Proporcja. Wykład 3. Wnioskowanie o proporcjach. Klasyczne przedziały ufności

Wielkość: px
Rozpocząć pokaz od strony:

Download "Proporcja. Wykład 3. Wnioskowanie o proporcjach. Klasyczne przedziały ufności"

Transkrypt

1 Bioiformatyka - rozwój oferty edukacyjej Uiwersytetu Przyrodiczego we Wrocławiu projekt realizoway w ramach Programu Operacyjego Kapitał Ludzki współfiasowaego ze środków Europejskiego Fuduszu Społeczego Wykład 3 Wioskowaie o proporcjach: test istotości dla pojedyczej proporcji test chi-kwadrat zgodości test chi-kwadrat iezależości Proporcja p - p-stwo sukcesu w pojedyczej próbie (proporcja osobików o ustaloej charakterystyce w całej populacji). Pobieramy próbę rozmiaru. X - liczba sukcesów w próbie. Jeżeli jest małe w stosuku do rozmiaru populacji, to X ma w przybliżeiu rozkład dwumiaowy z parametrami µ = p ad σ = p(1 p) Wioskowaie o proporcjach p ˆ = X/ Używamy próbkowej proporcji jako estymatora proporcji w całej populacji. jest ieobciążoym estymatorem p, o średiej i SD: p ad p(1 p) Gdy jest duże, ma w przybliżeiu rozkład ormaly. Tak więc z = p p(1 p)/ ma w przybliżeiu stadardowy rozkład ormaly. Klasycze przedziały ufości Stadardowy błąd wyosi (1 ) SE( ) = Przybliżoy przedział ufości a poziomie ufości C : p± z SE( ) = ± z gdzie P(Z z*) = (1 C)/2. (1 ) * * ˆ

2 Przykład: Program telewizyjy ogłosił akietę a temat propoowaego zakazu posiadaia broi palej. Do programu zadzwoiło 2372 ludzi. Spośród ich, 1921 było przeciwko zakazowi. Skostruuj 95% przedział ufości opisujący preferecje całej populacji. Czy to badaie jest wiarygode? SAS data fractio; iput ba $ cout; cards; yes 451 o 1921 ; proc freq order=freq; weight cout; tables ba/ biomial alpha=0.01; The FREQ Procedure Cumulative Cumulative ba Frequecy Percet Frequecy Percet o yes Biomial Proportio for ba = o Proportio ASE % Lower Cof Limit % Upper Cof Limit Exact Cof Limits 99% Lower Cof Limit % Upper Cof Limit Testowaie Gdy jest duże, ma w przybliżeiu rozkład ormaly, więc p z = p(1 p) / ma w przybliżeiu stadardowy rozkład ormaly. Możemy testować H 0 : p = p 0 przeciwko alteratywom: H a : p > p 0 H a : p < p 0 H a : p p 0 Testowaie Testowaie w dużych próbach Hipoteza zerowa H 0 : p = p 0 Statystyka testowa p0 z = p (1 p ) / Alteratywa P-wartość 0 0 Jak duża musi być próba aby korzystać z przybliżeia rozkładem ormalym? Praktycze wskazaie p 10, (1 p ) H a : p > p 0 P(Z z) H a : p < p 0 P(Z z) H a : p p 0 2P(Z z )

3 Przykład: Władze uczeli twierdzą, że tylko 34% studetów pracuje. Przeprowadzoo eksperymet aby obalić tę tezę (powszechie się sądzi, że więcej studetów pracuje.) Przepytao 100 losowo wybraych studetów i okazało się, że 47 z ich pracuje. Czy a poziomie istotości α = 0.05 mamy wystarczające przesłaki aby twierdzić, że poad 34% studetów pracuje. SAS data work; iput work $ cout; cards; yes 47 o 53 ; proc freq; weight cout; tables work/ biomial (p=0.34 level='yes'); Biomial Proportio for work = yes Proportio ASE % Lower Cof Limit % Upper Cof Limit Exact Cof Limits 95% Lower Cof Limit % Upper Cof Limit Test of H0: Proportio = 0.34 ASE uder H Z Oe-sided Pr > Z Two-sided Pr > Z Test rówoważości ods graphics o; proc freq; weight cout; tables work/ biomial (equiv p=.34 margi=.05); SAS Czy frakcja ludzi z wyższym wykształceiem (magister lub wyżej) w amerykańskiej populacji przekracza 10 %? data idividuals; ifile 'c:/users/mbogda/ecmi/data/idividuals. dat'; iput id age edu ge icome class; proc freq; tables edu/ biomial (p=0.10 level=6);

4 Biomial Proportio for edu = 6 Proportio ASE % Lower Cof Limit % Upper Cof Limit Exact Cof Limits 95% Lower Cof Limit % Upper Cof Limit Test zgodości chi-kwadrat Dae jakościowe; próba losowa rozmiaru. Dyspoujemy hipotetyczymi wartościami proporcji π w każdej z klas. Test of H0: Proportio = 0.1 ASE uder H Z Oe-sided Pr > Z Two-sided Pr > Z Najprostszy przykład- dwie klasy Przykład: Mamy dwie liie homozygotycze muszki owocówki: jeda ma czerwoe oczy, a druga fioletowe. Chcemy przetestować hipotezę, że allel czerwoych oczu jest domiujący. W tym celu wychodowaliśmy 43 muszki z populacji F2 : 29 ma oczy czerwoe a 14 fioletowe. Klasy: Oczy czerwoe; hipotetycze p-stwo π = 3/(3+1) = 0.75 oczekiwaa liczba: E1 = (43)(0.75) = Oczy fioletowe; hipotetycze p-stwo 1 π = 1/(3+1) = 0.25 oczekiwaa" liczba: E2 = (43)(0.25) = Czy allel oczu czerwoych jest domiujący? Test zgodości chi-kwadrat π - p-stwo, że muszka z populacji F2 ma czerwoe oczy H0: π = 0.75; HA: π 0.75; Χ 2 = Σ(obserwowaa - oczekiwaa) 2 / oczekiwaa = Σ(O-E) 2 /E Jeżeli zachodzi HO to Χ 2 ma w przybliżeiu rozkład chi-kwadrat z df = #klas - 1 = 1. Test a poziomie α = 0.05 ; Wartość krytycza = 3.84

5 Rozkład chi-kwadrat z df=2 i 4: 2 2 P-wartość: P( χ X ) Zawsze po prawej stroie rozkładu. SAS data flies; iput eyes $ cout; cards; purple 14 red 29 ; proc freq; weight cout; tables eyes/ chisq testp=( ); exact chisq; Cumulative Cumulative eyes Frequecy Percet Percet Frequecy Percet purple red Chi-Square Test for Specified Proportios Chi-Square DF 1 Asymptotic Pr > ChiSq Exact Pr >= ChiSq Sample Size = 43 proc freq; weight cout; tables eyes/ biomial (p=0.25); Test of H0: Proportio = 0.25 ASE uder H Z Oe-sided Pr > Z Two-sided Pr > Z Więcej iż dwie kategorie Przykład: U groszków, allel odpowiedzialy za fioletowy kolor kwiatów (F) domiuje a allelem koloru czerwoego (f), a allel wydłużoych ziare pyłku (D) domiuje ad allelem okrągłych ziare (d). Dyspoujemy dwiema homozygotyczymi populacjam: P1, gdzie oba allele są domiujące (FFDD) i P2, gdzie oba allele są recesywe. W populacji F1 wszystkie osobiki mają geotypy FfDd i mają fioletowe kwiaty i wydłużoe ziara pyłku. Te osobiki astępie się krzyżuje aby uzyskać populację F2. Spodziewamy się, że gey kotrolujące obie cechy leżą a jedym chromosomie w odległości 20 cm. Jeżeli tak rzeczywiście jest to cechy feotypowe osobików w populacji F2 powiy dzielić się w proporcjach 66:9:9:16

6 66% fioletowe/wydłużoe : FFDD lub FfDD lub FFDd lub FfDd, 9% fioletowe/okrągłe : FFdd lub Ffdd, 9% czerwoe/wydłużoe : ffdd lub ffdd, 16% czerwoe/okrągłe : ffldd Wyhodowao 381 osobików z populacji F2 i zaobserwowao 284 fioletowe/wydłużoe 21 fioletowe/okrągłe 21 czerwoe/wydłużoe 55 czerwoe/okrągłe Czy dae są zgode z założoym modelem geetyczym? π1, π2, π3, π4 p-stwa odpowiedio fioletowe/wydłużoe, fioletowe/okrągłe, czerwoe/wydłużoe, czerwoe/okrągłe. H0: π1=0.66, π2 = 0.09, π3=0.09, π4=0.16 ; p-stwa wyliczoe w oparciu o założoy model geetyczy HA: specyfikacja p-stw w H0 ie odpowiada rzeczywistości Stosujemy test chi-kwadrat z df = #klas - 1 = 4-1 = 3 Χ 2 = Σ(O-E) 2 /E ma w przybliżeiu rozkład χ 2 3 przy H0. data peas; iput colour $ shape $ cout; cards; purple log 284 purple roud 21 red log 21 red roud 55 ; data peas; set peas; if ((colour eq 'purple')*(shape eq 'log')) the cs='pl'; if ((colour eq 'purple')*(shape eq 'roud')) the cs='pr'; if ((colour eq 'red')*(shape eq 'log')) the cs='rl'; if ((colour eq 'red')*(shape eq 'roud')) the cs='rr'; odds graphics o; proc freq data=peas; weight cout; tables cs/ chisq testp=( ); exact chisq; The FREQ Procedure Test Cumulative Cumulative cs Frequecy Percet Percet Frequecy Percet pl pr rl rr Chi-Square Test for Specified Proportios Chi-Square DF 3 Asymptotic Pr > ChiSq Exact Pr >= ChiSq Sample Size = 381 Test iezależości Przykład: Czy kobiety i mężczyźi ćwiczą z tych samych powodów? Przepytao 67 kobiet i mężczyz 67. Wyiki: Warukowe rozkłady dla kobiet i mężczyz. HSC-HM kobiety 14 HSC-HM mężczyźi 31 HSC-LM kobiety 7 HSC-LM mężczyźi 18 LSC-HM kobiety 21 LSC-HM mężczyźi 5 LSC-LM kobiety 25 LSC-LM mężczyźi 13 Opis: HSC (LSC)-high (low) social compariso ; HM (LM)-high (low) mastery

7 Testowaie w tabelach dwu-dzielczych H 0 : ie ma związku między zmieą opisującą wiersze a zmieą opisującą kolumy (zmiee te są iezależe) H a : zmiee opisujące wiersze i kolumy są zależe. Aby przetestować hipotezę zerową, porówujemy zaobserwowae liczby w komórkach tabeli z ich wartościami oczekiwaymi, wyliczoymi przy założeiu,że hipoteza zerowa jest prawdziwa. oczekiwaa liczba w komórce (i,j) = (liczba obserwacji w i tym rzędzie) x (liczba obserwacji w j tej kolumie)/ Tutaj = całkowita liczba obserwacji X = Statystyka testowa ( ) 2 2 observed cout - expected cout expected cout Rozkład chi-kwadrat Statystyka X 2 ma w przybliżeiu rozkład chikwadrat. df=(r-1)(c-1)=(#rzędów-1)(#kolum-1). W aszym przykładzie (4-1)(2-1)=3 df. proc freq see SAS file: 9-1.sas proc freq data=sport; tables goal*sex/expected chisq; weight cout; exact chisq fisher; ru; The FREQ Procedure (output): Statistics for Table of goal by sex Statistic DF Value Prob ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Chi-Square <.0001 Likelihood Ratio Chi-Square <.0001 Matel-Haeszel Chi-Square <.0001 Phi Coefficiet Cotigecy Coefficiet Cramer's V Sample Size = 134 Fisher's Exact Test Table Probability (P) 1.907E-08 Pr <= P 1.288E-05 Sample Size = 134

8 Paradoks Simpsoa: Reguła, która zachodzi w każdej z kilku klas może zmieić się a przeciwą jeżeli dae zgrupujemy. Przykład : Liczby puktualych i spóźioych lotów dla dwóch liii loticzych i 5 lotisk. Zwykle w podsumowaiach pojawiają się zbiorcze wyiki dla każdej z liii. Nasz przykład pokaże, że takie podsumowaia mogą być zwodicze/iesprawiedliwe. Alaska Airlies America West Puk. Spóź. Suma Puk. Spóź. Suma L.A Phoeix Sa Diego Sa Fracisco Seattle Total Procet spóźień Niebezpieczeństwo uproszczeń Lotisko L.A. Phoeix Sa Diego Sa Fracisco Seattle Alaska Airlies 11% 5% 8.6% 17% 14.2% America West 14.4% 7.9% 14.5% 28.8% 23.2% W tym przykładzie występowały trzy zmiee: liia loticza, puktualość i lotisko. Takie dae często reprezetuje się w postaci kilku tabel dwu-dzielczych. Takie uproszczeia igorujące trzecią zmieą (tutaj lotisko) mogą prowadzić do błędych wiosków. Łączie 13.3% 10.9% Kiedy moża stosować rozkład chi-kwadrat: Przykład: Rozkład chi-kwadrat tym lepiej przybliża rozkład statystyki testowej im więcej jest obserwacji w poszczególych komórkach i im więcej jest komórek. Dla tabel większych iż 2x2: moża stosować przybliżeie rozkładem chikwadrat jeżeli: średia z oczekiwaej liczby obserwacji w pojedyczych komórkach jest ie miejsza iż 5 ajmiejsza oczekiwaa licza obserwacji w pojedyczej komórce jest ie miejsza iż 1 <20% komórek ma oczekiwaą liczbę obserwacji miejszą iż 5. Dla tabel 2x2: moża stosować przybliżeie rozkładem chi-kwadrat jeżeli oczekiwaa liczba obserwacji w każdej z czterech komórek jest ie miejsza od ochotików sklasyfikowao pod względem statusu socio-ekoomiczego (SES) i awyku paleia. Czy paleie ma związek z SES? smokig SES Frequecy Percet Row Pct Col Pct high low middle Total curret former ever Total

9 Paleie ma związek z SES: Statistics for Table of smokig by SES smokig SES Frequecy Expected Percet Row Pct Col Pct high low middle Total curret former ever Total Statistic DF Value Prob ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Chi-Square Likelihood Ratio Chi-Square Matel-Haeszel Chi-Square Phi Coefficiet Cotigecy Coefficiet Cramer's V Sample Size = 356 Przykład (Wpływ aspiryy): 21,996 amerykańskich lekarzy (mężczyz). Połowa z ich brała regularie aspiryę. Po 3 latach, 139 z tych którzy brali aspiryę i 239 z tych którzy brali placebo mieli atak serca. Ustal czy jest związek między braiem aspiryy a ryzykiem ataku serca. fate treatmet Frequecy Expected Percet Row Pct Col Pct aspiri placebo Total ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ heart_at ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ o_heart ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total Statistics for Table of fate by treatmet Statistic DF Value Prob ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Chi-Square <.0001 Likelihood Ratio Chi-Square <.0001 Cotiuity Adj. Chi-Square <.0001 Matel-Haeszel Chi-Square <.0001 Phi Coefficiet Cotigecy Coefficiet Cramer's V Fisher's Exact Test ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Cell (1,1) Frequecy (F) 139 Left-sided Pr <= F 1.203E-07 Right-sided Pr >= F Table Probability (P) Two-sided Pr <= P 5.228E E-07 Sample Size = Coclusio: Aspiri reduces chace of heart attack (P<.0001).

Wykład 11: Analiza danych w tablicach dwudzielczych

Wykład 11: Analiza danych w tablicach dwudzielczych Wykład 11: Analiza danych w tablicach dwudzielczych opisywanie relacji w tablicach dwudzielczych rozkłady łączne, brzegowe i warunkowe test chi-kwadrat dla niezależności paradoks Simpsona Przykład 1: Czy

Bardziej szczegółowo

Wykład 11 ( ). Przedziały ufności dla średniej

Wykład 11 ( ). Przedziały ufności dla średniej Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;

Bardziej szczegółowo

Wykład 11: Dane jakościowe. Rozkład χ 2. Test zgodności chi-kwadrat

Wykład 11: Dane jakościowe. Rozkład χ 2. Test zgodności chi-kwadrat Wykład 11: Dane jakościowe Obserwacje klasyfikujemy do klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to jedną z nich możemy nazwać sukcesem, a drugą porażką. Generalnie, liczba

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Wykład 10 Wnioskowanie o proporcjach

Wykład 10 Wnioskowanie o proporcjach Wykład 0 Wioskowaie o roorcjach. Wioskowaie o ojedyczej roorcji rzedziały ufości laowaie rozmiaru róby dla daego margiesu błędu test istotości dla ojedyczej roorcji Uwaga: Będziemy aalizować roorcje odobie

Bardziej szczegółowo

Wykład 14 Test chi-kwadrat zgodności

Wykład 14 Test chi-kwadrat zgodności Wykład 14 Test chi-kwadrat zgodności Obserwacje klasyfikujemy do jakościowych klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to liczba obserwacji w pierszej klasie ma rozkład

Bardziej szczegółowo

Wykład 12: Tablice wielodzielcze

Wykład 12: Tablice wielodzielcze Wykład 12: Tablice wielodzielcze Drosophila melanogaster Krzyżówka wsteczna (CcNn i ccnn) Kolor oczu czerwone fioletowe Rozmiar skrzydła normalne 39 11 mniejsze 18 32 Zródło:http://pl.wikipedia.org/wiki/Plik:Drosophila_melanogaster1.jpg

Bardziej szczegółowo

Rozkłady dwuwymiarowe. Tablice dwudzielcze. Przykład (wstępny):

Rozkłady dwuwymiarowe. Tablice dwudzielcze. Przykład (wstępny): Rozkłady dwuwymiarowe Rozkłady brzegowe Rozkłady warunkowe Niezależność Kowariancja Współczynnik korelacji (Przykłady na tablicy) Tablice dwudzielcze Najprostsze tablice 2x2 : dwa rzędy i dwie kolumny

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Badanie zależności zmiennych kolumnowej i wierszowej:

Badanie zależności zmiennych kolumnowej i wierszowej: Wykład : Tablice wielodzielcze Zródło:http://pl.wikipedia.org/wiki/Plik:Drosophila_melanogaster.jpg Drosophila melanogaster Krzyżówka wsteczna (CcNn i ccnn) Kolor oczu czerwone fioletowe Rozmiar skrzydła

Bardziej szczegółowo

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x

Bardziej szczegółowo

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2 Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

16 Przedziały ufności

16 Przedziały ufności 16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15 Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Wykład 8 Dane kategoryczne

Wykład 8 Dane kategoryczne Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

Statystyka matematyczna. Wykład V. Parametryczne testy istotności

Statystyka matematyczna. Wykład V. Parametryczne testy istotności Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

PODSTAWY BIOSTATYSTYKI ĆWICZENIA

PODSTAWY BIOSTATYSTYKI ĆWICZENIA PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało

Bardziej szczegółowo

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2 Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im

Bardziej szczegółowo

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności) IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym

Bardziej szczegółowo

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1). PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Założenia: wyniki są binarne próby są niezależne liczba prób n ustalona przed pomiarem to samo prawdopodobieństwo sukcesu we wszystkich próbach

Założenia: wyniki są binarne próby są niezależne liczba prób n ustalona przed pomiarem to samo prawdopodobieństwo sukcesu we wszystkich próbach Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie Test dwumianowy χ 2 test dobroci dopasowania Analiza tabeli kontygencji ( tabeli krzyżywej) P k sukcesów = n k pk (1 p) n k Założenia:

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Estymacja puktowa i przedziałowa Marta Zalewska Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Populacja Próba losowa (próbka) Parametry rozkładu Estymatory (statystyki) Własości estymatorów

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

obie z mocy ustawy. owego.

obie z mocy ustawy. owego. Kwartalik Prawo- o-ekoomia 3/015 Aa Turczak Separacja po faktycza lub prawa obie z mocy ustawy cza, ie ozacza defiitywego owego 1 75 1 61 3 Art 75 88 Kwartalik Prawo- o-ekoomia 3/015 zaspokajaia usp iedostatku

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

Testy adaptacyjne dla problemu k prób

Testy adaptacyjne dla problemu k prób Instytut Matematyczny Polskiej Akademii Nauk Oddział Wrocław Problem testowania Problem Testowania Weryfikacja hipotezy Notacja Pomocnicza statystyka rangowa Załóżmy, że X l1,..., X lnl, l = 1,..., k,

Bardziej szczegółowo

θx θ 1, dla 0 < x < 1, 0, poza tym,

θx θ 1, dla 0 < x < 1, 0, poza tym, Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.

Bardziej szczegółowo

Testowanie hipotez dla proporcji. Wrocław, 13 kwietnia 2015

Testowanie hipotez dla proporcji. Wrocław, 13 kwietnia 2015 Testowanie hipotez dla proporcji Wrocław, 13 kwietnia 2015 Powtórka z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.

Bardziej szczegółowo

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017 Testowanie hipotez dla frakcji Wrocław, 29 marca 2017 Powtórzenie z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i skończonej

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

Parametryczne Testy Istotności

Parametryczne Testy Istotności Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

PODSTAWY STATYSTYKI SEMINARIUM 3 ! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE

PODSTAWY STATYSTYKI SEMINARIUM 3 ! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE STUDIUM DOKTORANCKIE KATOWICE, 2011/12 PODSTAWY STATYSTYKI SEMINARIUM 3! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE Jan E. Zejda Katedra Epidemiologii WLK, SUM TREŚĆ SEMINARIUM

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW

Matematyka i statystyka matematyczna dla rolników w SGGW Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

1 Estymacja przedziałowa

1 Estymacja przedziałowa 1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

NIEZALEŻNOŚĆ i ZALEŻNOŚĆ między cechami Test chi-kwadrat, OR, RR

NIEZALEŻNOŚĆ i ZALEŻNOŚĆ między cechami Test chi-kwadrat, OR, RR NIEZALEŻNOŚĆ i ZALEŻNOŚĆ między cechami Test chi-kwadrat, OR, RR M Zalewska Zakład Profilaktyki ZagrożeńŚrodowiskowych i Alergologii Analiza niezależności zmiennych jakościowych (test niezależności Chi-kwadrat)

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1). TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Testowanie hipotez statystycznych Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/23 Testowanie hipotez średniej w R Test istotności dla wartości

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

ZADANIA NA ĆWICZENIA 3 I 4

ZADANIA NA ĆWICZENIA 3 I 4 Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Ćwiczenie: Test chi 2 i miary na nim oparte.

Ćwiczenie: Test chi 2 i miary na nim oparte. Ćwiczeie: Test chi 2 i miary a im oparte. Zadaie (MS EXCEL) Czy istieje zależość między płcią a paleiem papierosów? 1. W arkuszu Excel utworzyć dwie tabele 2. Uzupełić wartości w tabeli z daymi obserwowaymi

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

ZSTA LMO Zadania na ćwiczenia

ZSTA LMO Zadania na ćwiczenia ZSTA LMO Zadaia a ćwiczeia Efektywość estymatorów ieobciążoych Zadaie 1. Zakładamy, że badaa cecha X populacji ma rozkład Poissoa πλ, gdzie λ > 0 jest parametrem. Poadto, iech X = X 1, X,..., X będzie

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIV, 06.06.06 STATYSTYKA BAYESOWSKA CD. Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej:

Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: Rozkład χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

1 Testy statystyczne. 2 Rodzaje testów

1 Testy statystyczne. 2 Rodzaje testów 1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę) PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

Porównanie dwu populacji

Porównanie dwu populacji Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności

Estymacja przedziałowa - przedziały ufności Estymacja przedziałowa - przedziały ufości Próbę -elemetową charakteryzujemy jej parametrami (p. x, s, s ). Służą oe do ocey wartości iezaych parametrów populacji (m, σ, σ). Nazywamy je estymatorami puktowymi

Bardziej szczegółowo