Wykład 14 Test chi-kwadrat zgodności
|
|
- Justyna Włodarczyk
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wykład 14 Test chi-kwadrat zgodności Obserwacje klasyfikujemy do jakościowych klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to liczba obserwacji w pierszej klasie ma rozkład Jeżeli mamy więcej niż dwie klasy, Możemy się skoncentrować na jednej klasie - rozkład Albo możemy rozważać wszystkie klasy na raz Przypomnienie: p (nieznane) p-stwo sukcesu np. bycia w klasie 1 n liczba obserwacji. Obserwujemy y = # obserwacji w klasie 1. ˆp = y ma rozkład, Jeżeli np i n(1-p) są dość duże to rozkład ten możemy aproksymować rozkładem Rozkład 2 Niech y 1, y k będą niezależnymi zmiennymi losowymi o rozkładzie N(0,1). Suma kwadratów tych zmiennych ma rozkład 2 k (rozkład chikwadrat z k stopniami swobody). 1
2 Test zgodności chi-kwadrat Rozważymy przypadek danych jakościowych Mamy próbę składającą się z n niezależnych obserwacji Będziemy testowali hipotezę o p-stwach należenia do poszczególnych klas Do obliczania wartości krytycznych skorzystamy z przybliżenia, które działa dla dużych rozmiarów prób. Liczymy oczekiwaną liczbę obserwacji w każdej klasie: n p i (p i założone p-stwo ``bycia w i-tej klasie) Test możemy stosować gdy oczekiwana liczba obserwacji w każdej z klas jest niemniejsza niż 5. Test jest w założeniu podobny do testu znaków ale nie wykorzystuje rozkładu dwumianowego. Prosty przypadek: dwie klasy Np. samiec/samica, tak/nie, sukces/porażka, poprawa/pogorszenie, itd. Badamy model genetyczny dziedziczenia pewnej cechy. Mamy dwie linie homozygotyczne muszki Drosophila, jedną z czerwonymi oczami i jedną z fioletowymi oczami. Sugeruje się, że za kolor oczu odpowiedzialny jest tylko jeden gen i że allel oczu czerwonych dominuje nad allelem oczu fioletowych. Jeżeli założona hipoteza jest prawdziwa to w krzyżówce F2 stosunek liczby muszek z czerwonymi oczami do liczby muszek z fioletowymi oczami powinien być w przybliżeniu równy Aby zweryfikować tę hipotezę wyhodowano 43 muszki z populacji F2 (wykorzystując kilku rodziców z linii homozygotycznych). 29 z tych muszek miało czerwone oczy a 14 fioletowe oczy. 2
3 Klasy: Czerwone oczy; hipotetyczne p-stwo p = oczekiwana liczba: E1 = Fioletowe oczy; hipotetyczne p-stwo p = Oczekiwana liczba: E2 = Czy allel czerwonych oczu dominuje nad allelem fioletowych oczu? Niech p będzie p-stwem, że muszka w populacji F2 ma czerwone oczy H 0 : p = ; H A : Użyjemy testu zgodności chi-kwadrat 2 s = (O-E) 2 /E przy H0 ma w przybliżeniu rozkład chi-kwadrat z df = p #klas - 1 =. Testujemy na poziomie = 0.05 ; Wartość krytyczna= pˆ = 3
4 2 s = (zaobserwowana - oczekiwana) 2 / oczekiwana = (O-E) 2 /E = Wniosek: Możemy także testować przeciwko alternatywie kierunkowej np. p < W tym przypadku odrzucamy H0 gdy OBA poniższe warunki sa spełnione: X 2 s pˆ > 2 1(2 ), tzn. < 0.75 (tzn estymator odchyla się od hipotetycznej wartości w tym samym kierunku co H A ) Więcej niż 2 klasy U słodkiego groszku allel fioletowego koloru kwiatów (F) jest dominujący nad allelem czerwonego koloru (C) a allel wydłużonych ziaren pyłku (d) jest dominujący nad allelem okrągłych ziaren (o). Mamy P1 rodziców homozygotycznych z allelami dominującymi (FFdd) i P2 rodziców homozygotycznych z allelami recesywnymi (CCoo). W generacji F1 wszystkie groszki mają genotypy ( ) i mają Groszki z populacji F1 krzyżujemy i dostajemy populację F2. Przypuszcza się, że geny kontrolujące obie cechy są odległe o 20 cm. Jeżeli jest to prawdą to w populacji F2 poszczególne fenotypy powinny występować w proporcjach 67.44:7.56:7.56: % fioletowe/wydłużone FFdd albo FCdd albo FFdo albo FCdo, [( )/4] 7.56% fioletowe/okrągłe : FFoo albo FCoo, [(2-2 )/4] 7.56% czerwone/wydłużone = CCdd albo CCLdo, [(2-2 )/4] 17.44% czerwone/okrągłe = CCoo, [(1- ) 2 /4], Gdzie = (p-stwo rekombinacji). Wyhodowano 381 osobników z populacji F2 i zaobserwowano 284 fioletowe/wydłużone 21 fioletowe/okrągłe 21 czerwone/wydłużone 55 czerwone/okrągłe 4
5 Czy geny są w odległości 20 cm? Niech p 1, p 2, p 3, p 4 będą p-stwami odpowiednio fioletowe/wydłużone, fioletowe/okragłe, czerwone/wydłużone, czerwone/okrągłe w populacji F2. H 0 : p 1 =0.6744, p 2 = , p 3 =0.0756, p 4 = ; p-stwa poszczególnych klas odpowiadają odległości 20 cm. H A : p-stwa klas nie odpowiadają odległości 20 cm. Użyjemy testu chi-kwadrat, df = #klas - 1 = 2 s = (O-E) 2 /E ma przy H 0 rozkład Testujemy na poziomie = 0.05; Wartość krytyczna = Wartości oczekiwane liczby obserwacji w każdej klasie przy H 0 (n p i ): 2 s = Wniosek: Podsumowanie testu chi-kwadrat zgodności Definiujemy p i dla każdej klasy i formułujemy hipotezę. Jeżeli są tylko dwie klasy to alternatywę można łatwo opisać za pomocą wzoru, może ona też być kierunkowa. 5
6 Jeżeli mamy więcej niż dwie klasy alternatywę należy opisać słowami. Dla każdej klasy liczymy E i = np i. Sprawdzamy czy wszystkie E i są nie mniejsze niż 5. (Jeżeli nie to nie można stosować testu chi-kwadrat) Liczymy 2 s = (O-E) 2 /E sumując po wszystkich klasach. Porównujemy z wartością krytyczną z rozkładu 2 k-1; odrzucamy H 0 gdy statystyka jest większa od wartości krytycznej. 6
Wykład 11: Dane jakościowe. Rozkład χ 2. Test zgodności chi-kwadrat
Wykład 11: Dane jakościowe Obserwacje klasyfikujemy do klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to jedną z nich możemy nazwać sukcesem, a drugą porażką. Generalnie, liczba
Bardziej szczegółowoRozkłady dwuwymiarowe. Tablice dwudzielcze. Przykład (wstępny):
Rozkłady dwuwymiarowe Rozkłady brzegowe Rozkłady warunkowe Niezależność Kowariancja Współczynnik korelacji (Przykłady na tablicy) Tablice dwudzielcze Najprostsze tablice 2x2 : dwa rzędy i dwie kolumny
Bardziej szczegółowoBadanie zależności zmiennych kolumnowej i wierszowej:
Wykład : Tablice wielodzielcze Zródło:http://pl.wikipedia.org/wiki/Plik:Drosophila_melanogaster.jpg Drosophila melanogaster Krzyżówka wsteczna (CcNn i ccnn) Kolor oczu czerwone fioletowe Rozmiar skrzydła
Bardziej szczegółowoPytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?
Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;
Bardziej szczegółowoWykład 12: Tablice wielodzielcze
Wykład 12: Tablice wielodzielcze Drosophila melanogaster Krzyżówka wsteczna (CcNn i ccnn) Kolor oczu czerwone fioletowe Rozmiar skrzydła normalne 39 11 mniejsze 18 32 Zródło:http://pl.wikipedia.org/wiki/Plik:Drosophila_melanogaster1.jpg
Bardziej szczegółowoBłędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Bardziej szczegółowoa) Zapisz genotyp tego mężczyzny... oraz zaznacz poniżej (A, B, C lub D), jaki procent gamet tego mężczyzny będzie miało genotyp ax b.
W tomie 2 zbioru zadań z biologii z powodu nieprawidłowego wprowadzenia komendy przenoszenia spójników i przyimków do następnej linii wystąpiła zamiana samotnych dużych liter (A, I, W, U) na małe litery.
Bardziej szczegółowoUwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
Bardziej szczegółowoWykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
Bardziej szczegółowoZadania do cz. I. ggoralski.com. Autor: Grzegorz Góralski. środa, 9 listopada 11
Zadania do cz. I Autor: Grzegorz Góralski ggoralski.com Zadanie 1 Rozpatrujemy dwa geny u zwierzęcia. Allel A jest dominujący i koduje brązową barwę oczu, allel recesywny a determinuje barwę czerwoną.
Bardziej szczegółowoTESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Bardziej szczegółowoTestowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Bardziej szczegółowoStatystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
Bardziej szczegółowoTESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Bardziej szczegółowoStatystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Bardziej szczegółowoWykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoTestowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Bardziej szczegółowoweryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Bardziej szczegółowoStatystyka matematyczna Test χ 2. Wrocław, 18.03.2016r
Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI
Bardziej szczegółowoWeryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoWydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Bardziej szczegółowoWykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
Bardziej szczegółowoWykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Bardziej szczegółowoWykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Bardziej szczegółowowykład dla studentów II roku biotechnologii Andrzej Wierzbicki
Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ gamety matczyne Genetyka
Bardziej szczegółowoStatystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Bardziej szczegółowoPytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)?
Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Gdy: badana cecha jest mierzalna (ewentualnie policzalna); dysponujemy dwoma próbami; chcemy porównać, czy wariancje w tych próbach
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Bardziej szczegółowoIdea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Bardziej szczegółowoPODSTAWY GENETYKI. Prowadzący wykład: prof. dr hab. Jarosław Burczyk
PODSTAWY GENETYKI Prawa Mendla (jako punkt wyjścia) Epistaza (interakcje między genami) Sprzężenia genetyczne i mapowanie genów Sprzężenie z płcią Analiza rodowodów Prowadzący wykład: prof. dr hab. Jarosław
Bardziej szczegółowoWykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Bardziej szczegółowoPODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II
PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II Szkic wykładu 1 Wprowadzenie 2 3 4 5 Weryfikacja hipotez statystycznych Obok estymacji drugim działem wnioskowania statystycznego jest weryfikacja hipotez
Bardziej szczegółowoTESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.
Bardziej szczegółowoKolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Bardziej szczegółowo), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Bardziej szczegółowoWykład 10 Testy jednorodności rozkładów
Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków
Bardziej szczegółowoWykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Bardziej szczegółowoTestowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Bardziej szczegółowoTesty zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11
Testy zgodności Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej 27. Nieparametryczne testy zgodności Weryfikacja
Bardziej szczegółowoWyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
Bardziej szczegółowo166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Bardziej szczegółowoPDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Bardziej szczegółowoGdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).
PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem
Bardziej szczegółowoZadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Bardziej szczegółowo1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
Bardziej szczegółowoVI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
Bardziej szczegółowoHipotezy statystyczne
Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy
Bardziej szczegółowoWykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Bardziej szczegółowoHipotezy statystyczne
Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
Bardziej szczegółowoBadanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Test serii (test Walda-Wolfowitza) Założenie. Rozpatrywane rozkłady są ciągłe. Mamy dwa uporządkowane
Bardziej szczegółowoWspółczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoWykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Bardziej szczegółowoPrawdopodobeństwo, test χ 2
Prawdopodobeństwo, test χ 2 Autor: Grzegorz Góralski ggoralski.com Co to jest prawdopodobieństwo? Prawdopodobieństwo = Liczba interesujących nas zdarzeń Liczba wszystkich zdarzeń Jakie jest prawdopodobieństwo
Bardziej szczegółowoSIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
Bardziej szczegółowoW2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Bardziej szczegółowoStatystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Bardziej szczegółowoGENETYKA POPULACJI. Ćwiczenia 4 Biologia I MGR
GEETYKA POPULACJI Ćwiczenia 4 Biologia I MGR Ad. Ćwiczenia Liczba możliwych genotypów w locus wieloallelicznym Geny sprzężone z płcią Prawo Hardy ego-weinberga p +pq+q = p+q= m( m ) p P Q Q P p AA Aa wszystkich_
Bardziej szczegółowoWykład 8 Dane kategoryczne
Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
4 kwietnia 2012 Testy nieparametryczne Dotychczas zajmowaliśmy si e praktycznym zastosowaniem testów istotności nasze zadanie sprowadza lo si e do testowania hipotez o parametrach rozk ladu. Teraz b edziemy
Bardziej szczegółowoPrzykłady bloków: Przykład. Przyporządkowanie. Wykład 9 Zrandomizowany plan blokowy
Wykład 9 Zrandomizowany plan blokowy Staramy się kontrolować efekty zróżnicowania badanych jednostek eksperymentalnych poprzez zapewnienie ich ``jednorodności wewnątrz każdej grupy zabiegowej. Dzielimy
Bardziej szczegółowoStatystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Bardziej szczegółowoUwaga! Test studenta dla pojedynczej próby, niekierunkowy. Wykład 9: Testy Studenta. Test Studenta dla jednej próby, kierunkowy
Wykład 9: Testy Studenta Jest kilka typów testów Studenta. Mają podobną strukturę, ale służą do testowania różnych hipotez i różnią się nieco postacią statystyki testowej. Trzy podstawowe typy testów Studenta
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
Bardziej szczegółowoODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny
Bardziej szczegółowoAnaliza wariancji. dr Janusz Górczyński
Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik
Bardziej szczegółowoMetabolizm i biochemia
Metabolizm i biochemia Zad. 14 ( 3p.) b) W odpowiedziach powinno być że jest to cykl anaboliczny. Zad. 16 ( 3p.) b) Cysteina jest aminokwasem endogennym, który teoretycznie nie musi być dostarczany z pokarmem.
Bardziej szczegółowoElementy statystyki STA - Wykład 5
STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoWNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Bardziej szczegółowoWeryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą
Bardziej szczegółowoNa A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją
Bardziej szczegółowoWykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich
Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego
Bardziej szczegółowoTestowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
Bardziej szczegółowoZadanie Punkty Ocena
Statystyka matematyczna Test przykładowy na zaliczenie laboratorium / ćwiczeń PROSZĘ NIE ODWRACAĆ KARTKI PRZED ROZPOCZĘCIEM TESTU! Wskazówki: 1. Wybierz zadania, za które w sumie możesz otrzymać 30 punktów
Bardziej szczegółowoPrawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Bardziej szczegółowoSTATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
Bardziej szczegółowoHISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Bardziej szczegółowoPOLITECHNIKA WARSZAWSKA
POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu
Bardziej szczegółowoCechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona
Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności
Bardziej szczegółowoLABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Bardziej szczegółowo1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
Bardziej szczegółowoProblem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),
Bardziej szczegółowoTestowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
Bardziej szczegółowo