LABORATORIUM SYMSE Układy liniowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM SYMSE Układy liniowe"

Transkrypt

1 Tomasz Czarck, Warszawa, 2017 LABORATORIUM SYMSE Układy low Dyskrt systmy low, zm względm przsuęca Wśród systmów prztwarzaa sygałów ważą rolę odgrywają systmy low, zm względm przsuęca. Dcyduj o tym ch względa prostota oraz fakt, ż okazują sę często dogodym modlm, opsującym użytcz praktycz prztworza sygałów. Ćwcz jst pośwęco przdstawu właścwośc oraz mtod opsu dyskrtych systmów lowych (fltrów) zmych względm przsuęca. Dyskrty systm prztwarzaa, który będzmy azywać krótko systmm prztwarzaa, jst przkształcm T[.], jakmu poddaj sę dyskrty sygał wjścowy {x }, zway sygałm prztwarzaym, prowadząc do wytworza sygału wyjścowgo {y }, azyway sygałm prztworzoym. Rys.1. Przkształc odwzorowując cąg wjścowy {x } w cąg wyjścowy {y } {y } = T[{x }] 1 Załóżmy, ż systm prztwarzaa T{.}, pobudzay a wjścu sygałm {x 1 } lub {x 2 }, wytwarza a swym wyjścu odpowdo sygały {y 1 } lub {y 2 }. {y 1 } = T[{x 1 }] {y 2 } = T[{x 2 }] 2 Dfcja 1 Systm prztwarzaa jst azyway systmm lowym jśl pobudzoy sygałm a{x 1 }+ b{x 2 } wytwarza a wyjścu sygał a{y 1 }+ b{y 2 } (Rys.2). Dyskrty systm lowy moż być opsay lowym rówam różcowym o stałych współczykach, wążącym z sobą cąg sygału wjścowgo {x } wyjścowgo{y }.

2 M y = a x + N b y k k k k = 0 k=1 3 Wśród klasy systmów lowych wyróża sę systmy zm względm przsuęca. W przypadku, gdy wskaźk dtyfkuj sę z czasm, systmy t charaktryzują sę zmoścą właścwośc w czas Rys. 2. Odpowdź systmu lowgo a pobudz - suprpozycja. 2

3 Dfcja 2 Systm ragujący sygałm {y } a pobudz {x } jst zmy względm przsuęca jśl, pobudzoy sygałm {x -0 }, wytwarza a wyjścu sygał {y -0 } (Rys.3). W systmach lowych zmych względm przsuęca zwązk mędzy sygałm wjścowym {x } wyjścowym {y } przyjmuj astępującą postać y {y } = {x }*{h } = xkhk = hk xk 4 k= k= Rys. 3. Odpowdź systmu a pobudz - zmość względm przsuęca. gdz cąg {h }, zway odpowdzą mpulsową, jst rakcją systmu a pobudz sygałm jdostkowym {d } 3

4 d 0; = 1; = Rys. 4. Sygał jdostkowy Systm prztwarzaa jst systmm przyczyowym jśl jgo odpowdź mpulsowa jst cągm przyczyowym, a węc jśl h = 0 dla < 0. Systm prztwarzaa jst stably jśl sygał wjścowy {x } o ograczoym co wartośc bzwzględj lmtach wywołuj powsta a jgo wyjścu sygału wyjścowgo {y }, którgo lmty mają rówż ograczo wartośc bzwzględ x < M y N 6 < Aby systm lowy był stably w tym ss jgo odpowdź mpulsowa powa być bzwzględ sumowala h < S 7 = Przkształc Fourra pozwala przyporządkować fukcjom czasu, spłającym okrślo waruk, odpowd fukcj zmj, zwa trasformatam Fourra. W przypadku cągu {f } przkształc Fourra przyporządkowuj mu fukcję F( j ) w postac: F( j ) = = f j 8 Borąc to pod uwagę, moża przyjąć zalżośc (4) rówoważy zwązk Y( j ) = X( j ) H( j ) 9 gdz 4

5 X ( Y ( j j ) = ) = = = x y j j 10 H ( j ) = = h j Zakłada sę oczywśc, ż wszystk trasformaty (8) stją, ż wszystk sumy w (8) są skończo. Nasuwa sę zatm oczywsty wosk, ż właścwośc systmów lowych zmych względm przsuęca mogą być opsywa za pomocą ch odpowdz mpulsowych {h } lub jdozacz przyporządkowywaych m trasformat H( j ), azywaych trasmtacjam systmu. Trasmtacja systmu jst fukcją przyjmującą wartośc zspolo jst z rguły przdstawaa za pomocą dwóch rówoważych jj fukcj A( j ) F( j ) o wartoścach rzczywstych H ( j j j jφ( ) ) = A( ) 11 Fukcj A( j ) F( j ) są azywa odpowdo charaktrystyką ampltudową fazową systmu. 5

6 Rys. 5. Przykładow charaktrystyk częstotlwoścow (okrsow) systmu doloprzpustowgo, pasmowgo góroprzpustowgo. Trasmtacja, jako fukcja okrsowj fukcj j, jst okrsową fukcją pulsacj kołowj z okrsm 2π. W koskwcj, rówż charaktrystyk częstotlwoścow A( j ) F( j ) są okrsow. Pojęc doloprzpustowośc, góroprzpustowośc pasmowośc systmów wąż sę z pokazaym a rysuku 5 charaktrystykam częstotlwoścowym. 6

7 7 W przypadku systmów lowych zmych względm przsuęca trasmtacja (9) przyjmuj postać fukcj wymrj ( )( ) ( ) ( )( ) ( ) b N z M b N b b z M z z j H = = Π Π = = ) ( 12 Rozmszcz puktów osoblwych (zr z bguów b ) trasmtacj (10) a płaszczyź z pozwala z dokładoścą do samgo współczyka okrślć jj postać. Jśl odpowdź mpulsowa systmu {h } jst cągm przyczyowym, a systm jst stably, to wszystk pukty osoblw zajdują sę wwątrz okręgu jdostkowgo z =1. Rys. 6.

8 Odpowdź mpulsowa systmu jst rzczywsta jdy w przypadku, gdy bguy jgo trasmtacj H( j ) zajduj sę a os rzczywstj lub są param sprzężo. Wtym przypadku zachodzą zawsz astępując zwązk H ( A( Φ ( ) = H ( j * j ) = A( j j ) = Φ( j j ) ) ) 13 Projktowa systmów lowych (w szczgólośc fltrów lowych) polga w ogólym przypadku a pożądaym ukształtowau jgo charaktrystyk częstotlwoścowych. Rys. 7. Płaszczyza z, koło jdostkow, bguy sprzężo rzczywst (x), zra (o) Są o okrśla za pomocą: - pasm przpustowych zaporowych - dopuszczalych zma wartośc charaktrystyk w tych pasmach - strf przjścowych mędzy sąsadującym z sobą pasmm przpustowym zaporowym Procs projktowaa moża grafcz ztrprtować wymagam, aby charaktrystyka ampltudowa mścła sę wwątrz pwj strfy, pokazaj przykładowa a rysuku 8. 8

9 Rys. 8. Procs projktowaa fltru Kształtowa to moż być ralzowa przz okrśl lczby puktów osoblwych trasmtacj oraz ch rozmszcza a płaszczyź z. Bardzo często projktowa systmów prztwarzaa moża sprowadzć do projktowaa dwóch lub węcj prostych systmów, któr współdzląc z sobą, jaką wypłać ma systm projktoway. Rys.9. Układ o takch samych odpowdzach Idę przdstawoą a rysuku 9 moża wykorzystać przkształcając trasmtację H( j ) do postac sumacyjj lub loczyowj, wyrażoj przz sumy lub loczyy prostych składków lub czyków. H ( ) = H ( ) j j j j H ( ) = ( H ( ) 14 Fukcj wymr, których postać przyjmują trasmtację systmów lowych zmych względm przsuęca; mogą być, po zaczych modyfkacjach, 9

10 traktowa jak trasmtacj loczyow a po rozłożu a ułamk prost jak trasmtacj sumacyj. Podjśc to jst wykorzystywa przy poszukwau tak zwaych kaoczych postac trasmtacj. 10

11 Clm ćwcza jst bada zwązków zachodzących mędzy postacam odpowdz mpulsowj trasmsj systmu lowgo zmgo względm przsuęca bada ch wpływu a właścwośc systmu. Wykorzystując środowsko Matlab: 1. Dla ustalogo sygału wjścowgo, w zalżośc od położa bguów a płaszczyź Z, jak zma sę odpowdź mpulsowa. Rozpatrzyć przypadk: a. bguy położo a os rzczywstj, b. bguy sprzężo, c. bguy położo a kol jdostkowym, d. bguy położo blżj lub dalj od środka układu współrzędych,. bguy położo poza kołm jdostkowym, f. w jakch przypadkach odpowdź jst wykładczo rosąca lub maljąca, a kdy oscylacyjo rosąca, maljąca lub stała. 2. Zbadać jak zma sę charaktrystyka trasmtacj (ampltudy fazy) w zalżośc od rozkładu bguów zr a płaszczyź Z. Badaa przprowadzć dla przypadków: a. sygał wykładczy h() = -a, przy różych paramtrach a, b. sygał oscylacyjo-gasący h() = -a cos(), przy różych paramtrach a. 11

12 Ltratura 1. Ophm A., Schafr R.: Cyfrow prztwarza sygałów WKŁ, Warszawa S. Hayk: Systmy Tlkomukacyj Tom 1 2, WKŁ, Warszawa

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.

Bardziej szczegółowo

16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H

16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H Zada Zakładając, ż zm losow,,, 6 są zalż mają rozkłady ormal ~ N( m, ),,, 6, zbudowao tst jdostaj ajmocjszy dla wryfkacj hpotzy H 0 : m 0 przy altratyw H : m 0 a pozom stotośc 0,05 W rzczywstośc okazało

Bardziej szczegółowo

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE 5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Oprócz transmtancj operatorowej, do opsu członów układów automatyk stosuje sę tzw. transmtancję wdmową. Transmtancję wdmową G(j wyznaczyć moŝna dzęk podstawenu do wzoru

Bardziej szczegółowo

L6 - Obwody nieliniowe i optymalizacja obwodów

L6 - Obwody nieliniowe i optymalizacja obwodów L6 - Obwody nlnow optymalzacja obwodów. Funkcj optymalzacj Tabla Zstawn najważnjszych funkcj optymalzacyjnych Matlaba [] Nazwa funkcj Rodzaj rozwązywango zadana Matmatyczny ops zadana fmnbnd Mnmalzacja

Bardziej szczegółowo

Ćwiczenia 11_12 KLASYCZNY MODEL REGRESJI LINIOWEJ

Ćwiczenia 11_12 KLASYCZNY MODEL REGRESJI LINIOWEJ Ćwcza _ KLACZN MOL RGRJI LINIOWJ Zada. W tabl przdstawoo wysokość stawk clj X oraz udzał w ryku a pw towar mportoway spoza U. 5 5 0 0 8 0 y 5 6 3 7 0 Nalży w oparcu o poda formacj: a. Zapsać rówa fukcj

Bardziej szczegółowo

Teoria Sygnałów. II Inżynierii Obliczeniowej. Wykład /2019 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Teoria Sygnałów. II Inżynierii Obliczeniowej. Wykład /2019 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Tora Sygałów II Iżyr Oblczowj Wyład 8 8/9 Rozważy sończoy sygał δ () spróboway z częsolwoścą : Aalza częsolwoścowa dysrych sygałów cyfrowych f p óra js dwa razy węsza od częsolwośc asyalj f a. Oblczy jgo

Bardziej szczegółowo

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor

Bardziej szczegółowo

Propagacja wielodrogowa. Paweł Kułakowski

Propagacja wielodrogowa. Paweł Kułakowski Propagacja welodrogowa Paweł Kułakowsk Pla wykładu. Propagacja welodrogowa ops zjawska w dzedze czasu częstotlwośc przypadek propagacj przyzemej. Zak sygału radowego 3. Iterferecje mędzysymbolowe . Propagacja

Bardziej szczegółowo

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor

Bardziej szczegółowo

Wykład 6. Klasyczny model regresji liniowej

Wykład 6. Klasyczny model regresji liniowej Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

15. CAŁKA NIEOZNACZONA cz. I

15. CAŁKA NIEOZNACZONA cz. I 5. CAŁKA NIEOZNACZONA cz. I Fukcj pirwot fukcji f w pwym przdzial (właciwym lub iwłaciwym) azywamy tak fukcj F, którj pochoda rówa si fukcji f w tym przdzial. Zbiór wszystkich fukcji pirwotych fukcji f

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1 1.4. Srawdzn moŝlwośc kondnsacj ary wodnj wwnątrz ścany zwnętrznj dla orawngo oraz dla odwrócongo układu warstw. Oblczn zawlgocna wysychana wlgoc. Srawdzn wykonujmy na odstaw skrytu Matrały do ćwczń z

Bardziej szczegółowo

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola

Bardziej szczegółowo

f (3) jesli 01 f (4) Rys. 1. Model neuronu

f (3) jesli 01 f (4) Rys. 1. Model neuronu Wstęp tortyczny. Modl sztuczngo nuronu Podobn jak w przypadku nuronowych sc bologcznych, podstawowym lmntam z których buduj sę sztuczn sc nuronow są sztuczn nurony. Sztuczny nuron jst lmntm, którgo własnośc

Bardziej szczegółowo

Weryfikacja modelu. ( ) Założenia Gaussa-Markowa. Związek pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi ma charakter liniowy

Weryfikacja modelu. ( ) Założenia Gaussa-Markowa. Związek pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi ma charakter liniowy Wryfkacja modlu. Założa Gaussa-Markowa Zwązk pomędzy zmą objaśaą a zmym objaśającym ma charaktr lowy x, x,, K x k Wartośc zmych objaśających są ustalo ( są losow ε. Składk losow dla poszczgólych wartośc

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH

ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH ĆWICZEIE 5 BADAIE WYBAYCH STUKTU IEZAWODOŚCIOWYCH Cl ćwczna: lustracja praktyczngo sposobu wyznaczana wybranych wskaźnków opsujących nzawodność typowych struktur nzawodnoścowych. Przdmot ćwczna: wrtualn

Bardziej szczegółowo

Badania symulacyjne efektywności kompensacji mocy biernej odbiorów nieliniowych w oparciu o teorię składowych fizycznych prądu TSFP

Badania symulacyjne efektywności kompensacji mocy biernej odbiorów nieliniowych w oparciu o teorię składowych fizycznych prądu TSFP mgr ż. JULIN WOIK dr ż. MRIN KLU Istytt Tchk Iowcyjych EMG prof. dr h. ż. OGDN MIEDZIŃKI Poltchk Wrocłwsk d symlcyj fktywośc kompscj mocy rj odorów lowych w oprc o torę skłdowych fzyczych prąd TFP W rtykl

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

X, K, +, - przestrzeń wektorowa

X, K, +, - przestrzeń wektorowa Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13 Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

ROZDZIAŁ I. WPROWADZENIE DO METODY ELEMENTÓW SKOŃCZONYCH

ROZDZIAŁ I. WPROWADZENIE DO METODY ELEMENTÓW SKOŃCZONYCH ROZDZIAŁ I. WPROWADZENIE DO MEODY ELEMENÓW SKOŃCZONYCH W rozdzal tym omówmy podstawow kocpcj algorytm mtody lmtów skończoych. Podamy tż zbęd formacj dotycząc mchak cała stałgo. Jak jż psalśmy w wstęp zakładamy,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Propagacja wielodrogowa

Propagacja wielodrogowa Propagacja welodrogowa Paweł Kułakowsk Pla wykładu. Propagacja welodrogowa ops zjawska w dzedze czasu częstotlwośc przypadek propagacj przyzemej. Zak sygału radowego 3. Iterferecje mędzysymbolowe 4. Techk

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

ZASTOSOWANIE ZMODYFIKOWANEGO ROZMYTEGO FILTRU KALMANA W STEROWANIU ADAPTACYJNYM UKŁADU DWUMASOWEGO

ZASTOSOWANIE ZMODYFIKOWANEGO ROZMYTEGO FILTRU KALMANA W STEROWANIU ADAPTACYJNYM UKŁADU DWUMASOWEGO POZNAN UNIVE RSIY OF E CHNOLOGY ACADE MIC JOURNALS No 84 Elctrcal Egrg 05 Krzysztof DRÓŻDŻ* ZASOSOWANIE ZMODYFIKOWANEGO ROZMYEGO FILRU KALMANA W SEROWANIU ADAPACYJNYM UKŁADU DWUMASOWEGO W pracy przdstawoo

Bardziej szczegółowo

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem

Bardziej szczegółowo

Hipotezy ortogonalne

Hipotezy ortogonalne Sttytyk Wykłd d Ćl -4 cl@gh.du.pl Hpotzy otogol ozwży odl lowy: Xϕ gdz X jt wkto obwcj ϕ Ω jt wkto śdch (wtośc oczkwych) o któy wdoo lży w pwj włścwj podpztz lowj Ω pztz tz. Ω d(ω)< jt loowy wkto błędów

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Metody numeryczne Laboratorium 5 Info

Metody numeryczne Laboratorium 5 Info Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ).

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ). FILTRY Sygał wejściowy FILTR y( ) F[x( )] Sygał wyjściowy - dziedzia pracy filtru { t, f, } Filtr przekształca w sposób poŝąday sygał wejściowy w sygał wyjściowy: Filtr: x( ) > y( ). Działaie filtru moŝe

Bardziej szczegółowo

... MATHCAD - PRACA 1/A

... MATHCAD - PRACA 1/A Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

PODSTAWY EKSPLOATACJI

PODSTAWY EKSPLOATACJI WOJSKOWA AKADEMIA TECHNICZNA m. Jarosława Dąbrowskgo LESŁAW BĘDKOWSKI, TADEUSZ DĄBROWSKI PODSTAWY EKSPLOATACJI CZĘŚĆ PODSTAWY DIAGNOSTYKI TECHNICZNEJ WARSZAWA Skrypt przznaczony jst dla studntów Wydzału

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) Transformacja Hilberta. sgn( + = + = + lim.

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) Transformacja Hilberta. sgn( + = + = + lim. Tora Synałów II rok Gozyk III rok Inormatyk Stosowanj Wykład 5 ) sn( d d d F Najprw nzbędny rzltat. Transormacja Forra (w sns rancznym) nkcj sn() F lm π sn Z twrdzna o dalnośc wynka, ż π sn Transormacja

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

LABORATORIUM DYNAMIKI MASZYN

LABORATORIUM DYNAMIKI MASZYN LABORATORIUM DYNAMII MASZYN Ćwcz 5 IDENTYFIACJA OBIETU DYNAMICZNEO NA PODSTAWIE JEO LOARYTMICZNYCH CHARATERYSTY CZĘSTOTLIWOŚCIOWYCH. Cl ćwcz Orśl rów ruchu obtu dyczgo podtw go logrytczych chrtryty czętotlwoścowych,

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU EWOLUCYJNE METODY OPTYMALIZACJI. Rozwązać zadae zadaa załaduku (plecakowego z ograczeam a dopuszczale wymary oraz cężar []: a algorytmem symulowaego wyżarzaa.

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

2. Schemat ideowy układu pomiarowego

2. Schemat ideowy układu pomiarowego 1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej

Bardziej szczegółowo

1 n 0,1, exp n

1 n 0,1, exp n 8. Właścwośc trmczn cał stałych W trakc zajęć będzmy omawać podstawow własnośc trmczn cał stałych, a szczgóln skupmy sę na cpl właścwym. Klasyczna dfncja cpła właścwgo wygląda następująco: C w Q (8.) m

Bardziej szczegółowo

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania ermdyamka układów rzeczywstych 2.7.1. Pwwactw chemcze 2.7.2. Defcja raz ses tecjału chemczeg aktywść 2.7.3. ermdyamcze fukcje meszaa 2.7.4. Klasyfkacja rztwrów Waruk ztermcz-zchrycze ) ( V F F j V V d

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Szeregi trygonometryczne Fouriera. sin(

Szeregi trygonometryczne Fouriera. sin( Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś

Bardziej szczegółowo

METODY NUMERYCZNE dr inż. Mirosław Dziewoński

METODY NUMERYCZNE dr inż. Mirosław Dziewoński Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

Rozkład figury symetrycznej na dwie przystające

Rozkład figury symetrycznej na dwie przystające Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

Automatyzacja Statku

Automatyzacja Statku Poltechnka Gdańska ydzał Oceanotechnk Okrętownctwa St. nż. I stopna, sem. IV, kerunek: TRANSPORT Automatyzacja Statku ZAKŁÓCENIA RUCHU STATKU M. H. Ghaem Marzec 7 Automatyzacja statku. Zakłócena ruchu

Bardziej szczegółowo