F( j ) są okrsow. Pojęc doloprzpustowośc, góroprzpustowośc pasmowośc systmów wąż sę z pokazaym a rysuku 5 charaktrystykam częstotlwoścowym. 6
7 7 W przypadku systmów lowych zmych względm przsuęca trasmtacja (9) przyjmuj postać fukcj wymrj ( )( ) ( ) ( )( ) ( ) b N z M b N b b z M z z j H = = Π Π = = ) ( 12 Rozmszcz puktów osoblwych (zr z bguów b ) trasmtacj (10) a płaszczyź z pozwala z dokładoścą do samgo współczyka okrślć jj postać. Jśl odpowdź mpulsowa systmu {h } jst cągm przyczyowym, a systm jst stably, to wszystk pukty osoblw zajdują sę wwątrz okręgu jdostkowgo z =1. Rys. 6.
8 Odpowdź mpulsowa systmu jst rzczywsta jdy w przypadku, gdy bguy jgo trasmtacj H( j ) zajduj sę a os rzczywstj lub są param sprzężo. Wtym przypadku zachodzą zawsz astępując zwązk H ( A( Φ ( ) = H ( j * j ) = A( j j ) = Φ( j j ) ) ) 13 Projktowa systmów lowych (w szczgólośc fltrów lowych) polga w ogólym przypadku a pożądaym ukształtowau jgo charaktrystyk częstotlwoścowych. Rys. 7. Płaszczyza z, koło jdostkow, bguy sprzężo rzczywst (x), zra (o) Są o okrśla za pomocą: - pasm przpustowych zaporowych - dopuszczalych zma wartośc charaktrystyk w tych pasmach - strf przjścowych mędzy sąsadującym z sobą pasmm przpustowym zaporowym Procs projktowaa moża grafcz ztrprtować wymagam, aby charaktrystyka ampltudowa mścła sę wwątrz pwj strfy, pokazaj przykładowa a rysuku 8. 8
9 Rys. 8. Procs projktowaa fltru Kształtowa to moż być ralzowa przz okrśl lczby puktów osoblwych trasmtacj oraz ch rozmszcza a płaszczyź z. Bardzo często projktowa systmów prztwarzaa moża sprowadzć do projktowaa dwóch lub węcj prostych systmów, któr współdzląc z sobą, jaką wypłać ma systm projktoway. Rys.9. Układ o takch samych odpowdzach Idę przdstawoą a rysuku 9 moża wykorzystać przkształcając trasmtację H( j ) do postac sumacyjj lub loczyowj, wyrażoj przz sumy lub loczyy prostych składków lub czyków. H ( ) = H ( ) j j j j H ( ) = ( H ( ) 14 Fukcj wymr, których postać przyjmują trasmtację systmów lowych zmych względm przsuęca; mogą być, po zaczych modyfkacjach, 9
10 traktowa jak trasmtacj loczyow a po rozłożu a ułamk prost jak trasmtacj sumacyj. Podjśc to jst wykorzystywa przy poszukwau tak zwaych kaoczych postac trasmtacj. 10
11 Clm ćwcza jst bada zwązków zachodzących mędzy postacam odpowdz mpulsowj trasmsj systmu lowgo zmgo względm przsuęca bada ch wpływu a właścwośc systmu. Wykorzystując środowsko Matlab: 1. Dla ustalogo sygału wjścowgo, w zalżośc od położa bguów a płaszczyź Z, jak zma sę odpowdź mpulsowa. Rozpatrzyć przypadk: a. bguy położo a os rzczywstj, b. bguy sprzężo, c. bguy położo a kol jdostkowym, d. bguy położo blżj lub dalj od środka układu współrzędych,. bguy położo poza kołm jdostkowym, f. w jakch przypadkach odpowdź jst wykładczo rosąca lub maljąca, a kdy oscylacyjo rosąca, maljąca lub stała. 2. Zbadać jak zma sę charaktrystyka trasmtacj (ampltudy fazy) w zalżośc od rozkładu bguów zr a płaszczyź Z. Badaa przprowadzć dla przypadków: a. sygał wykładczy h() = -a, przy różych paramtrach a, b. sygał oscylacyjo-gasący h() = -a cos(), przy różych paramtrach a. 11
12 Ltratura 1. Ophm A., Schafr R.: Cyfrow prztwarza sygałów WKŁ, Warszawa S. Hayk: Systmy Tlkomukacyj Tom 1 2, WKŁ, Warszawa
Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α
ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych
ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.
16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H
Zada Zakładając, ż zm losow,,, 6 są zalż mają rozkłady ormal ~ N( m, ),,, 6, zbudowao tst jdostaj ajmocjszy dla wryfkacj hpotzy H 0 : m 0 przy altratyw H : m 0 a pozom stotośc 0,05 W rzczywstośc okazało
5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Oprócz transmtancj operatorowej, do opsu członów układów automatyk stosuje sę tzw. transmtancję wdmową. Transmtancję wdmową G(j wyznaczyć moŝna dzęk podstawenu do wzoru
L6 - Obwody nieliniowe i optymalizacja obwodów
L6 - Obwody nlnow optymalzacja obwodów. Funkcj optymalzacj Tabla Zstawn najważnjszych funkcj optymalzacyjnych Matlaba [] Nazwa funkcj Rodzaj rozwązywango zadana Matmatyczny ops zadana fmnbnd Mnmalzacja
Ćwiczenia 11_12 KLASYCZNY MODEL REGRESJI LINIOWEJ
Ćwcza _ KLACZN MOL RGRJI LINIOWJ Zada. W tabl przdstawoo wysokość stawk clj X oraz udzał w ryku a pw towar mportoway spoza U. 5 5 0 0 8 0 y 5 6 3 7 0 Nalży w oparcu o poda formacj: a. Zapsać rówa fukcj
Teoria Sygnałów. II Inżynierii Obliczeniowej. Wykład /2019 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Tora Sygałów II Iżyr Oblczowj Wyład 8 8/9 Rozważy sończoy sygał δ () spróboway z częsolwoścą : Aalza częsolwoścowa dysrych sygałów cyfrowych f p óra js dwa razy węsza od częsolwośc asyalj f a. Oblczy jgo
ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH
ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor
Propagacja wielodrogowa. Paweł Kułakowski
Propagacja welodrogowa Paweł Kułakowsk Pla wykładu. Propagacja welodrogowa ops zjawska w dzedze czasu częstotlwośc przypadek propagacj przyzemej. Zak sygału radowego 3. Iterferecje mędzysymbolowe . Propagacja
$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI
KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor
Wykład 6. Klasyczny model regresji liniowej
Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,
OCHRONA PRZECIWPOŻAROWA BUDYNKÓW
95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
15. CAŁKA NIEOZNACZONA cz. I
5. CAŁKA NIEOZNACZONA cz. I Fukcj pirwot fukcji f w pwym przdzial (właciwym lub iwłaciwym) azywamy tak fukcj F, którj pochoda rówa si fukcji f w tym przdzial. Zbiór wszystkich fukcji pirwotych fukcji f
Regresja REGRESJA
Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu
Matematyka dyskretna. 10. Funkcja Möbiusa
Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1
przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1
1.4. Srawdzn moŝlwośc kondnsacj ary wodnj wwnątrz ścany zwnętrznj dla orawngo oraz dla odwrócongo układu warstw. Oblczn zawlgocna wysychana wlgoc. Srawdzn wykonujmy na odstaw skrytu Matrały do ćwczń z
gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera
San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola
f (3) jesli 01 f (4) Rys. 1. Model neuronu
Wstęp tortyczny. Modl sztuczngo nuronu Podobn jak w przypadku nuronowych sc bologcznych, podstawowym lmntam z których buduj sę sztuczn sc nuronow są sztuczn nurony. Sztuczny nuron jst lmntm, którgo własnośc
Weryfikacja modelu. ( ) Założenia Gaussa-Markowa. Związek pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi ma charakter liniowy
Wryfkacja modlu. Założa Gaussa-Markowa Zwązk pomędzy zmą objaśaą a zmym objaśającym ma charaktr lowy x, x,, K x k Wartośc zmych objaśających są ustalo ( są losow ε. Składk losow dla poszczgólych wartośc
Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń
Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym
ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH
ĆWICZEIE 5 BADAIE WYBAYCH STUKTU IEZAWODOŚCIOWYCH Cl ćwczna: lustracja praktyczngo sposobu wyznaczana wybranych wskaźnków opsujących nzawodność typowych struktur nzawodnoścowych. Przdmot ćwczna: wrtualn
Badania symulacyjne efektywności kompensacji mocy biernej odbiorów nieliniowych w oparciu o teorię składowych fizycznych prądu TSFP
mgr ż. JULIN WOIK dr ż. MRIN KLU Istytt Tchk Iowcyjych EMG prof. dr h. ż. OGDN MIEDZIŃKI Poltchk Wrocłwsk d symlcyj fktywośc kompscj mocy rj odorów lowych w oprc o torę skłdowych fzyczych prąd TFP W rtykl
Pomiary parametrów napięć i prądów przemiennych
Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach
c 2 + d2 c 2 + d i, 2
3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym
X, K, +, - przestrzeń wektorowa
Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi
MODELE OBIEKTÓW W 3-D3 część
WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego
Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13
Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał
Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer
Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg
Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)
Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI
CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację
Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
ROZDZIAŁ I. WPROWADZENIE DO METODY ELEMENTÓW SKOŃCZONYCH
ROZDZIAŁ I. WPROWADZENIE DO MEODY ELEMENÓW SKOŃCZONYCH W rozdzal tym omówmy podstawow kocpcj algorytm mtody lmtów skończoych. Podamy tż zbęd formacj dotycząc mchak cała stałgo. Jak jż psalśmy w wstęp zakładamy,
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
Propagacja wielodrogowa
Propagacja welodrogowa Paweł Kułakowsk Pla wykładu. Propagacja welodrogowa ops zjawska w dzedze czasu częstotlwośc przypadek propagacj przyzemej. Zak sygału radowego 3. Iterferecje mędzysymbolowe 4. Techk
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
ANALIZA FOURIEROWSKA szybkie transformaty Fouriera
AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią
ZASTOSOWANIE ZMODYFIKOWANEGO ROZMYTEGO FILTRU KALMANA W STEROWANIU ADAPTACYJNYM UKŁADU DWUMASOWEGO
POZNAN UNIVE RSIY OF E CHNOLOGY ACADE MIC JOURNALS No 84 Elctrcal Egrg 05 Krzysztof DRÓŻDŻ* ZASOSOWANIE ZMODYFIKOWANEGO ROZMYEGO FILRU KALMANA W SEROWANIU ADAPACYJNYM UKŁADU DWUMASOWEGO W pracy przdstawoo
Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
Hipotezy ortogonalne
Sttytyk Wykłd d Ćl -4 cl@gh.du.pl Hpotzy otogol ozwży odl lowy: Xϕ gdz X jt wkto obwcj ϕ Ω jt wkto śdch (wtośc oczkwych) o któy wdoo lży w pwj włścwj podpztz lowj Ω pztz tz. Ω d(ω)< jt loowy wkto błędów
wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=
ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Metody numeryczne Laboratorium 5 Info
Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych
cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ).
FILTRY Sygał wejściowy FILTR y( ) F[x( )] Sygał wyjściowy - dziedzia pracy filtru { t, f, } Filtr przekształca w sposób poŝąday sygał wejściowy w sygał wyjściowy: Filtr: x( ) > y( ). Działaie filtru moŝe
... MATHCAD - PRACA 1/A
Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
PODSTAWY EKSPLOATACJI
WOJSKOWA AKADEMIA TECHNICZNA m. Jarosława Dąbrowskgo LESŁAW BĘDKOWSKI, TADEUSZ DĄBROWSKI PODSTAWY EKSPLOATACJI CZĘŚĆ PODSTAWY DIAGNOSTYKI TECHNICZNEJ WARSZAWA Skrypt przznaczony jst dla studntów Wydzału
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) Transformacja Hilberta. sgn( + = + = + lim.
Tora Synałów II rok Gozyk III rok Inormatyk Stosowanj Wykład 5 ) sn( d d d F Najprw nzbędny rzltat. Transormacja Forra (w sns rancznym) nkcj sn() F lm π sn Z twrdzna o dalnośc wynka, ż π sn Transormacja
( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min
Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego
L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
LABORATORIUM DYNAMIKI MASZYN
LABORATORIUM DYNAMII MASZYN Ćwcz 5 IDENTYFIACJA OBIETU DYNAMICZNEO NA PODSTAWIE JEO LOARYTMICZNYCH CHARATERYSTY CZĘSTOTLIWOŚCIOWYCH. Cl ćwcz Orśl rów ruchu obtu dyczgo podtw go logrytczych chrtryty czętotlwoścowych,
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n
I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.
PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH
PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU EWOLUCYJNE METODY OPTYMALIZACJI. Rozwązać zadae zadaa załaduku (plecakowego z ograczeam a dopuszczale wymary oraz cężar []: a algorytmem symulowaego wyżarzaa.
TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
2. Schemat ideowy układu pomiarowego
1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej
1 n 0,1, exp n
8. Właścwośc trmczn cał stałych W trakc zajęć będzmy omawać podstawow własnośc trmczn cał stałych, a szczgóln skupmy sę na cpl właścwym. Klasyczna dfncja cpła właścwgo wygląda następująco: C w Q (8.) m
MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ
MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ
Statystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu
METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu
Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania
ermdyamka układów rzeczywstych 2.7.1. Pwwactw chemcze 2.7.2. Defcja raz ses tecjału chemczeg aktywść 2.7.3. ermdyamcze fukcje meszaa 2.7.4. Klasyfkacja rztwrów Waruk ztermcz-zchrycze ) ( V F F j V V d
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
STATYSTYKA OPISOWA WYKŁAD 3,4
STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Szeregi trygonometryczne Fouriera. sin(
Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś
METODY NUMERYCZNE dr inż. Mirosław Dziewoński
Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej
Współczynnik korelacji rangowej badanie zależności między preferencjami
Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody
Funkcja wiarogodności
Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza
1. Relacja preferencji
dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa
Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem
Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.
MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko
Rozkład figury symetrycznej na dwie przystające
Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule
Podprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
Przetwarzanie sygnałów biomedycznych
Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja
Automatyzacja Statku
Poltechnka Gdańska ydzał Oceanotechnk Okrętownctwa St. nż. I stopna, sem. IV, kerunek: TRANSPORT Automatyzacja Statku ZAKŁÓCENIA RUCHU STATKU M. H. Ghaem Marzec 7 Automatyzacja statku. Zakłócena ruchu