Wykład 11: Analiza danych w tablicach dwudzielczych
|
|
- Patrycja Wróblewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykład 11: Analiza danych w tablicach dwudzielczych opisywanie relacji w tablicach dwudzielczych rozkłady łączne, brzegowe i warunkowe test chi-kwadrat dla niezależności paradoks Simpsona
2 Przykład 1: Czy mężczyźni i kobiety uprawiają sport z tych samych powodów? Przebadano 67 mężczyzn i 67 kobiet. Wyniki: HSC-HM: kobiety 14, mężczyźni 31 HSC-LM: kobiety 7, mężczyźni 18 LSC-HM: kobiety 21, mężczyźni 5 LSC-LM: kobiety 25, mężczyźni 13 Legenda: HSC (LSC)=high (low) social comparison; HM (LM)=high (low) mastery
3 Table of goal by sex (a Two-Way table) goal sex Frequency Percent % female male Total HSC-HM HSC-LM 7 18 LSC-HM 21 5 LSC-LM Total 134 Here: goal -row variable, sex -column variable Exercise: complete Percent=the joint distribution of goal and sex
4 goal sex Frequency Percent % Row Pct % Col Pct % female male Total HSC-HM HSC-LM LSC-HM LSC-LM Total Exercise: Find the marginal distribution of goal. Find the marginal distribution of sex.
5 MARGINAL distribution of goal in this study: Cumulative Cumulative goal Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ HSC-HM HSC-LM LSC-HM LSC-LM Percentage ***** ***** ***** ***** 30 ˆ ***** ***** 25 ˆ ***** ***** 20 ˆ ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** 15 ˆ ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** 10 ˆ ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** 5 ˆ ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ HSC-HM HSC-LM LSC-HM LSC-LM
6 MARGINAL distribution of sex in this study: Cumulative Cumulative sex Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ female male Percentage 50 ˆ ***** ***** 40 ˆ ***** ***** 30 ˆ ***** ***** 20 ˆ ***** ***** 10 ˆ ***** ***** Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ female male
7 Conditional distribution (of goal given sex): goal sex Frequency Percent Col Pct female male Total HSC-HM HSC-LM LSC-HM LSC-LM Total Exercise: Find the distribution of goals among females= conditional distribution of goal given that sex=female.
8
9 A Summary of the calculations: goal sex Frequency Percent Row Pct Col Pct female male Total HSC-HM HSC-LM LSC-HM LSC-LM Total
10 Notacja matematyczna Pr(cel=HSC&HM płeć=kobieta)=20.90 Pr(cel=LSC&HM płeć=kobieta)= Pr(cel=HSC&HM płeć=mężczyzna)= Pr(cel=LSC&HM płeć=mężczyzna)= Ogólnie: Pr(A B):=Pr(A B)/P(B) Pr(cel=HM płeć=kobieta)= Pr(cel=HM płeć=kobieta)=
11 Wnioskowanie statystyczne dla tablic dwudzielczych Testowanie hipotez za pomocą tabel dwudz. H 0 : nie ma zależności między zmiennymi wierszową i kolumnową H a : istnieje zależność Aby przetestować te hipotezy, porównaj obserwowaną liczbę komórek z oczekiwaną liczbą komórek. Oczekiwana = obliczona przy założeniu, że hipoteza zerowa jest prawdziwa.
12 Expected count := row total column total n Tutaj n = łączna liczb obserwacji dla tabeli.
13 Exercise: Calculate EXPECTED counts. goal sex Frequency Expected Percent Row Pct Col Pct female male Total HSC-HM HSC-LM LSC-HM LSC-LM Total
14 Statystyka testowa: Statystyka Chi-kwadrat X 2 observed count - expected count 2 expected count
15 If Z 1, Z 2,..., then X Z 2 1 Z k Definition : areindependen t N(0,1) variables, Z Z 2 k has the 2 k distributi on. Statystyka X 2 ma w przybliżeniu rozkład chi-kwadrat z stopniami swobody df= (r-1)(c-1). W naszym przykładzie, df=(4-1)(2-1)=3.
16 Rozkłady Chi-kwadrat z df = 2 i 4:
17 P-wartość P dla testu chi-kwadrat: To prawy ogon rozkładu. P 2 2 ( X )
18
19
20 Finale: Czy mężczyźni i kobiety uczestniczą w sporcie z tych samych powodów? Frequency Expected Percent Row Pct Col Pct female male Total HSC-HM HSC-LM LSC-HM LSC-LM Total
21 Rozwiązanie: 2 2 observed count - expected count X expected count
22 Typowy wydruk z oprogramowania (SAS, procedura FREQ): Statistics for Table of goal by sex Statistic DF Value Prob ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Chi-Square <.0001 Likelihood Ratio Chi-Square <.0001 Mantel-Haenszel Chi-Square <.0001 Phi Coefficient Contingency Coefficient Cramer's V Sample Size = 134
23 Zasady korzystania z testu: Test chi-kwadrat staje się dokładniejszy, gdy liczba obserwacji w komórce jest znaczna. W przypadku tabel większych niż 2x2: użyj testu chikwadrat, gdy: średnia oczekiwanych wartości wynosi 5 lub więcej najmniejsza oczekiwana wartość to 1 lub więcej <20% komórek ma oczekiwane wartości mniejsze niż 5. Dla tabel 2x2: użyj testu chi-kwadrat gdy wszystkie 4 oczekiwane wartości wynoszą 5 lub więcej
24 Przykład 2: 356 volunteers classified according socioeconomic status (SES) and smoking habits. Czy palenie jest związane z SES? smoking SES Frequency Percent Row Pct Col Pct high low middle Total ƒƒƒƒƒƒƒƒˆ current ƒƒƒƒƒƒƒƒˆ former ƒƒƒƒƒƒƒƒˆ never ƒƒƒƒƒƒƒƒˆ Total
25
26 Palenie jest związane z SES: smoking SES Frequency Expected Percent Row Pct Col Pct high low middle Total ƒƒƒƒƒƒƒƒˆ current ƒƒƒƒƒƒƒƒˆ former ƒƒƒƒƒƒƒƒˆ never ƒƒƒƒƒƒƒƒˆ Total Statistics for Table of smoking by SES Statistic DF Value Prob ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Chi-Square Likelihood Ratio Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient Contingency Coefficient Cramer's V Sample Size = 356
27 Przykład 3 (ponownie aspiryna): amerykańskich lekarzy. Połowa z nich zażywała aspirynę. Po 3 latach 139 osób, które zażywały aspirynę i 239 osób przyjmujących placebo, miało zawał serca. Ustal, czy istnieje związek ASA i zawał serca.
28
29
30 Table of treatment by fate SAS: The FREQ Procedure treatment fate Statistics for Table of treatment by fate Frequency Expected Percent Row Pct Col Pct heart_at no_heart Total aspirin placebo Total Statistic DF Value Prob ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Chi-Square <.0001 Likelihood Ratio Chi-Square <.0001 Continuity Adj. Chi-Square <.0001 Mantel-Haenszel Chi-Square <.0001 Phi Coefficient Contingency Coefficient Cramer's V Fisher's Exact Test ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Cell (1,1) Frequency (F) 139 Left-sided Pr <= F 1.203E-07 Right-sided Pr >= F Table Probability (P) Two-sided Pr <= P Sample Size = E E-07 Uwaga: Test na niezależności w tabelach dwudzielczych jest równoważny z testem (dwustronnym) dla równości dwóch proporcji.
31 Paradoks Simpsona: Skojarzenie lub porównanie dla wszystkich grup może odwrócić kierunek, gdy dane zostaną połączone w jedną grupę. Może to być spowodowane zmienną ukrytą.
32 Przykład 4: Oto liczba lotów na czas i opóźniona dla 2 linii lotniczych na 5 lotniskach. Ogólnie % lotów na czas dla każdej linii lotniczej są często zgłaszane w wiadomościach. Zmienne ukryte mogą sprawić, że takie raporty będą mylące. Alaska Airlines America West On time Delayed Total On Time Delayed Total L.A Phoenix San Diego San Francisco Seattle Total
33 a) Znajdź % opóźnionych lotów Alaska Airlines na każdym z 5 lotnisk, a następnie wykonaj to samo dla America West. (Uwaga: nie są to prawdopodobieństwa z jednego rozkładu.) Alaska Airlines America West L.A. Phoenix San Diego San Francisco Seattle b) Jaki % wszystkich lotów Alaska Airlines był opóźniony? Jaki % wszystkich lotów America West był opóźniony? (Są to najczęściej podawane dane.) c) Ameryka West ma gorsze wyniki na każdym z 5 lotnisk, ale ogólnie jest lepsza. Niemożliwe?? Wyjaśnij ostrożnie, odnosząc się do danych, w jaki sposób może się to zdarzyć.
34 Perils of aggregation This example was essentially a Three-Way table with variables: airline, timing, airport. Such tables are often reported as several twoway tables (think a book, rather than a page). Adding entries of such elementary tables to get the overall summary is aggregation and leads to ignoring the third variable (here: airport). This may lead to false general conclusions.
Wykład 12: Tablice wielodzielcze
Wykład 12: Tablice wielodzielcze Drosophila melanogaster Krzyżówka wsteczna (CcNn i ccnn) Kolor oczu czerwone fioletowe Rozmiar skrzydła normalne 39 11 mniejsze 18 32 Zródło:http://pl.wikipedia.org/wiki/Plik:Drosophila_melanogaster1.jpg
Badanie zależności zmiennych kolumnowej i wierszowej:
Wykład : Tablice wielodzielcze Zródło:http://pl.wikipedia.org/wiki/Plik:Drosophila_melanogaster.jpg Drosophila melanogaster Krzyżówka wsteczna (CcNn i ccnn) Kolor oczu czerwone fioletowe Rozmiar skrzydła
Jednoczynnikowa analiza wariancji. Wnioskowanie dla jednoczynnikowej ANOV-y. Porównywanie poszczególnych średnich
(Wykład 13) Jednoczynnikowa analiza wariancji Wnioskowanie dla jednoczynnikowej ANOV-y Format danych Hipotezy i model ANOVA Tabela ANOVA i test F Porównywanie poszczególnych średnich Jednoczynnikowa ANOVA
dr hab. Dariusz Piwczyński, prof. nadzw. UTP
dr hab. Dariusz Piwczyński, prof. nadzw. UTP Cechy jakościowe są to cechy, których jednoznaczne i oczywiste scharakteryzowanie za pomocą liczb jest niemożliwe lub bardzo utrudnione. nominalna porządek
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi)
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi) Czy miejsce zamieszkania różnicuje uprawianie sportu? Mieszkańcy
PODSTAWY STATYSTYKI SEMINARIUM 3 ! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE
STUDIUM DOKTORANCKIE KATOWICE, 2011/12 PODSTAWY STATYSTYKI SEMINARIUM 3! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE Jan E. Zejda Katedra Epidemiologii WLK, SUM TREŚĆ SEMINARIUM
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017
Testowanie hipotez dla frakcji Wrocław, 29 marca 2017 Powtórzenie z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i skończonej
Testowanie hipotez dla proporcji. Wrocław, 13 kwietnia 2015
Testowanie hipotez dla proporcji Wrocław, 13 kwietnia 2015 Powtórka z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i
Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym
Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne
Wykład 8 Dane kategoryczne
Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych
Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich
Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Proporcja. Wykład 3. Wnioskowanie o proporcjach. Klasyczne przedziały ufności
Bioiformatyka - rozwój oferty edukacyjej Uiwersytetu Przyrodiczego we Wrocławiu projekt realizoway w ramach Programu Operacyjego Kapitał Ludzki współfiasowaego ze środków Europejskiego Fuduszu Społeczego
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe
Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w
Matematyka i statystyka matematyczna dla rolników w SGGW
Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji
Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r
Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI
Statystyczna analiza danych
Statystyczna analiza danych Testowanie hipotez statystycznych Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/23 Testowanie hipotez średniej w R Test istotności dla wartości
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona
Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności
Wykład 11 Testowanie jednorodności
Wykład 11 Testowanie jednorodności Wrocław, 17 maja 2018 Test χ 2 jednorodności Niech X i, i = 1, 2,..., k będą niezależnymi zmiennymi losowymi typu dyskretnego przyjmującymi wartości z 1, z 2,..., z l,
Wykład 11: Dane jakościowe. Rozkład χ 2. Test zgodności chi-kwadrat
Wykład 11: Dane jakościowe Obserwacje klasyfikujemy do klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to jedną z nich możemy nazwać sukcesem, a drugą porażką. Generalnie, liczba
Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
Rozkłady dwuwymiarowe. Tablice dwudzielcze. Przykład (wstępny):
Rozkłady dwuwymiarowe Rozkłady brzegowe Rozkłady warunkowe Niezależność Kowariancja Współczynnik korelacji (Przykłady na tablicy) Tablice dwudzielcze Najprostsze tablice 2x2 : dwa rzędy i dwie kolumny
Statystyka w analizie i planowaniu eksperymentu
4 kwietnia 2012 Testy nieparametryczne Dotychczas zajmowaliśmy si e praktycznym zastosowaniem testów istotności nasze zadanie sprowadza lo si e do testowania hipotez o parametrach rozk ladu. Teraz b edziemy
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Statystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).
PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji
gkrol@mail.wz.uw.edu.pl #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji 1 Ryzyko błędu - powtórzenie Statystyka niczego nie dowodzi, czyni tylko wszystko mniej lub bardziej prawdopodobnym
(LMP-Liniowy model prawdopodobieństwa)
OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
STATYSTYKA MATEMATYCZNA WYKŁAD 1
STATYSTYKA MATEMATYCZNA WYKŁAD 1 Wykład wstępny Teoria prawdopodobieństwa Magda Mielczarek wykłady, ćwiczenia Copyright 2017, J. Szyda & M. Mielczarek STATYSTYKA MATEMATYCZNA? ASHG 2011 Writing Workshop;
P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?
2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
SAS 4GL ODS, przykładowe procedury.
SAS 4GL ODS, przykładowe procedury. mariusz.dzieciatko@ ODS Output Delivery System Page 1 Output Destination ods output output-object-name=data-set-name; kod programu ods output close; Przykładowe formaty:
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno
STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne
Przykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Regresja logistyczna (LOGISTIC)
Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE
WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)
Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie
S t a t y s t y k a, część 3. Michał Żmihorski
S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zależy
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Wykład 8: Testy istotności
Wykład 8: Testy istotności Hipotezy Statystyki testowe P-wartości Istotność statystyczna Test dla średniej w populacji Dwustronny test a przedział ufności Używanie i nadużywanie testów Testy istotności
Wprowadzenie do estymacji rozkładów w SAS.
Wprowadzenie do estymacji rozkładów w SAS Henryk.Maciejewski@pwr.wroc.pl 1 Plan Empiryczne modele niezawodności Estymacja parametryczna rozkładów zmiennych losowych Estymacja nieparametryczna Empiryczne
STATYSTYKA MATEMATYCZNA WYKŁAD 5 TEST T
STATYSTYKA MATEMATYCZNA WYKŁAD 5 TEST T WSTĘP Test t 1. Zakres stosowalności 2. Dla pojedynczej próby 3. Dla 2 niezależnych prób 4. Dla 2 sparowanych prób ZAKRES STOSOWALNOŚCI TESTU T 1. Test parametryczny
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA
Wykład 4: Wnioskowanie statystyczne Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Idea wnioskowania statystycznego Celem analizy statystycznej nie jest zwykle tylko
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
Uwaga! Test studenta dla pojedynczej próby, niekierunkowy. Wykład 9: Testy Studenta. Test Studenta dla jednej próby, kierunkowy
Wykład 9: Testy Studenta Jest kilka typów testów Studenta. Mają podobną strukturę, ale służą do testowania różnych hipotez i różnią się nieco postacią statystyki testowej. Trzy podstawowe typy testów Studenta
Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście
KASYK Lech 1 Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście Tor wodny, strumień ruchu, Zmienna losowa, Rozkłady dwunormalne Streszczenie W niniejszym artykule przeanalizowano prędkości
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Metody Statystyczne. Metody Statystyczne
#7 1 Czy straszenie jest bardziej skuteczne niż zachęcanie? Przykład 5.2. s.197 Grupa straszona: 8,5,8,7 M 1 =7 Grupa zachęcana: 1, 1, 2,4 M 2 =2 Średnia ogólna M=(M1+M2)/2= 4,5 Wnioskowanie statystyczne
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
Testy post-hoc. Wrocław, 6 czerwca 2016
Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy