OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy

Wielkość: px
Rozpocząć pokaz od strony:

Download "OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy"

Transkrypt

1 B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr Krzysztof PIASECKI* OPTYALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE Wszyste oszty generowane przez prowze malerse są włączone do zadana optymalzac portfela. Transformaca portfela est opsana ao zadane transportowe. nmalne oszty transformac portfela są osągnęte za pomocą pewnego rodzau otwartego zadana optymalzacynego. Naszcowano możlwość orygowana stopy zwrotu portfela optymalnego obcążonego osztam transac. Słowa luczowe: zadane transportowe, portfel atywów fnansowych, oszty transac, optymalzaca procesu przebudowy 1. Problem badawczy Zarządzane portfelem atywów fnansowych w ogólnym przypadu polega na zbywanu nso cenonych atywów fnansowych następne na przeznaczenu środów uzysanych tą drogą na zaup wyże cenonych atywów fnansowych. W szczególnym przypadu ednym z rozpatrywanych atywów może być gotówa. Dzałana te są podemowane w celu zwęszena zysu, efet est edna nwelowany ponoszenem przez nwestora stosunowo wysoch opłat prowzynych. Stąd wywodz sę zamar uwzględnena osztów transac w opse strateg zarządzana portfelem. Każdy z etapów te strateg polega na przebudowanu posadanego portfela w portfel postulowany. Umożlwa to opsane optymalzowane osztów poedynczego etapu wspomnane strateg za pomocą zadana transportowego. Należy tu odpowedzeć sobe na dwa pytana. Po perwsze, czy est możlwa mnmalzaca osztów przebudowy posadanego portfela w postulowany portfel optymalny w sytuac, gdy wyorzystywane ryterum optymalnośc portfela opsue doładne struturę tegoż portfela? Po druge, czy orzy- * Katedra Badań Operacynych, Wydzał Zarządzana, Aadema Eonomczna, Al. Nepodległośc 10, Poznań, e-mal:.pasec@ae.poznan.pl

2 52 K. PIASECKI stane z ryterum mnmalzac osztów przebudowy portfela ao samostnego ryterum wyznaczaącego strategę nwestycyną pozwala nwestorow oczewać wzrostu stopy zwrotu z zarządzanego portfela? Prezentowana praca est studum formalnym naszcowanego powyże problemu. 2. Poedyncza transaca Symbol P oznacza nformacę o rodzau lośc ednoste -tego atywa fnansowego. Opłacalność zanwestowana w atywa fnansowe P na ustalony ores ocenamy za pomocą stopy zwrotu r. Rozważamy transacę P a P, (1) polegaącą na zbycu atywa P nabycu za uzysane środ atywa P. Transaca (1) z założena ma być opłacalna, co pozwala wnosować, że odpowedne stopy zwrotu spełnaą nerówność r < r. (2) Załadamy tuta mplcte stałość rozpatrywanego horyzontu czasowego. Należy pamętać, że przy dodatne chwlowe stope spot zarówno poszczególne stopy zwrotu, a ch dodatna różnca r będą rosły. Przymuąc, że wartość beżąca PV zbywanego atywa osąga pozom PV ( P ) = C, (3) wartość beżącą PV nabywanego atywa musmy umneszyć o prowzę do pozomu PV 1 ( P ) = C 1 +, (4) gdze symbol oznacza stopę prowz poedyncze transac sprzedaży lub upna. Wartośc ońcowe FV tych atywów są wyrażone w postac zależnośc FV P ) = C(1 + r ), (5) ( 1 FV ( P ) = C (1 + r ). (6) Straty wynaące z przeprowadzena transac (1) możemy oreślć ao spade wartośc ońcowe atualne posadanego atywa. W te sytuac podstawaąc C = 1

3 Optymalzaca osztów przebudowy portfela 53 w (5) (6) ednostowe straty L ( P, P ) generowane przez przeprowadzene transac (1) dla edne ednost atywa P oreślamy zależnoścą 1 L ( P, P ) = l, = (1 + r ) (1 + r ). (7) Opłacalność transac (1) est równoważna z warunem l, < 0, (8) nezależnym uż od welośc transac C opsuącym uemne straty ednostowe. Ze swe natury stopa prowz spełna warune 0 < <1, (9) co pozwala stwerdzć, że przy odpowedno duże dodatne różncy stóp zwrotu r transaca (1) stae sę opłacalna. Wobec wspomnane uż monotoncznośc func r zauważamy, że wraz z wydłużenem sę horyzontu nwestycynego rośne szansa na to, że transaca (1) stane sę transacą opłacalną. Oznacza to, że warune opłacalnośc (8) zawera mplcte w sobe warune wyznaczaący mnmalny opłacalny horyzont czasowy nwestyc. Analzuąc zależność (7) zauważamy, że straty rosną wraz ze wzrostem stopy zwrotu r oraz wraz ze spadem stopy zwrotu r. Oznacza to, że zadane mnmalzac strat est równoważne z zadanem masymalzac przyrostu stopy zwrotu. 3. Przebudowa portfela w zadany portfel optymalny Załóżmy, że dysponuemy portfelem P = { P1 ; P2 ; ; Pn }, gdze symbol P został zdefnowany w rozdzale 2. Stosuąc dowolne, ale ustalone zadane optymalzacyne stwerdzamy, że postulowany optymalny portfel przymue postać P = { P1, P2 ; ; Pn }, gdze symbol P oznacza atywa fnansowe tego samego rodzau co atywa fnansowe oznaczone symbolem P. Atywa P P mogą sę różnć lczbą ednoste, a w ogólnym przypadu przymuemy, że lczby ednoste pewnych atywów mogą być równe zeru. Udzał wartośc atywa P w wartośc portfela P wyraża sę proporcą PV ( P ) = α, (10) PV ( P)

4 54 K. PIASECKI oreśloną ednoznaczne, gdyż znamy struturę posadanego portfela. Udzał wartośc atywa P w wartośc portfela P dany est za pomocą proporc PV ( P ) = α, (11) PV ( P ) wyznaczone ednoznaczne przez stosowane zadane optymalzacyne. Rozważamy transacę P = { P ; P ; ; P } P = { P ; P ; ; P }, (12) 1 2 n 1 2 n oznaczaącą zbyce częśc zbędnych atywów portfela P nabyce za uzysane środ brauących atywów portfela P. Transacę taą nazywamy przebudową portfela możemy wyrazć równoważne ao przesunęce w postac schematu α, α,, α ] a [ α, α,, α ]. (13) [ 1 2 n 1 2 n Przymuąc, że wartość beżąca PV posadanego portfela osąga pozom PV ( P) = C, (14) wartość beżącą PV postulowanego portfela musmy umneszyć o prowzę do pozomu PV ( P ) = (1 λ ) C, (15) gdze symbol λ oznacza nduowaną stopę prowz, rozumaną ao loraz zapłaconych prowz do wartośc beżące całego portfela P. W te sytuac, gdy zbywamy edyne zbędne atywa uzupełnamy brauące, nduowana stopa prowz spełna warune 1 2 λ < 1 =. (16) Zamemy sę teraz opsem modelu osztów te przebudowy. Zestawaąc razem (10) (14), otrzymuemy PV zaś po zestawenu razem (11) (15) mamy ( P ) α C =, (17) PV ( P ) = α (1 λ ) C. (18) Jeśl spełnony est warune PV P ) < PV ( P ), (19) (

5 Optymalzaca osztów przebudowy portfela 55 to do zbyca atywów P w ogóle ne dochodz, gdyż atywa te będą edyne doupywane. Fat ten zmnesza nduowaną stopę prowz λ. Symbolem K oznaczmy zbór wszystch ndesów oznaczaących rodzae doupywanych atywów fnansowych. amy tuta K = = 1, 2,, n : PV ( P ) < PV ( P )}. (20) { Jeśl nerówność (19) ne est spełnona, to sprzedaemy edyne część atywów -tego rodzau, pozostawaąc edyne resztę o wartośc PV ( P ). Taże ten fat zmnesza nduowaną stopę prowz λ. Symbolem S nazwmy zbór wszystch ndesów oznaczaących rodzae sprzedawanych atywów fnansowych. amy tuta S = = 1, 2,, n : PV ( P ). > PV ( P )}. (21) { Przy wyznaczanu ostatecznego ształtu rozdzelnych zborów K S nezbędna est doładna znaomość wartośc nduowane stopy prowz λ. Ogranczaąc oszta, dążymy oczywśce do możlwe małe wartośc λ. Dysutowane własnośc elementów zborów K S stanową przesłan do onstruc następuącego algorytmu wyznaczana mnmalne nduowane stopy prowz λ : Etap (): Podstaw 2 λ. 1 + Etap (): Podstaw * 2 λ ( α α (1 λ )). Etap (): Jeśl est spełnony warune λ λ, to wyznaczona wartość λ est poszuwaną mnmalną stopą prowz. W przecwnym przypadu podstaw λ λ wróć do Etapu (). Stosuąc powyższy algorytm, należy pamętać o ażdorazowym dostosowanu w Etape () postac zborów S K do atualne wartośc λ nduowane stopy prowz.

6 56 K. PIASECKI Wartość sprzedaży s ażdych atywów P ze zboru S est opsana zależnoścą s = ( α α (1 λ )) C. (22) Dla zblansowana całowte wartośc sprzedaży z całowtą wartoścą zaupu wprowadzamy poęce wartośc brutto zaupu, rozumane ao wartość netto zaupu powęszoną o łączną prowzę zapłaconą przy pozysanu środów penężnych przeznaczonych na zaup -tego atywa fnansowego oraz przy samym zaupe tego atywa. amy = ( ) = ( α (1 λ ) α ) C. (23) 1 Jeśl symbolem, oznaczymy wartość atywów P przeznaczoną na zaup atywów P, to przeształcene portfela P w portfel P można przedstawć ao tablcę przepływów środów penężnych: s s s 1 s 1 1,1,1 s,1 1,, s, 1,, s,. (24) Dla ażde pary (, ) S K mamy wtedy następuące warun blansuące:, 0, (25) s =,, (26) K =,, (27) s =. (28) Łatwo można zauważyć, że wymenone warun blansuące opsuą zbór decyz dopuszczalnych {, } zamnętego zadana transportowego. Koszt przeształcena posadanego portfela w portfel postulowany oreślamy ao sumę wszystch strat poedynczych transac przeprowadzonych w celu realzac założone przebudowy portfela. Jeśl przymemy ao cel optymalzacyny mnmalzacę osztów przebudowy portfela P P, to otrzymamy mnmalzowaną funcę celu K

7 Optymalzaca osztów przebudowy portfela 57 1, l, = (1 + r ) s (1 + r ) = K K const. (29) Funca celu est funcą stałą, co oznacza, że ażdy dopuszczalny przepływ środów penężnych est przepływem optymalnym w powyższym zadanu transportowym. Podsumowuąc rozważana tego rozdzału zauważamy, że w przypadu transformac posadanego portfela w postulowany portfel optymalny łączne oszty tego przeształcena są stałe próba ch optymalzac ne podnos aośc strateg nwestycyne. 4. nmalzaca osztów transformac portfela ao ryterum optymalzac Przystępuemy ponowne do zadana mnmalzac oreślonych w poprzednm rozdzale osztów przebudowy portfela posadanego w portfel postulowany. Tym razem będzemy rozwązywać nasze zadane optymalzacyne przymuąc, że nasz portfel postulowany ne est ształtowany przez aeolwe ryterum oreślaące doładny udzał wartośc poszczególnych atywów w ogólne wartośc portfela. Ponowne rozważamy transacę (12), przy czym ne dysponuemy tym razem doładnym ształtem portfela postulowanego P. Załadamy, że stosowana metoda stawana celów nwestycynych est metodą przypsuącą edyne ażdemu atywu fnansowemu edno z trzech zaleceń: SPRZEDAJ, TRZYAJ, KUPUJ. Jest to typowa sytuaca często spotyana nawet po zastosowanu fnezynych metod analzy rynu aptałowego. Realzaca dyretywy TRZYAJ ne mplue żadnych osztów transac, co pozwala pomnąć atywa fnansowe z taą reomendacą. Symbolem S oznaczmy zbór wszystch atywów z reomendacą SPRZEDAJ S = = 1, 2,, n : SPRZEDAJ P}. (30) { Symbolem K oznaczmy zbór wszystch atywów z reomendacą KUPUJ K = = 1, 2,, n : KUPUJ P }. (31) { W przypadu atywów ze zboru S dysponuemy lczbam s oreślaącym wartość atywów P oferowanych do sprzedaży. Sprzedaż ta może edna napotać na barerę popytu, stworzoną przez następuące czynn:

8 58 K. PIASECKI zapotrzebowane na środ penężne przeznaczane na zaup atywów ze zboru K ; barerę popytu zgłaszanego przez ryne na atywa P. Z tego powodu lczbę s należy tratować edyne ao res górny możlwe sprzedaży. W przypadu atywów ze zboru K dysponuemy lczbam oreślaącym górne oszacowane wartośc brutto (w sense opsanym w rozdzale 3) supowanego atywa P. Ogranczene to może wynać na przyład z werbalnych ogranczeń oncentrac ryzya. Dodatowo zaupy te mogą być ogranczone, gdy: ne zostały znalezone tae atywa ze zboru S, tóre opłacałoby sę w sense warunu (8) wymenć na atywa P ; na rynu spotyamy sę z nazbyt nsą podażą atywa P. Z tego powodu lczbę należy tratować edyne ao res górny możlwych zaupów. Podobne a w rozdzale 3, symbolem, oznaczmy wartość środów penężnych pochodzących ze sprzedaży atywa P przeznaczanych na zaup atywa P. Przeształcene portfela P w portfel P można przedstawć w postac tablcy przepływów środów penężnych (24). Dla ażde pary (, ) S K mamy wtedy (25) oraz następuące warun blansuące: s,, (32) K,. (33) Górne resy sprzedaży górne resy zaupów ne blansuą sę w żaden wyraźny sposób z tego powodu do tworzonego modelu ne można wprowadzć warunu zastępuącego warune (28). Koszt przebudowy posadanego portfela w portfel postulowany oreślamy ao sumę wszystch strat poedynczych transac, przeprowadzonych w celu realzac założone optymalzac portfela. Przymuąc ao cel optymalzacyny mnmalzacę osztów transformac portfela P P, otrzymuemy mnmalzowaną funcę celu K l mn. (34),, Zadana (24), (25), (32) (34) mnmalzac osztów przebudowy portfela (KPP) są przyładem otwartego zadana transportowego. Rozwązuąc e, pownnśmy ogranczać sę do transac (1) przynoszących uemne straty (7). Zgodne z zależnoścą (7), mnmalzuąc oszty transformac portfela posadanego w portfel postulowany, preferowane pownny być transace zamenaące dostępne atywa o możlwe nse stope zwrotu na dopuszczalne do upena atywa o możlwe wysoe stope

9 Optymalzaca osztów przebudowy portfela 59 zwrotu. Oznacza to, że przedstawona powyże procedura mnmalzac osztów transacynych prowadz do wyznaczena portfela z masymalną przy danych ogranczenach stopą zwrotu. Spostrzeżene to prowadz do procedury przebudowy posadanego portfela P P o struturze opsane o struturze opsane proporcam (10) w postulowany portfel proporcam (11), wyznaczonym doładną metodą optymalzac portfela pomaącą oszty transacyne. Przy przebudowe portfela będzemy odrzucać wszyste te transace, tóre ne będą opłacalne w rozumenu warunu (8). W ten sposób wartość sprzedaży s (22) wartość brutto zaupu (23) opsuą edyne górne resy fatyczne sprzedaży zaupów. Zastępuąc teraz zbory (30) (31) odpowedno zboram (21) (20), oreślamy zadane optymalzacyne KP, tóre ma prowadzć do mnmalzac osztów przebudowy posadanego portfela w portfel postulowany. Otrzymany tą drogą portfel będze obcążony osztam transac, neprzeraczaącym osztów przebudowy portfela do zadanego portfela optymalnego. Oznacza to, że przy uwzględnanu osztów transac portfel wsazany przez KP może meć wyższą stopę zwrotu nż portfel wyznaczony przez zadaną metodę optymalzac. 5. Zaończene Przedstawony model est edyne modelem formalnym wymaga dalszych badań emprycznych, tóre pozwolłyby dać odpowedź na następuące pytana: Czy wyznaczona w nm stopa zwrotu portfela rezultatów w znaczny sposób różn sę od stopy zwrotu portfela wyznaczanego za pomocą różnych doładnych metod optymalzac portfela? Czy łączne oszty transac w portfelu, będącym rozwązanem opsanego otwartego zadana transportowego, są znaczne nższe od osztów transac prowadzących do otrzymana portfela wyznaczanego różnym doładnym metodam optymalzac portfela? Czy spade stopy zwrotu portfela wynaący z przyęca do wyznaczana strateg nwestycyne ryterum mnmalzac osztów transacynych est w należyty sposób reompensowany przez spade osztów transacynych? Optmzaton costs of swtchng portfolo as transportaton problem All costs generated by broer s commsson are ncluded n portfolo optmzaton. The value of ndcated broer s commsson s gven as a constant pont of some smple teraton process. The swtchng process s descrbed as a closed transportaton problem. It s proved that for a fed ordered par of port-

10 60 K. PIASECKI folos the total costs of swtchng the frst portfolo to the second one are constant. The strategy of optmzng ndcated broer s commsson s proposed. The mnmal swtchng costs are attaned by means of some nd of open transportaton problem. The obtaned method of cost management may be appled together wth any procedure of portfolo selecton. There are setched the possbltes of correctng return rate of optmal portfolo burdened wth swtchng costs. Keywords: transportaton problem, fnancal portfolo, transacton cost, optmzaton portfolo swtchng process

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE Zasady wyznazana depozytów zabezpezaąyh po wprowadzenu do obrotu op w rela lent-buro malerse ZAADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERKIE

Bardziej szczegółowo

Matematyka finansowa r.

Matematyka finansowa r. . Sprawdź, tóre z ponższych zależnośc są prawdzwe: () = n n a s v d v d d v v d () n n m ) ( n m ) ( v a d s ) m ( = + & & () + = = + = )! ( ) ( δ Odpowedź: A. tylo () B. tylo () C. tylo () oraz () D.

Bardziej szczegółowo

Dr Krzysztof Piontek. Metody taksonomiczne Klasyfikacja i porządkowanie

Dr Krzysztof Piontek. Metody taksonomiczne Klasyfikacja i porządkowanie Lteratura przegląd etod Studu podyploowe Analty Fnansowy Metody tasonoczne Klasyfaca porządowane Dzechcarz J. (pod red.), Eonoetra: etody, przyłady, zadana, Wydawnctwo Aade Eonoczne we Wrocławu, Wrocław,

Bardziej szczegółowo

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury. Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Zastosowanie procedur modelowania ekonometrycznego w procesach programowania i oceny efektywności inwestycji w elektroenergetyce

Zastosowanie procedur modelowania ekonometrycznego w procesach programowania i oceny efektywności inwestycji w elektroenergetyce Waldemar KAMRAT Poltechna Gdańsa Katedra Eletroenergety Zastosowane procedur modelowana eonometrycznego w procesach programowana oceny efetywnośc nwestyc w eletroenergetyce Streszczene. W pracy przedstawono

Bardziej szczegółowo

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

Efekty zaokrągleń cen w Polsce po wprowadzeniu euro do obiegu gotówkowego

Efekty zaokrągleń cen w Polsce po wprowadzeniu euro do obiegu gotówkowego Ban Kredyt 40 (2), 2009, 61 95 www.banredyt.nbp.pl www.banandcredt.nbp.pl fety zaorągleń cen w Polsce po wprowadzenu euro do obegu gotówowego Mare Rozrut*, Jarosław T. Jaub #, Karolna Konopcza Nadesłany:

Bardziej szczegółowo

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic Zadane rograowana lnowego PL dla ogranczeń neszoścowch rz ogranczenach: a f c A b d =n, d c=n, d A =[ n], d b =, Postać anonczna zadana PL a c X : A b, Postać anonczna acerzowa zadana PL a Lczba zennch

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Kryteria oceny projektów inwestycyjnych. Wprowadzenie. Wprowadzenie. Plan prezentacji

Kryteria oceny projektów inwestycyjnych. Wprowadzenie. Wprowadzenie. Plan prezentacji Plan prezentacji Kryteria oceny projetów inwestycyjnych Grzegorz Jajuga Uniwersytet Eonomiczny we Wrocławiu Instytut Zarządzania Finansami Katedra Finansów Przedsiębiorstw i Zarządzania Wartością 12 lutego

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Badania operacyjne w logistyce i zarządzaniu produkcją

Badania operacyjne w logistyce i zarządzaniu produkcją Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badana operacyne w logstyce zarządzanu produkcą cz. I Andrze Woźnak Nowy Sącz Komtet Redakcyny doc. dr Zdzsława Zacłona przewodncząca, prof. dr hab. nż. Jarosław

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB Julusz MDZELEWSK Wydzał Eletron Techn nformacyjnych, nstytut Radoeletron, oltechna Warszawsa do:0.599/48.05.09.36 dosonalona metoda oblczana mocy traconej w tranzystorach wzmacnacza lasy AB Streszczene.

Bardziej szczegółowo

dr inż. ADAM HEYDUK dr inż. JAROSŁAW JOOSTBERENS Politechnika Śląska, Gliwice

dr inż. ADAM HEYDUK dr inż. JAROSŁAW JOOSTBERENS Politechnika Śląska, Gliwice dr nż. ADA HEYDUK dr nż. JAOSŁAW JOOSBEENS Poltechna Śląsa, Glwce etody oblczana prądów zwarcowych masymalnych nezbędnych do doboru aparatury łączenowej w oddzałowych secach opalnanych według norm europejsej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE

Bardziej szczegółowo

ĆWICZENIE 1 BADANIE WYBRANYCH PROCEDUR I STRATEGII EKSPLOATACYJNYCH

ĆWICZENIE 1 BADANIE WYBRANYCH PROCEDUR I STRATEGII EKSPLOATACYJNYCH ĆWICNI BADANI WYBANYCH POCDU I STATGII KSPLOATACYJNYCH Cel ćwczena: - lustracja zagadneń zwązanych z zarządzanem esploatacją; - lustracja zależnośc mędzy dagnostyą nezawodnoścą a efetem procesu esploatacj.

Bardziej szczegółowo

Analiza kohortowa czasu istnienia mikroprzedsiębiorstw w Gdańsku

Analiza kohortowa czasu istnienia mikroprzedsiębiorstw w Gdańsku Zarządzane Fnanse Journal of Management and Fnance Vol. 3, o. 4//5 Beata Jacowsa* Analza ohortowa czasu stnena mroprzedsęborstw w Gdańsu Wstęp Kondyca przedsęborstw, a w szczególnośc ch czas stnena na

Bardziej szczegółowo

Ekonomika w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL (II stopień)

Ekonomika w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL (II stopień) dr Adam Salomon Ekonomika w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL (II stopień) EwPTM program wykładu 10. Dynamiczne metody szacowania opłacalności projektów inwestycyjnych w transporcie

Bardziej szczegółowo

BADANIE WYBRANYCH PROCEDUR I STRATEGII EKSPLOATACYJNYCH

BADANIE WYBRANYCH PROCEDUR I STRATEGII EKSPLOATACYJNYCH AKŁAD KSPLOATACJI SYSTMÓW LKTONICNYCH INSTYTUT SYSTMÓW LKTONICNYCH WYDIAŁ LKTONIKI WOJSKOWA AKADMIA TCHNICNA ---------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 MAGDALENA WASYLKOWSKA OCENA SYTUACJI FINANSOWEJ PRZEDSIĘBIORSTWA PRZY ZASTOSOWANIU METOD ANALIZY FUNDAMENTALNEJ

Bardziej szczegółowo

Rozdział III Dynamiczna ocena projektów inwestycyjnych 1. Ocena projektu inwestycyjnego

Rozdział III Dynamiczna ocena projektów inwestycyjnych 1. Ocena projektu inwestycyjnego Rozdzał III Dynamczna ocena proektów nwestycynych. Ocena proektu nwestycynego,t Stopa nomnalna y 9 Przykład y w w K w 2 b w, 2 K w w,, w 2, Kb- stopa kosztu użyca kredytu bankowego ( z wyłączenem prowz

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Unv. Technol. Stetn. 2010, Oeconomca 280 (59), 13 20 Iwona Bą, Agnesza Sompolsa-Rzechuła LOGITOWA ANALIZA OSÓB UZALEŻNIONYCH OD ŚRODKÓW

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA REGULAMIN ndywdualnego rozlczena osztów energ ceplnej dostarczonej na potrzeby centralnego ogrzewana cepłej wody meszań w zasobach Spółdzeln Meszanowej Lębora. POSTANOIENIA OGÓLNE Regulamn oreśla zasady:

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Odczyt kodów felg samochodowych w procesie produkcyjnym

Odczyt kodów felg samochodowych w procesie produkcyjnym Odczyt odów felg samochodowych w procese producyjnym Jace Dunaj Przemysłowy Instytut Automaty Pomarów PIAP Streszczene: W artyule przedstawono sposób realzacj odczytu odów felg samochodowych. Opracowane

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne Instrukca do ćwczeń laboratorynych z przedmotu: Badana operacyne Temat ćwczena: Problemy rozkrou materałowego, zagadnena dualne Zachodnopomorsk Unwersytet Technologczny Wydzał Inżyner Mechanczne Mechatronk

Bardziej szczegółowo

STATYSTYKA. Zmienna losowa skokowa i jej rozkład

STATYSTYKA. Zmienna losowa skokowa i jej rozkład STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW ZASTOSOWANIE PROGRAOWANIA DYNAICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EISJI GAZÓW ANDRZEJ KAŁUSZKO Instytut Bada Systemowych Streszczene W pracy opsano zadane efektywnego przydzału ogranczonych rodków

Bardziej szczegółowo

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń ZAŁĄCZNIK nr Zasada dzałana Algorytmu Rozdzału Obcążeń. Zmenne dane wejścowe Algorytmu Rozdzału Obcążeń.. Zmennym podlegającym optymalzacj w procese rozdzału obcążeń są welośc energ delarowane przez Jednost

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL niestacjonarne (II stopień) program wykładu 10. Dynamiczne metody szacowania opłacalności projektów inwestycyjnych

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Dr inż. Robert Smusz Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki

Dr inż. Robert Smusz Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki Dr nż. Robert Smusz Poltechnka Rzeszowska m. I. Łukasewcza Wydzał Budowy Maszyn Lotnctwa Katedra Termodynamk Projekt jest współfnansowany w ramach programu polskej pomocy zagrancznej Mnsterstwa Spraw Zagrancznych

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Stansław KOWALIK e-mal: skowalk@wsb.edu.pl Wyższa Szkoła Bznesu Dąbrowa Górncza RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Streszczene Praca dotyczy nekooperacynych sekwencynych ger dwuosobowych o sume

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Możliwości arbitrażu na Giełdzie Papierów Wartościowych w Warszawie z wykorzystaniem kontraktów terminowych

Możliwości arbitrażu na Giełdzie Papierów Wartościowych w Warszawie z wykorzystaniem kontraktów terminowych 1 Możliwości arbitrażu na Giełdzie Papierów Wartościowych w Warszawie z wyorzystaniem ontratów terminowych dr Krzysztof Pionte Katedra Inwestycji Finansowych i Ubezpieczeń Aademia Eonomiczna we Wrocławiu

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Adranna Mastalerz-Kodzs Ewa Pośpech Unwersytet Ekonomczny w Katowcach ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Wprowadzene Zagadnene wyznaczana optymalnych

Bardziej szczegółowo

10. PODSTAWOWY MODEL POTOKU RUCHU PORÓWNANIE RÓŻNYCH MODELI (wg Ashton, 1966)

10. PODSTAWOWY MODEL POTOKU RUCHU PORÓWNANIE RÓŻNYCH MODELI (wg Ashton, 1966) 1. Podstawowy model potou ruchu porównanie różnych modeli 1. PODSTAWOWY MODEL POTOKU RUCHU PORÓWNANIE RÓŻNYCH MODELI (wg Ashton, 1966) 1.1. Porównanie ształtu wyresów różnych unci modeli podstawowych Jednym

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Dynamiczne metody oceny opłacalności inwestycji tonażowych

Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne formuły oceny opłacalności inwestycji tonażowych są oparte na założeniu zmiennej (malejącej z upływem czasu) wartości pieniądza. Im

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

EFEKTYWNE ZARZĄDZANIE MOCĄ FARM WIATROWYCH

EFEKTYWNE ZARZĄDZANIE MOCĄ FARM WIATROWYCH Nr (111) - 014 Rynek Energ Str. 69 EFEKTYWNE ZARZĄDZANIE MOCĄ FARM WIATROWYCH Paweł Parsk, Adam Rzepeck, Mchał Wydra Słowa kluczowe: optymalzaca, dopuszczalna obcążalność prądowa, lna napowetrzna, farma

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

ALOKACJA ZASOBU W WARUNKACH NIEPEWNOŚCI: MODELE DECYZYJNE I PROCEDURY OBLICZENIOWE

ALOKACJA ZASOBU W WARUNKACH NIEPEWNOŚCI: MODELE DECYZYJNE I PROCEDURY OBLICZENIOWE B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 1 2007 Helena GASPARS ALOKACJA ZASOBU W WARUNKACH NIEPEWNOŚCI: MODELE DECYZYJNE I PROCEDURY OBLICZENIOWE Sformułowano modele optymalizacyne, maące zastosowanie

Bardziej szczegółowo

Ekonomika Transportu Morskiego wykład 08ns

Ekonomika Transportu Morskiego wykład 08ns Ekonomika Transportu Morskiego wykład 08ns dr Adam Salomon, Katedra Transportu i Logistyki Wydział Nawigacyjny, Akademia Morska w Gdyni ETM 2 Wykład ostatni merytoryczny ETM: tematyka 1. Dynamiczne metody

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe

Bardziej szczegółowo

Eugeniusz Rosołowski. Komputerowe metody analizy elektromagnetycznych stanów przejściowych

Eugeniusz Rosołowski. Komputerowe metody analizy elektromagnetycznych stanów przejściowych Eugenusz Rosołows Komputerowe metody analzy eletromagnetycznych stanów przejścowych Ocyna Wydawncza Poltechn Wrocławsej Wrocław 9 Opnodawcy Jan IŻYKOWSKI Paweł SOWA Opracowane redacyjne Mara IZBIKA Koreta

Bardziej szczegółowo