WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
|
|
- Franciszek Matysiak
- 7 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
2 Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa
3 Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład normalny, X ~ N(µ, σ 2 ), gdzie µ, σ 2 nieznane; Cel: wyznaczyć ocenę średniej masy jednego owocu tej odmiany µ. o losujemy próbę: x 1, x 2,..., x n, np. 191,2; 193,0; 195,1; 184,3; 197,6; 200,8; 194,2; 198,7; 189,5; 200,2
4 Estymacja punktowa parametru µ: Estymacja przedziałowa parametru µ: o obliczamy średnią arytmetyczną x dla próby: x = 194, 46 g, Oceną punktową parametru µ jest średnia arytmetyczna x dla próby; w przykładzie oceną punktową średniej masy jednego owocu tej odmiany µ jest wartość 194,46 g. o wybieramy poziom ufności 1-α, np. 95%, o odczytujemy z tablic wartość krytyczną rozkładu t-studenta t α, n-1, np. t 0,05, 9 = 2,2622, o obliczamy parametry próby: x = 194, 46 g, s = 5,19 g, o wyznaczamy ze wzoru krańce przedziału ufności. Ocena przedziałowa parametru µ to przedział ufności; w przykładzie 95% przedziałem ufności dla średniej masy jednego owocu tej odmiany µ jest 190, 75;19817,. 194,46 190,75 194,46 198,17
5 Pytanie: Czy moŝna przyjąć, Ŝe średnia masa jednego owocu tej odmiany µ jest równa 200? Decyzja: tak/nie.
6 Idea testowania hipotez i podstawowe pojęcia Przykład. Badamy krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. Mamy ustalić, czy krąŝek jest symetryczny? (w wyniku rzutów tym krąŝkiem z jednakową częstością będzie pojawiać się kaŝda ze stron). Formułujemy hipotezę merytoryczną: krąŝek jest symetryczny; stosunek wyników A do B wynosi 1:1; pstwo otrzymania wyniku A wynosi 0,5.
7 Sprawdzenie hipotezy Testowanie (weryfikacja) hipotezy wykonujemy pewną liczbę rzutów n (n-elementowa próba), np. n = 10; określamy regułę podejmowania decyzji dotyczącej hipotezy na podstawie wyników w próbie: jeśli wypadnie od 4 do 6 wyników A w 10-elementowej próbie, to monetę uznamy za symetryczną, w przeciwnym przypadku uznamy ją za niesymetryczną, próba: A B B B B A B B B B wyznaczamy liczbę wyników A w próbie, k A = 2, podejmujemy decyzję dotyczącą hipotezy: na podstawie próby odrzucamy hipotezę, Ŝe moneta jest symetryczna.
8 Teoretyczny opis doświadczenia Doświadczenie losowe: rzut symetrycznym krąŝkiem ze stronami A, B (hipoteza o symetryczności jest prawdziwa); X liczba wyników A w 10-elementowej próbie; X~B(n = 10, p = 0,5). Wykres funkcji rozkładu pstwa zmiennej losowej X pstwo 0,3 0,25 0,2 0,15 0,1 0, wartości X
9 wartość X pstwo 0 0, , , , , , , , , , ,001 P {X=0} = 0,001 Przykładowa reguła podejmowania decyzji: hipotezę odrzucimy jeśli X=0 lub X=10. P {X=0 lub X=10} = P{X=0}+P{X=10}= = 2 0,001 = 0,002 Jeśli liczba wyników A w próbie wyniesie 0 lub 10, to hipotezę odrzucimy. Odrzucając hipotezę popełniamy błąd. Ten błąd popełniamy z pstwem 0,002. Błędną decyzję podejmujemy z pstwem 0,002.
10 Jeśli liczba wyników A w próbie wyniesie od 1 do 9, to hipotezy nie moŝna odrzucić ( hipotezę przyjmujemy ). Przyjmując hipotezę nie popełniamy błędu. Prawidłową decyzję o przyjęciu hipotezy podejmujemy z pstwem 0,998. Inna reguła podejmowania decyzji: hipotezę odrzucimy jeśli { 0, 1, 2, 3, 7, 8, 9, 10 } X. Przy tej regule pstwo popełnienia błędu (podjęcia błędnej decyzji o odrzuceniu hipotezy wynosi P ( X { 0, 1, 2, 3, 7, 8, 9, 10 }) = 0, 344.
11 Inne reguły podejmowania decyzji: Odrzucenie hipotezy przy liczbie wyników A Pstwo popełnienia błędu X = 0 lub X = 10 0,002 X 1 lub X 9 0,022 X 2 lub X 8 0,011 X 3 lub X 7 0,344 X 4 lub X 6 0,754 X { 0, 1,..., 10 } 1 Jakie pstwo popełnienia błędu akceptujemy? Graniczne pstwo błędu poziom istotności, ozn. α (np. α = 0,05 albo α = 0,01). Jeśli przyjmiemy α = 0,05, to obszar krytyczny dla hipotezy (odrzucenia hipotezy) to zbiór { 0, 1, 2, 8, 9, 10}, a obszar dopuszczalny { 3, 4, 5, 6, 7}.
12 Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (statystykę testową, test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji testowej f kryt ), losujemy próbę, wyliczamy wartość funkcji testowej dla próby f emp (wartość empiryczną funkcji testowej), porównujemy f emp z f kryt, hipotezę odrzucamy, gdy f emp f kryt ; w przeciwnym przypadku hipotezy nie odrzucamy.
13 Terminologia i oznaczenia: Hipoteza statystyczna to dowolne przypuszczenie dotyczące rozkładu pstwa cechy X (jest to formalny zapis przypuszczenia merytorycznego). Testowaną hipotezę nazywamy hipotezą zerową, ozn.: H 0. W przykładzie cecha X~B(n, p); hipoteza zerowa H 0 : p = 0,5. Funkcja testowa np.: t-studenta, F-Fishera, χ 2 chi-kwadrat. W przykładzie funkcja testowa k = liczba wyników A. Wartość empiryczna funkcji testowej (wartość funkcji testowej dla próby), np.: t emp, F emp, χ 2 emp. W przykładzie k emp = 2.
14 Poziom istotności α. Wartość krytyczna funkcji testowej (wartość krytyczna testu), np.: t kryt, F kryt, χ 2 kryt. t kryt = t α,v taka, Ŝe P{ t v > t α,v } = α, gdzie t v jest zmienną losową o rozkładzie t-studenta z v stopniami swobody. F kryt = F α,u,v taka, Ŝe P{ F u,v > F α,u,v }= α, gdzie F u,v jest zmienną losową o rozkładzie F-Fishera z liczbami stopni swobody u, v. χ 2 kryt= χ 2 α, v taka, Ŝe P{ χ 2 v > χ 2 α, v } = α, gdzie χ 2 v jest zmienną losową o rozkładzie chi-kwadrat z liczbą stopni swobody v. Wartość p p = P{ t v > t emp }
15 Błędy wnioskowania o prawdziwości hipotezy zerowej Stan rzeczywisty Wniosek odrzucić H 0 nie odrzucać H 0 H 0 prawdziwa błąd I rodzaju, pstwo = α wniosek prawidłowy H 0 nieprawdziwa (fałszywa) wniosek prawidłowy błąd II rodzaju, pstwo = β Błąd I rodzaju - błąd wnioskowania polegający na odrzuceniu hipotezy zerowej, która jest prawdziwa; pstwo wystąpienia tego błędu powinno być małe, np. α = 0,05 lub α = 0,01; α - poziom istotności testu. Błąd II rodzaju - błąd wnioskowania polegający na nieodrzuceniu hipotezy zerowej, która jest fałszywa.
16 Hipotezy i testy statystyczne ZałoŜenia: 1. cecha X ~ N(µ, σ 2 ), µ, σ 2 - nieznane parametry, 2. próba losowa: x 1, x 2,...x n ; n liczebność próby; H 0 : µ = µ 0 (porównanie z normą), test t-studenta; poziom istotności α. x µ Funkcja testowa: t emp = 0 n s Wnioskowanie 1: jeŝeli t emp > t α, n-1, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. Wnioskowanie 2 (równowaŝne z wnioskowaniem 1): jeŝeli wartość p < α, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić.
17 Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: X ~ N(µ, σ 2 ), gdzie µ, σ 2 nieznane. Hipoteza zerowa H 0 : µ = 200, test t-studenta, poziom istotności α = 0,05. Próba: 191,2; 193,0; 195,1; 184,3; 197,6; 200,8; 194,2; 198,7; 189,5; 200,2; n=10; parametry próby: x = 194, 46 g, s = 5,19 g. Wartość empiryczna funkcji testowej x µ 0 194, t emp = n = 10 = 3, 3755 s 519,. Wartość krytyczna funkcji testowej t α,n-1 = t 0,05, 9 = 2,2622. Wnioskowanie 1 (wniosek statystyczny): t emp =3,3375> 2,2622 = t 0,05,9, zatem hipotezę zerową H 0 odrzucamy. Wniosek merytoryczny: nie moŝna przyjąć, Ŝe średnia masa owocu tej odmiany wynosi 200 g.
18 Ozn.: t emp = X S µ n y = f (x) funkcja gęstości rozkładu t-studenta z v=9 stopniami swobody f(x) 0 wartości t
19 y = f (x) funkcja gęstości rozkładu t-studenta z v = 9 stopniami swobody α 0, 05 Pole = = = 0, Pole=1-α=0,95 α 0, 05 Pole = = = 0, t 0,05, 9 = -2, t 0,05,9 =2,2622 wartości t obszar dopuszczenia hipotezy obszar odrzucenia hipotezy (krytyczny)
20 y = f (x) funkcja gęstości rozkładu t-studenta z v = 9 stopniami swobody Pole = wartość p Pole = α = 0,05 -t emp =-3,34 - t kryt = -2,26 0 t kryt =2,26 t emp =3,34 wartości t
21 ZałoŜenia: 1. cecha X 1 ~N(µ 1, σ 2 ), cecha X 2 ~N(µ 2, σ 2 ), µ 1, µ 2, σ 2 - nieznane parametry, 2. pobrano n 1 elementową próbę losową z pierwszej populacji oraz n 2 -elementową próbę losową z drugiej populacji. H 0 : µ 1 = µ 2 (porównanie średnich w dwóch populacjach), test t-studenta, poziom istotności α. x1 x2 Funkcja testowa: temp = s gdzie: s = r se + n1 n błąd stand. róŝnicy średnich, 2 2 ( n 1) + s ( n 1) r 2 2 s s e = n1 + n2 2 wspólna wariancja Wnioskowanie 1: jeŝeli t emp >t α,n1+n2-2, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. Wnioskowanie 2: jeŝeli p<α, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić.
22 ZałoŜenia: 1. cecha X 1 ~N(µ 1, σ 2 ), cecha X 2 ~N(µ 2, σ 2 ), µ 1, µ 2, σ 2 - nieznane parametry, 2. pobrano n 1 elementową próbę losową z pierwszej populacji oraz n 2 elementową próbę losową z drugiej populacji. 2 2 H 0 : σ 1 = σ 2 (porównanie wariancji w dwóch populacjach), test F-Fishera, poziom istotności α. 2 2 max ( s, s ) 1 2 F Funkcja testowa: emp = 2 2 min ( s, s ) Wnioskowanie 1: jeŝeli F emp > F α/2, v licz, v mian, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. UWAGA: v licz liczba stopni swobody dla licznika, v mian - liczba stopni swobody dla mianownika, v i = n i 1. Wnioskowanie 2: jeŝeli wartość p<α, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. 1 2
23 ZałoŜenia: 1. cecha X 1 ma rozkład dwupunktowy z nieznanym parametrem p 1, 2. cecha X 2 ma rozkład dwupunktowy z nieznanym parametrem p 2, 3. pobrano n 1 elementową próbę losową z pierwszej populacji oraz n 2 elementową próbę losową z drugiej populacji, k i liczba elementów k i k1 + k 2 wyróŝnionych w i-tej próbie; p i =, p = n + n. n i 1 2 H 0 : p 1 = p 2 (porównanie frakcji w dwóch populacjach), test przybliŝony u (dla duŝych prób), poziom istotności α. p1 p2 uemp = Funkcja testowa: 1 1 ( ) p 1 p + n1 n 2 Wnioskowanie: jeŝeli u emp u w przeciwnym przypadku H 0 nie moŝna odrzucić. α 1 2, to hipotezę H 0 odrzucamy,
24 Pojęcia cd.: Hipoteza alternatywna, ozn. H 1 przyjmowana po odrzuceniu hipotezy zerowej. Moc testu - p-stwo nieodrzucenia prawdziwej hipotezy alternatywnej. Od testu wymagamy, aby był najmocniejszy, czyli z duŝym p-stwem odrzucał fałszywą hipotezę zerową.
Testowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.
WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
Matematyka i statystyka matematyczna dla rolników w SGGW
Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15
VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją
Hipotezy statystyczne
Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Hipotezy statystyczne
Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy
TESTOWANIE HIPOTEZ STATYSTYCZNYCH
TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Testowanie hipotez cz. I
Wykład 11 Testowanie hipotez cz. I TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipoteza statystyczna jest to przypuszczenie dotyczące nieznanej własności rozkładu prawdopodobieństwa badanej cechy populacji. W zadaniach
Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów
Wstęp do probabilistyki i statystyki Wykład 4. Statystyki i estymacja parametrów dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra Elektroniki, WIET AGH Wstęp do probabilistyki i statystyki. Wykład 4
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Temat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT. Anna Rajfura 1
Temat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zaleŝy
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech
TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej
STATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,
Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (estymacja punktowa, przedziałowa)
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Badanie zgodności z określonym rozkładem. F jest dowolnym rozkładem prawdopodobieństwa. Test chi kwadrat zgodności. F jest rozkładem ciągłym
Badanie zgodności z określonym rozkładem H 0 : Cecha X ma rozkład F F jest dowolnym rozkładem prawdopodobieństwa Test chi kwadrat zgodności F jest rozkładem ciągłym Test Kołmogorowa F jest rozkładem normalnym
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.
Wykład dla studiów doktoranckich IMDiK PAN. Biostatystyka I. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Wykład dla studiów doktoranckich IMDiK PAN Biostatystyka I dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Program wykładu w skrócie 1. Hipotezy o normalności rozkładu.
Statystyka matematyczna
Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy
1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe
Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w
Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407
Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde badanie naukowe rozpoczyna
Statystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE
WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano
WYKŁAD 5 TEORIA ESTYMACJI II
WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak
1 Weryfikacja hipotez statystycznych
Spis treści Spis treści 1 Weryfikacja hipotez statystycznych 1 1.1 Pojęcia................................ 1 2 Porównania z normami 3 2.1 Wstęp................................ 3 2.2 Porównanie z normami:
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Aktualizacja 2017 Plan wykładu 1. Metody wnioskowania statystycznego vs. metody opisu 2. Testowanie hipotez
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,
Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
Porównanie dwóch rozkładów normalnych
Porównanie dwóch rozkładów normalnych Założenia: 1. X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2) 2. X 1, X 2 są niezależne Ocena µ 1 µ 2 oraz σ 2 1/σ 2 2. Próby: X 11,..., X 1n1 ; X 21,..., X 2n2 X 1, varx 1,
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zależy
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem