Wartość księgową (ang. book value) na jedną akcję ( C C, C, C, )

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wartość księgową (ang. book value) na jedną akcję ( C C, C, C, )"

Transkrypt

1 .. ndesy fundamentalne ac W odróżnenu od ndesów borącyc pod uwagę cenę ac lub zmanę ceny ac, na przestrzen ostatnc lu lat zaczęto rozważać możlwość stworzena ndesów opartyc na fundamentac spółe tworzącyc ndes. Jao przyład tego typu ndesu podamy FTSE/JSE RAF opracowany przez Researc Afflates LLC of Pasadena. W przecweństwe do ndesów cenowyc ndes FTSE/JSE RAF ne bazue na cene ac na gełdze. Przy ego oblczanu berze sę pod uwagę czynn fundamentalne spółe z pęcu ostatnc rocznyc oresów sprawozdawczyc: Przycody netto ze sprzedaży na edną acę ( A A, A, A, ) Cas flow na edną acę ( B B, B, B, ), B, A Wartość sęgową (ang. boo value) na edną acę ( C C, C, C, ) Dywdendę na edną acę ( D D, D, D, ), D, C W perwszym rou wylcza sę dla te spół wcodzącyc w sład ndesu FTSE/JSE All Sare ndex : Średną wartość przycodów netto ze sprzedaży na edną acę w cągu ostatnc A oresów sprawozdawczyc: A, Średną wartość (ang.) cas flow na edną acę w cągu ostatnc oresów spra- B wozdawczyc: B, Średną wartość sęgową na edną acę z ostatnc oresów sprawozdawczyc: C C, Średną wartość dywdendy na edną ace z ostatnc oresów sprawozdawczyc: D D, W następnym rou alulowana est wartość fundamentalna dla wszystc spółe wcodzącyc w sład ndesu FTSE/JSE All Sare ndex: Na podstawe strony nternetowe: ttp://ftse.se.co.za/raf40.sp ( ).

2 ) ( D D C C B B A A gdze: - oznacza lczę spółe wcodzącyc w sład ndesu FTSE/JSE All Sare ndex. W trzecm rou należy wybrać 40 spółe o nawyższe wartośc współczynna, a następne (ro czwarty) wylczyć wartość ndesu FTSE/JSE RAF wg następuącego wzoru: G gdze: G -czynnem oryguący, n - lczba lat, w ac przeprowadza sę analzę danyc fnansowyc, lczba spółe wcodzącyc do ndesu, s - lczba analzowanyc czynnów fnansowyc dla edne spół, w - oznacza wartość eonomczną -tego parametru te spół na edną acę w tym rou obracunowym. Przy zastosowanu olenośc sumowana w poszczególnyc nawasac możemy zapsać wyrażene na uogólnoną wartość ndesu (bez wyberana nawyższyc wartośc, a to ma mesce w przypadu FTSE/JSE RAF): s n n w w G

3 Powyższy wzór (W -3) może zostać zawężony taże do przypadu taego a ndes FTSE/JSE RAF. W tym celu mus zostać podzelona lczba spółe na dwe welośc (, q ): lczba spółe wcodzącyc w sład szeroego ndesu (ang. unversum), z tóryc wyberzmy edyne q, o nawęsze wartośc, co dae nam wyrażene na wartość ndesu : G q q max q n s n w w gdze: max x q ( ) - oznacza lstę q parametrów x o nawęszyc wartoścac. Zauważmy, że wartość ndesu FTSE/JSE RAF pozostae stała pomędzy opublowanem dwu olenyc raportów spół całowce ne zależy od ceny gełdowe ac. nteresuącym wydae sę połączene tego ndesu o czysto fundamentalnym caraterze z cenam ac. Perwszy czynn t. fundamentalny małby w tym przypadu reprezentować pewną stałą wartość nezmenną w oresac wartalnyc zależną od czynnów eonomcznyc frmy. Z ole drug czynn, t. cena ac na gełdze, stanowłaby parametr zmenny oddaący wpływ beżącyc warunów rynowyc oraz nformac napływaącyc z frmy lub e otoczena. Jeśl zatem na onec ażdego wartału spośród q spółe wytypowanyc zostane spółe o nawęsze wartośc, codzenna wartość zmodyfowanego ndesu, tóry można nazwać ndesem cenowo fundamentalnym wynese: G q q 0 0 c t c 0 gdze: 0 - oznacza wartość dla oresu bazowego, c t cena -te ac po t- te ses, c 0 - cena -te ses dla oresu bazowego.

4 ..2 ndesy dla nawęszyc prywatnyc nwestorów w Polsce ndesy te odzwercedlaą zacowane ac spółe z portfel nawęszyc nwestorów ndywdualnyc na GPW. Metodologa c tworzena oparta est na metodze tworzena ndesów branżowyc na GPW. ndesam opracowanym przez Puls Bznesu są m.n. 2 : PB Czarnec, PB Karos, PB Krauze, PB Solorz, PB Sołowow. Paety ac poszczególnyc nwestorów, wyznaczane są węc w oparcu o lczbę ac frm, pozostaącyc w wolnym obroce (zaorąglonyc do pełnyc tysęcy). Datą bazową wsaźnów est ostatna sesa z grudna 2008 r., a wartość początową ażdego z ndesów ustalona została na 00 pt. ndesy te są publowane codzenne na strone nternetowe Puslu Bznesu, a c wartość atualzowana est co 60 seund. Jao przyład rozpatrzmy ndes PB Czarnec, w sład ndesu wcodzły spół: Noble, LC Corp. Getn 3 tabela -6 rysune -2. Tabela Błąd! W doumence ne ma testu o podanym stylu.-. Sład ndesu PB Czarnec na dzeń Nazwa spół Lczba ac w portfelu Udzał w portfelu w % Noble Ban ,9 LC Corp ,37 Getn ,72 Źródło: opracowane własne na podstawe strony nternetowe: ttp://notowana.pb.pl/nstrument/czarnec z ( ). Rysune Błąd! W doumence ne ma testu o podanym stylu.-. Wyres ndesu PB Czarnec od dna powstana do Na podstawe: Zbec M. Asseco ma nowe asy w ręawe, Puls Bznesu, , str. 4 oraz Zatońs K. Trwa dobra passa Sołowowa, Puls Bznesu , str Na podstawe strony nternetowe: ttp:// z dna

5 Źródło: opracowane własne na podstawe strony nternetowe: ttp://notowana.pb.pl/nstrument/czarnec ( ) W neco zmodyfowane postac podobne oblczena przedstawaą nne gazety np. Rzeczpospolta co pewen czas publue wartość aptalzac spółe poszczególnyc nwestorów oraz zmanę aptalzac od daty ostatne publac por. tabela -7. Tabela Błąd! W doumence ne ma testu o podanym stylu.-2. Wartość atywów poszczególnyc nwestorów c zmana mę nazwso głównego udzałowca Wartość atywów na w mld PLN Zmana wartośc atywów od Lesze Czarnec 6,2 33,8 Mcał Sołowow 3,67 9,3 Zygmunt Solorz 3,3 6,8 Roman Karos,77 22, Krzysztof Jędrzeows,04-9,7 Ryszard Krauze 0,96 8,7 Zbgnew Jaubas 0,2-3, Krzysztof Weczorows 0,09 27,4 Krzysztof Mosa 0,07 2,8 Marusz Patrowcz 0,0 4,9 Źródło: Adamczy C. Fortuna Czarnecego rośne naszybce, Rzeczpospolta, , str. B. Welu drobnyc nwestorów w procese onstruc swoc własnyc portfel nwestycynyc erowało sę sładem portfel znanyc nwestorów, lub też zacodzącym w tyc portfelac zmanam. Zawso to doprowadzło do wydana przez Komsę Nadzoru Fnan-

6 sowego przestrzegaącego nwestorów przed tego typu dywersyfacą sładu portfel drobnyc nwestorów ndes portfela szympanscy Lucy (ndes Lucy) ndes stworzony przez Puls Bznesu wzorowany est na dośwadczenu przeprowadzonym przez Wall Street Journal pod onec lat 90-tyc XX w., w tórym szympans Raven wyberał mandaryn z oszya sygnalzuąc w ten sposób zaup onretne spół. Uzysał on lepsze wyn nż 0 tys. śwetne opłacanyc analtyów z Wall Street. ndes Lucy poazue zacowane ac wybranyc przez szympanscę Lucy, w drodze losowana olorowyc płecze. Wartość bazowa ndesu wynos 00 puntów została przyęta w oparcu o ursy zamnęca spółe z r. Lczba ac wcodzącyc w sład portfela została ustalona w ten sposób, że udzał wszystc spółe w ndese Lucy tego dna wynosł 20 proc. Wartość ndesu Lucy est atualzowana co 60 seund. ndes ne uwzględna dywdend praw poboru 6. W przypadu portfela Lucy bencmarem porównawczym est ndes WG 7. ndes Lucy ne est tratowany przez nwestorów całem poważne, ale racze z przymrużenem oa. Warto edna podreślć, że losowane płecze przez szympanscę est nczym nnym a losowym doborem spółe do portfela. Rysune Błąd! W doumence ne ma testu o podanym stylu.-2. Zmana portfela szympanscy Lucy Źródło: strona nternetowa: ttp://notowana.pb.pl/nstrument/pblucy ( ). 4 Rogus A., Dowgels B. KNF ostrzega nwestorów przed magą nazws, Gazeta Gełdy Paret, , str. 08. Urbańs K. Rozum morsego potwora, Rzeczpospolta , str. A7. 6 Stec A. Lotos sę przebudzł Portfel PB rośne, Puls Bznesu , str Na podstawe: Lucy ontrataue, Puls Bznesu, , str. 20.

Matematyka finansowa r.

Matematyka finansowa r. . Sprawdź, tóre z ponższych zależnośc są prawdzwe: () = n n a s v d v d d v v d () n n m ) ( n m ) ( v a d s ) m ( = + & & () + = = + = )! ( ) ( δ Odpowedź: A. tylo () B. tylo () C. tylo () oraz () D.

Bardziej szczegółowo

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE Zasady wyznazana depozytów zabezpezaąyh po wprowadzenu do obrotu op w rela lent-buro malerse ZAADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERKIE

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej Krzysztof Borowsk Zastosowane metody wdeł cenowych w analze technczne Wprowadzene Metoda wdeł cenowych została perwszy raz ogłoszona przez Alana Andrewsa 1 w roku 1960. Trzy lne wchodzące w skład metody

Bardziej szczegółowo

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

STATYSTYKA. Zmienna losowa skokowa i jej rozkład

STATYSTYKA. Zmienna losowa skokowa i jej rozkład STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Unv. Technol. Stetn. 2010, Oeconomca 280 (59), 13 20 Iwona Bą, Agnesza Sompolsa-Rzechuła LOGITOWA ANALIZA OSÓB UZALEŻNIONYCH OD ŚRODKÓW

Bardziej szczegółowo

Efekty zaokrągleń cen w Polsce po wprowadzeniu euro do obiegu gotówkowego

Efekty zaokrągleń cen w Polsce po wprowadzeniu euro do obiegu gotówkowego Ban Kredyt 40 (2), 2009, 61 95 www.banredyt.nbp.pl www.banandcredt.nbp.pl fety zaorągleń cen w Polsce po wprowadzenu euro do obegu gotówowego Mare Rozrut*, Jarosław T. Jaub #, Karolna Konopcza Nadesłany:

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA REGULAMIN ndywdualnego rozlczena osztów energ ceplnej dostarczonej na potrzeby centralnego ogrzewana cepłej wody meszań w zasobach Spółdzeln Meszanowej Lębora. POSTANOIENIA OGÓLNE Regulamn oreśla zasady:

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Zastosowanie procedur modelowania ekonometrycznego w procesach programowania i oceny efektywności inwestycji w elektroenergetyce

Zastosowanie procedur modelowania ekonometrycznego w procesach programowania i oceny efektywności inwestycji w elektroenergetyce Waldemar KAMRAT Poltechna Gdańsa Katedra Eletroenergety Zastosowane procedur modelowana eonometrycznego w procesach programowana oceny efetywnośc nwestyc w eletroenergetyce Streszczene. W pracy przedstawono

Bardziej szczegółowo

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

Podstawowe algorytmy indeksów giełdowych

Podstawowe algorytmy indeksów giełdowych Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 25-11-13 Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 2013-11-25 Sps reśc I. Algorymy oblczana warośc ndeksów gełdowych...3 1. Warość beżąca

Bardziej szczegółowo

r. Komunikat TFI PZU SA w sprawie zmiany statutu PZU Funduszu Inwestycyjnego Otwartego Parasolowego

r. Komunikat TFI PZU SA w sprawie zmiany statutu PZU Funduszu Inwestycyjnego Otwartego Parasolowego 02.07.2018 r. Komunkat TFI PZU SA w sprawe zmany statutu PZU Funduszu Inwestycyjnego Otwartego Parasolowego Towarzystwo Funduszy Inwestycyjnych PZU Spółka Akcyjna, dzałając na podstawe art. 24 ust. 5 ustawy

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

Nota 1. Polityka rachunkowości

Nota 1. Polityka rachunkowości Nota 1. Poltyka rachunkowośc Ops przyjętych zasad rachunkowośc a) Zasady ujawnana prezentacj nformacj w sprawozdanu fnansowym Sprawozdane fnansowe za okres od 01 styczna 2009 roku do 31 marca 2009 roku

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu.

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu. W 1 Rachu maroeoomcze 1. Produ rajowy bruo Sprzedaż fala - sprzedaż dóbr usług osumeow lub frme, órzy osaecze je zużyują, e poddając dalszemu przeworzeu. Sprzedaż pośreda - sprzedaż dóbr usług zaupoych

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Krzysztof PIASECKI* OPTYALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE Wszyste oszty generowane przez prowze malerse są włączone

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

ĆWICZENIE 1 BADANIE WYBRANYCH PROCEDUR I STRATEGII EKSPLOATACYJNYCH

ĆWICZENIE 1 BADANIE WYBRANYCH PROCEDUR I STRATEGII EKSPLOATACYJNYCH ĆWICNI BADANI WYBANYCH POCDU I STATGII KSPLOATACYJNYCH Cel ćwczena: - lustracja zagadneń zwązanych z zarządzanem esploatacją; - lustracja zależnośc mędzy dagnostyą nezawodnoścą a efetem procesu esploatacj.

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Sortowanie szybkie Quick Sort

Sortowanie szybkie Quick Sort Sortowane szybke Quck Sort Algorytm sortowana szybkego opera sę na strateg "dzel zwycęża" (ang. dvde and conquer), którą możemy krótko scharakteryzować w trzech punktach: 1. DZIEL - problem główny zostae

Bardziej szczegółowo

Uchwała nr 13/13. Zarządu KDPW_CCP S.A. z dnia 22 maja 2013 roku. w sprawie zmiany Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP

Uchwała nr 13/13. Zarządu KDPW_CCP S.A. z dnia 22 maja 2013 roku. w sprawie zmiany Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP Uchwała nr 13/13 Zarządu KDPW_CCP S.A. z dna 22 maja 2013 rou w sprawe zmany Szczegółowych Zasad Prowadzena Rozlczeń Transacj przez KDPW_CCP Na podstawe 2 ust. 1 4 Regulamnu Rozlczeń Transacj (obrót zorganzowany)

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE

OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE OKRESOWA EMERYTURA KAPITAŁOWA ZE ŚRODKÓW ZGROMADZONYCH W OFE Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Warunk nabywana prawa do okresowej emerytury kaptałowej ze środków zgromadzonych w otwartym

Bardziej szczegółowo

Regulamin promocji fiber xmas 2015

Regulamin promocji fiber xmas 2015 fber xmas 2015 strona 1/5 Regulamn promocj fber xmas 2015 1. Organzatorem promocj fber xmas 2015, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna 2015

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Uczenie nienadzorowane (bez nauczyciela) Uczenie nienadzorowane - przykłady

Plan wykładu. Sztuczne sieci neuronowe. Uczenie nienadzorowane (bez nauczyciela) Uczenie nienadzorowane - przykłady Plan yładu Wyład 10: Sec samoorganzuce s na zasadze spółzaodncta Sec samoorganzuace s na zasadze spółzaodncta: uczene nenadzoroane uczene onurencyne reguła WTA reguła WTM antoane etoroe mapa cech Kohonena

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Komsa Egzamnacyna dla Aktuaruszy LXVIII Egzamn dla Aktuaruszy z 29 wrześna 14 r. Część I Matematyka fnansowa WERSJA TESTU A Imę nazwsko osoby egzamnowane:... Czas egzamnu: 0 mnut 1 1. W chwl T 0 frma ABC

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Stansław Bogdanowcz Poltechna Warszawsa Wydzał Transportu Załad Logsty Systemów Transportowych METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Streszczene: Ogólna podstawa

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 26 listopada 2015

Lista 6. Kamil Matuszewski 26 listopada 2015 Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń ZAŁĄCZNIK nr Zasada dzałana Algorytmu Rozdzału Obcążeń. Zmenne dane wejścowe Algorytmu Rozdzału Obcążeń.. Zmennym podlegającym optymalzacj w procese rozdzału obcążeń są welośc energ delarowane przez Jednost

Bardziej szczegółowo

SYSTEM ZALICZEŃ ĆWICZEŃ

SYSTEM ZALICZEŃ ĆWICZEŃ AMI, zma 010/011 mgr Krzysztof Rykaczewsk System zalczeń Wydzał Matematyk Informatyk UMK SYSTEM ZALICZEŃ ĆWICZEŃ z Analzy Matematycznej I, 010/011 (na podst. L.G., K.L., J.M., K.R.) Nnejszy dokument dotyczy

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

ROZMYTE MODELOWANIE WE WSPOMAGANIU DECYZJI INWESTYCYJNYCH

ROZMYTE MODELOWANIE WE WSPOMAGANIU DECYZJI INWESTYCYJNYCH ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2017 Sera: ORGANIZACJA I ZARZĄDZANIE z. 113 Nr ol. 1992 Ewa POŚPIECH Unwersytet Eonomczny w Katowcach Wydzał Zarządzana ewa.pospech@ue.atowce.pl ROZMYTE MODELOWANIE

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Analiza kohortowa czasu istnienia mikroprzedsiębiorstw w Gdańsku

Analiza kohortowa czasu istnienia mikroprzedsiębiorstw w Gdańsku Zarządzane Fnanse Journal of Management and Fnance Vol. 3, o. 4//5 Beata Jacowsa* Analza ohortowa czasu stnena mroprzedsęborstw w Gdańsu Wstęp Kondyca przedsęborstw, a w szczególnośc ch czas stnena na

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE

Bardziej szczegółowo

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

Tomasz Cisek i Jacek Kotur z Empik.com

Tomasz Cisek i Jacek Kotur z Empik.com 46 RANKING SKLEPÓW INTERNETOWYCH Polska stała sę nternetowym eldorado. W sec kupue uż 5 mn Polaków. Tylko w ostatnm roku sprzedaż w Internece wzrosła u nas o ponad 100 proc., do 3,1 mld zł; o 100 proc.

Bardziej szczegółowo

BADANIE WYBRANYCH PROCEDUR I STRATEGII EKSPLOATACYJNYCH

BADANIE WYBRANYCH PROCEDUR I STRATEGII EKSPLOATACYJNYCH AKŁAD KSPLOATACJI SYSTMÓW LKTONICNYCH INSTYTUT SYSTMÓW LKTONICNYCH WYDIAŁ LKTONIKI WOJSKOWA AKADMIA TCHNICNA ---------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12 Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

Eugeniusz Rosołowski. Komputerowe metody analizy elektromagnetycznych stanów przejściowych

Eugeniusz Rosołowski. Komputerowe metody analizy elektromagnetycznych stanów przejściowych Eugenusz Rosołows Komputerowe metody analzy eletromagnetycznych stanów przejścowych Ocyna Wydawncza Poltechn Wrocławsej Wrocław 9 Opnodawcy Jan IŻYKOWSKI Paweł SOWA Opracowane redacyjne Mara IZBIKA Koreta

Bardziej szczegółowo

Komputerowe generatory liczb losowych

Komputerowe generatory liczb losowych . Perwszy generator Komputerowe generatory lczb losowych 2. Przykłady zastosowań 3. Jak generuje sę lczby losowe przy pomocy komputera. Perwszy generator lczb losowych L. H. C. Tppet - 927 Ksąż ążka -

Bardziej szczegółowo

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Stansław KOWALIK e-mal: skowalk@wsb.edu.pl Wyższa Szkoła Bznesu Dąbrowa Górncza RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Streszczene Praca dotyczy nekooperacynych sekwencynych ger dwuosobowych o sume

Bardziej szczegółowo

ZAŁĄCZNIK NR 1C KARTA USŁUGI Utrzymanie Systemu Kopii Zapasowych (USKZ)

ZAŁĄCZNIK NR 1C KARTA USŁUGI Utrzymanie Systemu Kopii Zapasowych (USKZ) Załącznk nr 1C do Umowy nr.. z dna.2014 r. ZAŁĄCZNIK NR 1C KARTA USŁUGI Utrzymane Systemu Kop Zapasowych (USKZ) 1 INFORMACJE DOTYCZĄCE USŁUGI 1.1 CEL USŁUGI: W ramach Usług Usługodawca zobowązany jest

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

A O n RZECZPOSPOLITA POLSKA. Gospodarki Narodowej. Warszawa, dnia2/stycznia 2014

A O n RZECZPOSPOLITA POLSKA. Gospodarki Narodowej. Warszawa, dnia2/stycznia 2014 Warszawa, dna2/styczna 2014 r, RZECZPOSPOLITA POLSKA MINISTERSTWO ADMINISTRACJI I CYFRYZACJI PODSEKRETARZ STANU Małgorzata Olsze wska BM-WP 005.6. 20 14 Pan Marek Zółkowsk Przewodnczący Komsj Gospodark

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Komórkowy model sterowania ruchem pojazdów w sieci ulic.

Komórkowy model sterowania ruchem pojazdów w sieci ulic. Komórkowy model sterowana ruchem pojazdów w sec ulc. Autor: Macej Krysztofak Promotor: dr n ż. Marusz Kaczmarek 1 Plan prezentacj: 1. Wprowadzene 2. Cel pracy 3. Podsumowane 2 Wprowadzene Sygnalzacja śwetlna

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E bedze zborem zdarzen elementarnych danego doswadczena. Funcje X(e) przyporzadowujaca azdemu zdarzenu elementarnemu e E jedna tylo jedna lczbe X(e)x nazywamy ZMIENNA

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

Odczyt kodów felg samochodowych w procesie produkcyjnym

Odczyt kodów felg samochodowych w procesie produkcyjnym Odczyt odów felg samochodowych w procese producyjnym Jace Dunaj Przemysłowy Instytut Automaty Pomarów PIAP Streszczene: W artyule przedstawono sposób realzacj odczytu odów felg samochodowych. Opracowane

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Adranna Mastalerz-Kodzs Ewa Pośpech Unwersytet Ekonomczny w Katowcach ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Wprowadzene Zagadnene wyznaczana optymalnych

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Metody Numeryczne 7/8 Inormatya Stosowana II ro Inżynera Oblczenowa II ro Wyład 7 Równana nelnowe Problemy z analtycznym rozwązanem równań typu: cos ln 3 lub uładów równań ja na przyład: y yz. 3z y y.

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

UCHWAŁA NR 279/XVIII/2011 Rady Miasta Płocka z dnia 29 grudnia 2011 roku

UCHWAŁA NR 279/XVIII/2011 Rady Miasta Płocka z dnia 29 grudnia 2011 roku UCHWAŁA NR 279/XVIII/2011 Rady Masta Płocka z dna 29 grudna 2011 roku sprae ustalena Regulamnu przyznaana przekazyana stypendó mejskch dla ucznó szkół proadzonych lub dotoanych przez Masto Płock zameldoanych

Bardziej szczegółowo