Metody Numeryczne 2017/2018
|
|
- Małgorzata Szulc
- 6 lat temu
- Przeglądów:
Transkrypt
1 Metody Numeryczne 7/8 Inormatya Stosowana II ro Inżynera Oblczenowa II ro Wyład 7 Równana nelnowe Problemy z analtycznym rozwązanem równań typu: cos ln 3 lub uładów równań ja na przyład: y yz. 3z y y. y z z.3 Jedyne metody numeryczne pozwalają znaleźć rozwązana. Rozpoczynamy od równań nelnowych jednej zmennej.
2 Równana nelnowe Rozwązywane równań nelnowych postac F( gdze uncja F( jest uncją nelnową jednej zmennej opera sę na twerdzenu ż uncja F( jest cągła w przedzale domnętym [ab] F(aF(b< to w przedzale domnętym [ab] stneje co najmnej jeden perwaste równana F(. Jeżel ponadto pochodna z uncj F( w tym przedzale jest stałego znau to stneje tylo jeden ta perwaste. Typowe dwa ro prowadzące do rozwązana: Perwszy ro - znalezene przedzału zolacj perwasta równana nelnowego tj. przedzału na tórego ońcach uncja ma przecwne zna. Drug ro - onstrucja odpowednej procedury reurencyjnej tóra w procese teracj wygeneruje cąg zbeżny do rozwązana równana. Ne stneją ogólne metody doboru przedzału [ab] ta by uncja mała przecwne zna na ońcach przedzału. Często najlepszym wyjścem jest wstępne tablcowane uncj sprawdzene gdze zmena ona zna. Ne zawsze proste reguły wystarczają (ja na rysunu (a. Nesończene wele mejsc zerowych Podwójne mejsce zerowe (b Asymptoty
3 Równana nelnowe Załóżmy że w przedzale [ab] uncja F( spełna warune: F( a F( b < F( b a 3 Równana nelnowe Metoda bsecj (podzału Proces teracj: znajdujemy F( gdze (jeśl F( to onec teracj a b Jeśl F( a F( < to denujemy b w przecwnym wypadu denujemy a a b 3 powracamy do puntu denujemy sprawdzamy warune. Łatwo sprawdzć że dla ta zdenowanego procesu teracj - < - - węc proces teracj jest zawsze zbeżny co jest nezaprzeczalną zaletą tej metody. Jej wadą jest wolna zbeżność.
4 Równana nelnowe Metoda secznych (cęcw Załadamy że uncja F( jest lasy C w przedzale [ab]. Metoda secznych polega na prowadzenu olejnych cęcw pomędzy puntam na rzywej F( w sposób następujący: F( a 3 4 b Równana nelnowe załóżmy że F( a F( b < równane perwszej cęcwy ma postać stąd F( a a F b F a b a 3 Jeśl F( to ończymy terację y F( a F( b F( a b a a jeśl ne to sprawdzamy czy F( F( a < jeśl ta to podstawamy b jeśl ne to podstawamy a powracamy do puntu. Metoda cęcw jest zawsze zbeżna dla uncj cągłej to na ogół szybcej nż metoda bsecj. Może być w pewnych przypadach słabo zbeżna szczególne gdy mejscem zerowym jest punt położony blso ońców przedzału.
5 Równana nelnowe Metoda stycznych (Newtona. Metoda Newtona jest zblżona do metody secznych z tą różncą że perwaste przyblżany jest przez mejsca zerowe stycznych do uncj F( a ne cęcw tej uncj. F( a b Równana nelnowe Równane prostej stycznej do uncj F( w punce ma postać y F( F ( ( Stąd podstawając y otrzymujemy punt przecęca stycznych z osą rzędnych F( F ( Metoda jest zbeżna jeśl w przedzale gdze występuje perwaste doberzemy w odpowedn sposób punt startowy. Zasada jest następująca: -jeśl F ( a F( a < to a -jeśl F ( b F( b > to b.
6 Równana nelnowe W celu znalezena perwasta należy olejno: - wybrać przedzał [ab] ta by ( a ( b < - wybrać punt startowy a lub b w sposób opsany powyżej F( - oblczyć F ( - jeśl F( ończymy terację - jeśl ne to oblczamy 3 wg wzoru (* td. Metoda Newtona bardzo szybo daje rozwązane nawet gdy punt startowy leży blso perwasta ale w netórych przypadach może ne być zbeżna. Jedną z nebezpecznych sytuacj jest stnene w przedzale [ab] loalnych estremów uncj F(. Traene podczas teracj w ta punt daje pochodną zblżoną do zera czyl olejny punt teracj jest położony w nesończonośc. Równana nelnowe Zmodyowana metoda Newtona. Zmodyowana metoda Newtona jest zblżona do metody Newtona z tą różncą że olejne punty są wyznaczane na przecęcu os X-ów oraz stycznych mających zawsze ten sam erune `(. F( tg(α `( a b 3
7 Równana nelnowe Równane prostej stycznej do uncj F( w punce ma postać y F( F ( ( Stąd podstawając y otrzymujemy punt przecęca stycznych z osą rzędnych F( F ( Następne w celu otrzymana olejnych przyblżeń perwasta równana używamy wzoru F( F ( manown ne ulega zmane Metoda powyższa wymaga węcej teracj (jest wolnej zbeżna natomast una sę oblczana wartośc pochodnej w ażdym olejnym punce co w eece może prowadzć do szybszego otrzymana rozwązana. Równana nelnowe Przyład: Oblczane perwastów wadratowych tj. R Rozwązane jest równoważne rozwązanu równana nelnowego Korzystając z równana teracyjnego Newtona R R F( F ( R np. dla R7 można przyjąć że 4. Otrzymamy wtedy: Ilość cyr znaczących podwaja sę w ażdej teracj. Metoda znajdowana perwasta wyorzystywana w welu bbloteach (a była już znana Heronow z Alesandr - I w n.e.
8 Neortunne przypad gdy metoda Newtona zawodz Równana nelnowe Proces teracj pownen być ończony jeśl w procese teracj osągnęty zostane stan gdy: a gdze jest weloścą co najmnej lanaśce rzędów mnejszą nż zares zmennośc F( w przedzale [ab] b tj. wartośc argumentu ne ulegają zmanom c teracja trwa zbyt długo tj. > ma d znalazło sę na zewnątrz przedzału [ab] e procedura jest rozbeżna tj. cąg F( ne zblża sę do zera (lub oddala sę od nego; w tym wypadu początowy przedzał został wybrany neprawdłowo zbyt szero.
9 Równana nelnowe Metody teracyjne dla równań nelnowych Omówone do tej pory metody rozwązywana równań nelnowych można zapsać w postac: ϕ ϕ ogólne (... ma Oczywśce ażde równane nelnowe może być zapsane w powyższej postac. Aby dowolne równane nelnowe F( sprowadzć do tej postac mnożymy je obustronne przez współczynn dodajemy obustronne. ϕ λ F β F( β F( β F( F( F ( ( Równana nelnowe Jeżel cąg { }... ma grancę sończoną to lczbę tę nazywamy perwastem równana lm ϕ g ϕ( ϕ( ϕ ϕ ϕ( ϕ( π π < ϕ < < ϕ < 4 4
10 Równana nelnowe Można udowodnć twerdzene mówące że gdy [ab] jest przedzałem zolacj perwasta równana ϕ pochodna uncj spełna warune ϕ ( < to proces teracj jest zbeżny do [ a b]. Moduł pochodnej wyrażenu ϕ λf ϕ < mus być mnejszy od jednośc co jest równoważne Rozwązując ostatną nerówność możemy wyznaczyć przedzał wartośc współczynnów λ zapewnających zbeżność procesu. Równana nelnowe Dla uładów równań nelnowych ne stneją unwersalne algorytmy prowadzące do znalezena rozwązana. By unaocznć trudnośc rozwążmy uład dwóch równań nelnowych z dwoma newadomym : ( y g( y g(y (y (y g(y - g(y -
11 Równana nelnowe Rozwążmy następujący uład: Nech ( ( y y będze przyblżonym rozwązanem uładu zaś poprawam tóre dają lepsze przyblżene rzeczywstego rozwązana w puntach Rozwńmy uncję w szereg Taylora z zachowanem wyłączne członów lnowych: J J Rozwązane uładu stneje gdy macerz J jest neosoblwa: Rozwązane jest otrzymywane poprzez welorotne rozwązywane powyższego uładu równań poprawane aprosymacj rozwązana doładnego. Rozwązane uładu jedną z poznanych metod rozwązywana u.r.l. Równana nelnowe Ponżej przedstawony zostane ogólny algorytm do rozwązana uładów równań nelnowych spełnających dość ogólne założena. Nech będze dany uład N uncj nelnowych N Uład ten zapsujemy needy w orme wetorowej [ ] N T [ ] N T Rozwązywane uładów równań odbywa sę najczęścej na drodze sonstruowana pewnego procesu teracyjnego zbeżnego do rozwązana
12 Równana nelnowe Nech wartośc dla -tego rou przyblża wartość perwasta z doładnoścą (odmenne nż dla uncj -zmennej ndes teracj będze psany u góry wetora gdyż ndes dolny oznacza jego -tą sładową czyl T wetor odchył od wartośc rzeczywstej [ N ] 3 Uład wyjścowy przyjmuje postać: ( Jeżel założymy że uncja jest różnczowalna w sposób cągły w pewnym obszarze wypułym zawerającym zarówno ja to ostatne z równań można rozwnąć w szereg Taylora (welu zmennych względem tj. ( ( ( (( Równana nelnowe Wyrażene można zapsać jao ( N [ J j ] I jest to ta zwana macerz Jaobego wadratowa NN. Ne uwzględnając wyrazów małych rzędu węszego nż perwszy można posługując sę notacją macerzową zapsać ( I I Załadając że macerz Jaobego jest neosoblwa otrzymujemy I ( ( Tym samym jawne równane teracyjne ma postać: I Macerz Jaobego może być oblczona albo w sposób analtyczny albo numeryczny.
13 Równana nelnowe Neco odmenną procedurą można zastosować gdy uład równań ( przedstawmy w postac T g g g g g [ N ] Proces teracj ta ja poprzedno onstruowany jest jao g( Jeśl uncja g jest cągła a proces teracj zbeżny to wartość granczna dana jao lm jest perwastem uładu równań. Równana nelnowe Kryterum zbeżnośc procesu teracj wyna z twerdzena mówącego że gdy jej macerz Jaobego g g jest cągła w obszarze V zachodz równość: g q < oraz cąg zawera sę w obszarze V to proces jest zbeżny jest perwastem równana. Poneważ uład ( można zapsać w postac g B różnczowalna otrzymujemy stąd z atu że jest g B Aby był spełnony warune można przyjąć że g ( B ( g
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji
Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy
5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim
5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną
Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA
Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,
Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1
Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Metody oblczenowe wykład nr metody rozwązywana równań nelnowych zadane optymalzacj Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Postać równana
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja
Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest
Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
Matematyka obliczeniowa, II rok Matematyki (2015/2016) Metody numeryczne, III rok Informatyki, (2013/2014)
Matematyka oblczenowa, II rok Matematyk (2015/2016) Metody numeryczne, III rok Informatyk, (2013/2014) 1. Rozwązywane równań nelnowych 2. Arytmetyka zmennopozycyjna 3. Błędy w oblczenach. Uwarunkowane
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego
5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.
Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12
Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy
Parametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1
Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Metody oblczenowe wykład nr metody rozwązywana równań nelnowych zadane optymalzacj Nr: Metody oblczenowe - Budownctwo semestr - wykład nr Postać równana
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
METODA ELEMENTU SKOŃCZONEGO. Termokinetyka
METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)
f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +
Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg
Modelowanie przepływu cieczy przez ośrodki porowate Wykład IX
Modelowane przepływu ceczy przez ośrodk porowate Wykład IX Metody rozwązywana metodam analtycznym równań hydrodynamk wód podzemnych płaskch zagadneń fltracj. 9.1 Funkcja potencjału zespolonego. Rozważana
Eugeniusz Rosołowski. Komputerowe metody analizy elektromagnetycznych stanów przejściowych
Eugenusz Rosołows Komputerowe metody analzy eletromagnetycznych stanów przejścowych Ocyna Wydawncza Poltechn Wrocławsej Wrocław 9 Opnodawcy Jan IŻYKOWSKI Paweł SOWA Opracowane redacyjne Mara IZBIKA Koreta
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6
IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 WYBRANE ZAGADNIENIA Z TEORII LICZB 1. Wybrane zagadnena z teor lczb Do onstruowana systemów ryptografcznych u Ŝ ywa sę czę sto wyrafnowanego aparatu matematycznego,
Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że
Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam
ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO
OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze
Programowanie Równoległe i Rozproszone
Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać
Metody obliczeniowe. wykład nr 2. metody rozwiązywania równań nieliniowych zadanie optymalizacji. Nr: 1
Nr: Metody oblczenowe wykład nr metody rozwązywana równań nelnowych zadane optymalzacj Nr: Postać równana nelnowego Równane nelnowe jednej zmennej o ogólnej postac: rozwązane analtyczne : znalezene takej
CAŁKOWANIE NUMERYCZNE całki pojedyncze
CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
Egzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB
Julusz MDZELEWSK Wydzał Eletron Techn nformacyjnych, nstytut Radoeletron, oltechna Warszawsa do:0.599/48.05.09.36 dosonalona metoda oblczana mocy traconej w tranzystorach wzmacnacza lasy AB Streszczene.
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych
dr inż. ADAM HEYDUK dr inż. JAROSŁAW JOOSTBERENS Politechnika Śląska, Gliwice
dr nż. ADA HEYDUK dr nż. JAOSŁAW JOOSBEENS Poltechna Śląsa, Glwce etody oblczana prądów zwarcowych masymalnych nezbędnych do doboru aparatury łączenowej w oddzałowych secach opalnanych według norm europejsej
Metody numeryczne, III rok Informatyki, 2013/2014
Metody numeryczne, III rok Informatyk, 2013/2014 1. Rozwązywane równań nelnowych 2. Arytmetyka zmennopozycyjna 3. Błędy w oblczenach. Uwarunkowane zadana. Numeryczna poprawność stablność algorytmu 4. Rozwązywane
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Podstawowe twierdzenia
Rozdzał 3 Podstawowe twerdzena 3.1 Istnene rozwazań lokalnych Rozpocznjmy od odpowedz na ogólne pytane: jake warunk mus spełnać równane różnczkowe zwyczajne, aby stnało jego rozwązane kedy rozwązane to
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
p Z(G). (G : Z({x i })),
3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Kier. MTR Programowanie w MATLABie Laboratorium
Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu
ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO
ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO NA PODSTAWIE REFERATU JUSTYNY KOSAKOWSKIEJ. Moduły prnjektywne posety skończonego typu prnjektywnego Nech I będze skończonym posetem. Przez max
mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH
Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr
Małe drgania wokół położenia równowagi.
ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x
Wykład z Podsaw maemayk dla sudenów Inżyner Środowska Wykład 8. CŁKI NIEOZNCZONE Defnca (funkca perwona) Nech F es funkcą perwoną funkc f na przedzale I, eżel F '( ) f ( ) dla każdego I. Udowodnć, że funkce
XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
przez odwołanie się do funkcji programu MATLAB. Macierz A = Z
PRYKŁAD 4.7 Oblczyć parametry ln z Przyład 4.1 dla sładowych azowych alnych, załadając, że jest to lna netransponowana. Oblczena wyonać za pomocą procedry LINE CONSANS dostępnej w programe AP-EMP. Przerój
Wykład IX Optymalizacja i minimalizacja funkcji
Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
dy dx stąd w przybliżeniu: y
Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy
4. Zjawisko przepływu ciepła
. Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg
Równania rekurencyjne na dziedzinach
Marek Materzok Równana rekurencyjne na dzedznach Pommo, ż poczynłem starana, aby praca ta była możlwe kompletna wolna od błędów, ne mogę zagwarantować, że ne wkradły sę do nej żadne neścsłośc czy pomyłk.
2012-10-11. Definicje ogólne
0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Indukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
Filtracja adaptacyjna - podstawy
Fltracja adaptacyjna - podstawy Współczynn fltrów adaptacyjnych są zmennym w czase w celu optymalzacje zadanego ryterum Powszechnym algorytmem dla fltrów adaptacyjnych jest algorytm LMS Least Mean Square)
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
min h = x x Algorytmy optymalizacji lokalnej Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji x x
Nelnowe zaane optymalzacj bez ogranczeń numeryczne metoy teracyjne optymalzacj mn n x R ) = f x Algorytmy poszuwana mnmum loalnego la: f zaana programowana nelnowego bez ogranczeń zaana programowana nelnowego
Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
Lista 6. Kamil Matuszewski 26 listopada 2015
Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy
Rozkłady statystyczne w fizyce jądrowej
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwczene laboratoryjne Rozłady statystyczne w fzyce jądrowej SZCZECIN 005 WSTĘP Różne neontrolowane zaburzena zewnętrzne (wahana temperatury,
Neuron liniowy. Najprostsza sieć warstwa elementów liniowych
Najprostsza jest jednostka lnowa: Neuron lnowy potraf ona rozpoznawać wektor wejścowy X = (x 1, x 2,..., x n ) T zapamętany we współczynnkach wagowych W = (w 1, w 2,..., w n ), Zauważmy, że y = W X Załóżmy,
Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania
Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w
SŁAWOMIR WIAK (redakcja)
SŁAWOMIR WIAK (redacja Aademca Ofcyna Wydawncza EXIT Recenzenc: Prof. Janusz Turows Potechna Łódza Prof. Ewa Naperasa Juszcza Unversty Le Nord de France, LSEE, UA, Francja Autorzy rozdzałów: Prof. Potr
Komputerowe generatory liczb losowych
. Perwszy generator Komputerowe generatory lczb losowych 2. Przykłady zastosowań 3. Jak generuje sę lczby losowe przy pomocy komputera. Perwszy generator lczb losowych L. H. C. Tppet - 927 Ksąż ążka -
Reprezentacje grup symetrii. g s
erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene
ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany
Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na
Funkcje wielu zmiennych różniczkowalność
Funcje weu zmennyc różnczowaność Zajmemy sę teraz różnczowanem funcj weu zmennyc. Zacznemy od pojęca pocodnej cząstowej, bo jest ono najważnejszym zarazem najprostszym z tyc, tórym przyjdze nam sę zająć.
5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy
5. Maszyna Turnga = T Q skończony zór stanów q 0 stan początkowy F zór stanów końcowych Γ skończony zór symol taśmy T Γ alfaet wejścowy T Γ symol pusty (lank) δ: Q Γ! 2 Q Γ {L,R} funkcja
9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH
Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu
max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic
Zadane rograowana lnowego PL dla ogranczeń neszoścowch rz ogranczenach: a f c A b d =n, d c=n, d A =[ n], d b =, Postać anonczna zadana PL a c X : A b, Postać anonczna acerzowa zadana PL a Lczba zennch
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU
Stansław Bogdanowcz Poltechna Warszawsa Wydzał Transportu Załad Logsty Systemów Transportowych METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Streszczene: Ogólna podstawa
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
Optymalizacja belki wspornikowej
Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej