WYBRANE ZADANIA SYMULACJI KOMPUTEROWYCH W TRANSPORCIE

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYBRANE ZADANIA SYMULACJI KOMPUTEROWYCH W TRANSPORCIE"

Transkrypt

1 LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Wacław SZCZEŚNIAK Słowa kuczowe, transport, symuacja komputerowa, dynamika, Mathematica, MES, LS-DYNA. WYBRANE ZADANIA SYMULACJI KOMPUTEROWYCH W TRANSPORCIE Praca dotyczy wybranych zadań z dynamiki anaitycznej i dynamiki konstrukcji mających zastosowanie w transporcie, których wyniki rozwiązania symuowano na małym i dużym komputerze. W opracowaniu bazowano na kodach Mathemtica w przypadku prostszych układów materianych i na kodzie LS-DYNA w przypadkach konstrukcji złożonych. SOME PROBLEMS OF COMPUTER SIMULATION IN TRANSPORT The paper deas with seected probems of anaytica dynamics and dynamics of structures appicabe in transport. Computer simuations are performed using Mathemtica code and LS-DYNA program.. WSTĘP W roku 994 Profesor Raph C. Huntsinger z Caifornia State University, Chico USA, prezydent międzynarodowej organizacji SCSI Society for Computer Simuation Internationa oraz dyrektor McLeod Institute of Simuation Sciences otworzył, pierwsze Warsztaty Naukowe nowo utworzonego Poskiego Towarzystwa Symuacji Komputerowej PTSK, w Mienie. Od roku 994 do chwii obecnej wydano 5 tomów zawierających około 6 referatów z różnych dziedzin naukowych, przy czym, zdecydowanie najwięcej opubikowanych prac dotyczy symuacji w transporcie. Te coroczne konferencje noszą wspóną nazwę Symuacja w badaniach i rozwoju. W zakresie tematyki inżynierii ądowej wygłoszono i opubikowano tyko kika prac. Drugą cykiczną konferencją naukową zorganizowaną po raz pierwszy w 977 roku a trwająca do chwii obecnej są konferencje Metody Komputerowe w Mechanice Konstrukcji MKMK. Początkowo w końcu at siedemdziesiątych i poprzez ata osiemdziesiąte wydawano kikutomowe dzieła z pełnymi referatami autorów z różnych pod dziedzin mechaniki, budownictwa, inżynierii ądowej i innych. W ostatnich atach drukowane są jedynie abstrakty a referaty w całości umieszczane są na dyskietkach CD. Trzecią cykiczną konferencją naukową w Posce poświęconą w dużej części symuacji komputerowej są konferencje, organizowane corocznie w Zakopanem przez Wydział Transportu Poitechniki Radomskiej, TRANSCOMP Komputerowe Systemy Poitechnika Warszawska, Wydział Inżynierii Lądowej, -637 Warszawa, A. Armii Ludowej 6, te.: , e-mai: w.szczesniak@i.pw.edu.p

2 2 Wacław SZCZEŚNIAK wspomaganie nauki, przemysłu i transportu. Czternasta już konferencja odbędzie się w grudniu w Zakopanem w 2 roku. W tych materiałach po konferencyjnych są sekcje budownictwo transportowe, drogi koejowe, drogi samochodowe i otniska i inne w których zagadnienia, zwłaszcza podstaw teoretycznych inżynierii ądowej, mają dużą reprezentacje referatową. Liczba opubikowanych tam prac dotyczących zagadnień inżynierii ądowej wynosi około referatów. Konferencje Posko-Ukraińskie Theoretica Foundations of Civi Engineering wydały od 993 roku do chwii obecnej 7 bardzo obszernych tomów (3 referatów) w których symuacje komputerowe odgrywają duże znaczenie. Periodyk naukowy IPPT PAN Mechanika i Komputer wydawany od 979 zakończył swoje istnienie praktycznie w roku 987 z powodów ekonomicznych. Również periodyk Metody Komputerowe w Inżynierii Lądowej wydawany od 99 roku w Instytucie Mechaniki Konstrukcji Inżynierskich, Wydziału Inżynierii Lądowej, Poitechniki Warszawskiej zaprzestał swoją działaność w 997 roku przede wszystkim ze wzgędów również finansowych. Tak więc w chwii obecnej w Posce nie ma periodyku integrującego środowisko zawodowe w zainteresowaniach którego znajdują się metody i techniki komputerowe oraz symuacje komputerowe w różnych, najszerzej rozumianych dziedzinach transportu, budownictwa i inżynierii ądowej. Symuacje komputerowe kojarzone i związane są nierozłącznie zatem z rozwojem informatyki, metod numerycznych, budowy komputerów i ich wzrastających mocy obiczeniowych oraz oprogramowania, w tym oprogramowania inżynierskiego w szczegóności. To dzięki komputerom zadania które do niedawna wydawały się nie do rozwiązania są dzisiaj przedmiotem rozważań nawet w dydaktyce w uniwersytetach i uczeniach technicznych. Ceem opracowania jest pokazanie kiku symuacji wykonanych na małym i dużym komputerze. Symuacje na małym komputerem dotyczą dynamiki anaitycznej i dynamiki konstrukcji inżynierskich. W zakresie dynamiki anaitycznej anaizowano na komputerze typu PC podwójne wahadło matematyczne programem Woframa MATHEMATICA. W przypadku dużego komputera wykorzystano program LS DANA. 2. ANALITYCZNE METODY ROZWIĄZANIA ZADAŃ 2. Podwójne wahadło matematyczne Rozważamy podwójne wahadło matematyczne jak na rysunku. Układ ma dwa stopnie ξ t ϕ = ϕ t. swobody opisane współrzędnymi uogónionymi ξ = ( ), ( )

3 WYBRANE ZADANIA SYMULACJI KOMPUTEROWYCH W TRANSPORCIE 3 O O O k k k t? g m st m mg x y mg st mg k t? st Rys.. Schemat dynamiczny rozważanego zadania Dwa nieiniowe równania ruchu Lagrange a są następujące: m ξ 2 + kξ m( + ξ ) ϕ mg( cosϕ) ( + ξ )( + ξ ) ϕ + 2 ξϕ + g sinϕ = m =, [ ]. () Numeryczne rozwiązanie równań () prowadzi do następujących wyników pokazanych graficznie na wykresach. Rys. 2. Wykresy energii kinetycznej ( t) przerywana) oraz sumy energii ( t) V ( t) E k (inia ciągła), energii potencjanej V () t (inia E k + w czasie

4 4 Wacław SZCZEŚNIAK y x Rys. 3. Trajektoria ruchu masy wahadła m we współrzędnych x i y. Przy czym oraz y = ξ cosϕ x = ξ sinϕ Rys. 4. Trajektoria ruchu masy wahadła m we współrzędnych ξ = ξ ( t) i ϕ = ϕ() t

5 WYBRANE ZADANIA SYMULACJI KOMPUTEROWYCH W TRANSPORCIE Rys. 5. Portret fazowy we współrzędnych ξ = ξ( t) i ξ = ξ ( t) Rys. 6. Portret fazowy współrzędnych ϕ = ϕ( t) oraz ϕ = ϕ( t) 2.2. Układ materiany o dwóch stopniach swobody Pokazany na rysunku 7 układ ma dwa stopnie swobody q iq, powiązane równaniem więzów: q = q + Rϕ. Liniowy układ dwóch równań ruchu: ( M + ) m q + mr ϕ + 2kq =, 2mq + 3mr ϕ + 4krϕ =. (2) rozwiązano numerycznie, a niektóre wyniki rozwiązania pokazano na rysunkach 8.

6 6 Wacław SZCZEŚNIAK Rys. 7. Schemat dynamiczny układu i współrzędne uogónione Rys. 8. Wybrane portrety fazowe we współrzędnych uogónionych 2.3. Obciążenie beki Euera impusem siły Kasyczne równanie dynamiki beki Euera obciążono impusem siły S w środku rozpiętości. Cząstkowe równanie ruchu rozwiązano przy zastosowaniu skończonej transformacji Fouriera uzyskując wyrażenie na ugięcie dynamiczne pod postacią szeregu. Rozwiązano również przypadek działania impusu na bekę w odegłości x = 4. Wyniki rozwiązania pokazano na rysunkach 9 i. Pewnego komentarza wymaga rysunek, bowiem impus przyłożony w jednej czwartej rozpiętości beki, wywołał po jednej czwartej podstawowego okresu drgań własnych, maksymane ugięcie w odegłości trzy czwarte

7 WYBRANE ZADANIA SYMULACJI KOMPUTEROWYCH W TRANSPORCIE 7 rozpiętości beki. Jest to znany efekt działania faowego w przypadku wymuszeń prędkościowych, udarowych. w* Rys. 9. Ugięcie beki w czasie wywołane impusem siły przyłożonym w środku rozpiętości beki Euera w* Rys.. Ugięcie beki w czasie wywołane impusem siły przyłożonym w jednej czwartej rozpiętości beki Euera

8 8 Wacław SZCZEŚNIAK 2.4. Figury Chadniego na płycie Kirchhoffa Biharmoniczne równanie ruchu zagadnienia własnego cienkiej płyty Kirchhoffa rozwiązano podwójnymi szeregami sinusoidanymi spełniającymi warunki brzegowe płyty sprężystej, swobodnie przegubowo podpartej na całym obwodzie. Przez prostą zasadę superpozycyjną dwóch fa uzyskano symetryczne i antysymetryczne postacie drgań własnych przy dowonej kombinacji m i n. Linie czarne pokazują tzw. inie węzłowe przy których ugięcia płyty są równe zeru Rys.. Symetryczna figura Chadniego przy m = 3 i n = Rys. 2. Antysymetryczna figura Chadniego przy m = 3 i n = 7

9 WYBRANE ZADANIA SYMULACJI KOMPUTEROWYCH W TRANSPORCIE Obciążenie impusowe na cienkiej płycie Kirchhoffa Biharminiczne niejednorodne równanie ruchu rozwiązano anaitycznie w przypadkach bądź pojedynczego impusu bądź grypy impusów działających równocześnie abo z przesunięciem fazowym w* Rys. 3. Kwadratowa płyta obciążona pojedynczym impusem w środku w czasie T, Rys.4. Układ warstwicowy na płycie z rysunku, impus działa w środku płyty

10 Wacław SZCZEŚNIAK w* Rys. 5. Kwadratowa płyta obciążona pojedynczym impusem przy w czasie T, a x = y = Rys. 6. Układ warstwicowy na płycie z rysunku 3, impus działa w punkcie a x = y = 4

11 WYBRANE ZADANIA SYMULACJI KOMPUTEROWYCH W TRANSPORCIE 3. NUMERYCZNE METODY ROZWIĄZANIA ZADAŃ. MES. SYMULACJE NA DUŻYCH KOMPUTERACH 3.. Wybuch i autobus Na sajdach pokazano symuację komputerową wybuchu ładunku C4 przed drzwiami mini autobusu Ford Edorado. Zastosowano do symuacji metodę LS-DYNA, a obiczenia przeprowadzono na superkomputerze w Uniwersytecie Foryda w USA. Wykorzystano metodę eementów skończonych i różnic skończonych w opisach Lagrange a i Euera Zderzenia mini autobusów pomiędzy sobą Wykorzystując siatki MES symuowano zderzenia busów Ford Edorado poruszającymi się z prędkościami 6 km h Wybrane symuacje nawierzchni drogowej i pokrywy studzienki teekomunikacyjnej Pokazano mode komputerowy wyciętego fragmentu podatnej nawierzchni drogowej obciążonej ruchomym kołem pojazdu ciężarowego poruszającego się z prędkością 6 i 2 km/h. Następnie zamodeowano MESem pokrywę studzienki komunikacyjnej w ciągu nawierzchni drogowej obciążonej dynamicznie rzeczywistym kołem samochodowym Wybrane symuacje interakcji cieczy w zbiorniku ruchomym (cysternie) W rzeczywistej cysternie pokazano dynamiczne zachowanie się cieczy w cysternie przy przejeździe pojazdu na prostej, pojedynczym i podwójnym łuku drogi. Wykorzystano procedurę ALE w kodzie LS-DYNA. Opracowanie wykonane w ramach projektu badawczego MNiSZW N5 3/964 w atach Inne symuacje wykonane przy zastosowaniu LS-DYNA Na koejnych sajdach będą pokazane inne symuacje takie jak poduszka powietrzna, zderzenia okomotyw i wagonów i inne. 4. WNIOSKI Opracowanie przegądowe w którym pokazano symuacje komputerowe wybranych zadań z dynamiki anaitycznej i dynamiki konstrukcji wykonanych przede wszystkim w IMKI na Wydziae IL PW. Opracowanie składa się wyraźnie z dwóch części. W przypadku prostych zadań wykorzystano program Woframa Mathematica, zaś w przypadku złożonych probemów bazowano na kodzie komputerowym LS-Dyna. Niektóre wyniki są rezutatem projektów badawczych MNiSZW na przykład N5 3/964 w atach W pracy omówiono również probemy symuacji komputerowej w Posce przede wszystkim dzięki aktywności Poskiego Towarzystwa Symuacji Komputerowych

12 2 Wacław SZCZEŚNIAK działającego od 993 roku, oraz periodyku naukowego IPPT PAN Mechanika i Komputer wydawanego w atach od BIBLIOGRAFIA [] Szcześniak W.: Mechanika kasyczna, anaityczna i <<MATHEMATCA>> w zadaniach i przykładach obiczeniowych. OW PW,Warszawa 23 [2] Szcześniak W.: Dynamika anaityczna i <<MATHEMATICA>> w zadaniach i przykładach obiczeniowych. OW PW,Warszawa 25 [3] Szcześniak W.: Dynamika teoretyczna da zaawansowanych. OW PW,Warszawa 27 [4] Szcześniak W.: Dynamika teoretyczna w zadaniach da dociekiwych. OW PW, Warszawa 2 [5] Kwaśniewski L., Bacerzak M.: Liquid structure interaction in a moving tank. Theoretica Foundations of Civi Engineering. (29), Nr.7, pp [6] Kwaśniewski L.: Numerica anaysis of dynamic fuid structure interaction in a tank. Theoretica Foundations of Civi Engineering. (26), Nr.4, pp [7] Kwaśniewski L., Puchacz P., Sitek M.: Liquid motion in a tank subjected to pitching osciation. Theoretica Foundations of Civi Engineering. (27), Nr.5, pp [8] Szcześniak W., Ataman M., Kwaśniewski L.: Dynamic anaysis of iquid motionin a tank using hoop and ba method with damping. Computes Systems Aided Science and Engineering Work in Transport, Mechanica and Eectrica Engineering Monograph No22, Radom 28, pp [9] Kwaśniewski L., Szcześniak W. Sybiski D., Ataman M.: Anaiza układu koło nawierzchnia drogowa. Theoretica Foundations of Civi Engineering. (27), Nr.5, pp [] Kwaśniewski L., Wekezer J.: Deveopment of finie eement mode for Ford Edorado transit Bus. Theoretica Foundations of Civi Engineering. (22), Nr., pp [] Szcześniak W., Ataman M.: Pojedynczy impus na płycie Kirchhoffa. XVIII Russian- Sovak Poish Seminar, Archangiesk 29, pp Część 2, Grupy impusów, str.65-7 [2] Strzyżakowski Z., Szcześniak W.: Symuacje komputerowe w budownictwie transportowym i pojazdach. Prace Naukowe Poitechniki Radomskiej, Transport 2(2), 24, pp [3] Szcześniak W.: Linie węzłowe na płytach (figury Chadniego)-rys historyczny zagadnienia własnego. Theoretica Foundations of Civi Engineering. (2), Nr.8, pp [4] Szcześniak W.: Wybrane zagadnienia z dynamiki płyt. OW PW, Warszawa 2 Recenzent Dr hab. inż. Aniea Ginicka

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

MECHANIKA BUDOWLI 11

MECHANIKA BUDOWLI 11 Oga Kopacz, Adam Łodygowski, Wojciech awłowski, Michał łotkowiak, Krzysztof Tymper Konsutacje naukowe: prof. dr hab. JERZY RAKOWSKI oznań / MECHANIKA BUDOWLI rzykład iczbowy: Dana beka, po której porusza

Bardziej szczegółowo

Zasada prac przygotowanych

Zasada prac przygotowanych 1 Ćwiczenie 20 Zasada prac przygotowanych 20.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z praktycznym zastosowaniem zasady prac przygotowanych przy rozpatrywaniu równowagi układu o dwóch stopniach

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu

Bardziej szczegółowo

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1) Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz

Bardziej szczegółowo

Analiza możliwości ograniczenia drgań w podłożu od pojazdów szynowych na przykładzie wybranego tunelu

Analiza możliwości ograniczenia drgań w podłożu od pojazdów szynowych na przykładzie wybranego tunelu ADAMCZYK Jan 1 TARGOSZ Jan 2 BROŻEK Grzegorz 3 HEBDA Maciej 4 Analiza możliwości ograniczenia drgań w podłożu od pojazdów szynowych na przykładzie wybranego tunelu WSTĘP Przedmiotem niniejszego artykułu

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

ANALIZA DYNAMICZNA UKŁADU DYSKRETNO-CIĄGŁEGO TYPU POJAZD-BELKA Z ZASTOSOWANIEM PROGRAMU SIMULINK

ANALIZA DYNAMICZNA UKŁADU DYSKRETNO-CIĄGŁEGO TYPU POJAZD-BELKA Z ZASTOSOWANIEM PROGRAMU SIMULINK ANALIZA DYNAMICZNA UKŁADU DYSKRETNO-CIĄGŁEGO TYPU POJAZD-BELKA Z ZASTOSOWANIEM PROGRAMU SIMULINK Artur ZBICIAK, Magdalena ATAMAN Instytut Mechaniki Konstrukcji Inżynierskich, Politechnika Warszawska 1.

Bardziej szczegółowo

SYSTEMY MES W MECHANICE

SYSTEMY MES W MECHANICE SPECJALNOŚĆ SYSTEMY MES W MECHANICE Drugi stopień na kierunku MECHANIKA I BUDOWA MASZYN Instytut Mechaniki Stosowanej PP http://www.am.put.poznan.pl Przedmioty specjalistyczne będą prowadzone przez pracowników:

Bardziej szczegółowo

KOMPUTEROWE MODELOWANIE I OBLICZENIA WYTRZYMAŁOŚCIOWE ZBIORNIKÓW NA GAZ PŁYNNY LPG

KOMPUTEROWE MODELOWANIE I OBLICZENIA WYTRZYMAŁOŚCIOWE ZBIORNIKÓW NA GAZ PŁYNNY LPG Leon KUKIEŁKA, Krzysztof KUKIEŁKA, Katarzyna GELETA, Łukasz CĄKAŁA KOMPUTEROWE MODELOWANIE I OBLICZENIA WYTRZYMAŁOŚCIOWE ZBIORNIKÓW NA GAZ PŁYNNY LPG Streszczenie W artykule przedstawiono komputerowe modelowanie

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego. Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃOCZNYCH Projekt

METODA ELEMENTÓW SKOŃOCZNYCH Projekt METODA ELEMENTÓW SKOŃOCZNYCH Projekt Wykonali: Maciej Sobkowiak Tomasz Pilarski Profil: Technologia przetwarzania materiałów Semestr 7, rok IV Prowadzący: Dr hab. Tomasz STRĘK 1. Analiza przepływu ciepła.

Bardziej szczegółowo

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO ZESZYTY NAUKOWE POLITECHNIKA ŚLĄSKA 2012 Seria: TRANSPORT z. 77 Nr kol.1878 Łukasz KONIECZNY WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO Streszczenie.

Bardziej szczegółowo

STRESZCZENIE PRACY MAGISTERSKIEJ

STRESZCZENIE PRACY MAGISTERSKIEJ WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego STRESZCZENIE PRACY MAGISTERSKIEJ MODELOWANIE D I BADANIA NUMERYCZNE BELKOWYCH MOSTÓW KOLEJOWYCH PODDANYCH DZIAŁANIU POCIĄGÓW SZYBKOBIEŻNYCH Paulina

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

CHARAKTERYSTYKI KINEMATYCZNE MECHANIZMÓW PŁASKICH PODSTAWY SYNTEZY GEOMETRYCZNEJ MECHANIZMÓW PŁASKICH.

CHARAKTERYSTYKI KINEMATYCZNE MECHANIZMÓW PŁASKICH PODSTAWY SYNTEZY GEOMETRYCZNEJ MECHANIZMÓW PŁASKICH. Podstawy modeowania i syntezy mechanizmów. CHARAKTERYSTYKI KINEMATYCZNE MECHANIZMÓW PŁASKICH PODSTAWY SYNTEZY GEOMETRYCZNEJ MECHANIZMÓW PŁASKICH. Charakterystyki kinematyczne to zapis parametrów ruchu

Bardziej szczegółowo

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Inteligentnych Systemów Obliczeniowych RMT4-3 Kierownik Zakładu: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Metod Numerycznych w Termomechanice

Bardziej szczegółowo

Teoria maszyn mechanizmów

Teoria maszyn mechanizmów Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii

Bardziej szczegółowo

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania

Bardziej szczegółowo

Wykaz oznaczeń Przedmowa... 9

Wykaz oznaczeń Przedmowa... 9 Spis treści Wykaz oznaczeń... 6 Przedmowa... 9 1 WPROWADZENIE... 11 1.1 Mechanika newtonowska... 14 1.2 Mechanika lagranżowska... 19 1.3 Mechanika hamiltonowska... 20 2 WIĘZY I ICH KLASYFIKACJA... 23 2.1

Bardziej szczegółowo

2. Obliczenie sił działających w huśtawce

2. Obliczenie sił działających w huśtawce . Obiczenie sił działających w huśtawce Rozważone zostaną dwa aspekty rozwiązania tego zadania. Dokonanie obiczeń jest ważne ze wzgędu na dobór eementów, które zostaną wykorzystane w koncepcjach reguacji

Bardziej szczegółowo

Uniwersytet Wirtualny VU2012

Uniwersytet Wirtualny VU2012 XII Konferencja Uniwersytet Wirtualny VU2012 M o d e l N a r z ę d z i a P r a k t y k a Andrzej ŻYŁAWSKI Warszawska Wyższa Szkoła Informatyki Marcin GODZIEMBA-MALISZEWSKI Instytut Technologii Eksploatacji

Bardziej szczegółowo

OPORY PRZEPŁYWU TRANSPORTU PNEUMATYCZNEGO MATERIAŁÓW WILGOTNYCH

OPORY PRZEPŁYWU TRANSPORTU PNEUMATYCZNEGO MATERIAŁÓW WILGOTNYCH /39 Soidification of Metas and Aoys, Year 999, Voume, Book No. 39 Krzepnięcie Metai i Stopów, Rok 999, Rocznik, Nr 39 PAN Katowice PL ISSN 008-9386 OPORY PRZEPŁYWU TRANSPORTU PNEUMATYCZNEGO MATERIAŁÓW

Bardziej szczegółowo

Dynamika ruchu technicznych środków transportu. Politechnika Warszawska, Wydział Transportu

Dynamika ruchu technicznych środków transportu. Politechnika Warszawska, Wydział Transportu Karta przedmiotu Dynamika ruchu technicznych Opis przedmiotu: Nazwa przedmiotu Dynamika ruchu technicznych A. Usytuowanie przedmiotu w systemie studiów Poziom Kształcenia Rodzaj (forma i tryb prowadzonych

Bardziej szczegółowo

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk, Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r. Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Metody obliczeniowe - modelowanie i symulacje

Metody obliczeniowe - modelowanie i symulacje Metody obliczeniowe - modelowanie i symulacje J. Pamin nstitute for Computational Civil Engineering Civil Engineering Department, Cracow University of Technology URL: www.l5.pk.edu.pl Zagadnienia i źródła

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

OBLICZENIA SYMBOLICZNE W PROBLEMIE WAHADŁA PODWÓJNEGO

OBLICZENIA SYMBOLICZNE W PROBLEMIE WAHADŁA PODWÓJNEGO MODELOWANIE INŻYNIERSKIE 2016 nr 60, ISSN 1896-771X OBLICZENIA SYMBOLICZNE W PROBLEMIE WAHADŁA PODWÓJNEGO Andrzej Icha 1a,b 1 Instytut Matematyki, Akademia Pomorska w Słupsku a majorana38@gmail.com, b

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów

Bardziej szczegółowo

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s. 7-34, Gliwice 007 DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA ANDRZEJ BUCHACZ, SŁAWOMIR ŻÓŁKIEWSKI Instytut Automatyzacji

Bardziej szczegółowo

HARMONOGRAM ZIMOWEJ SESJI EGZAMINACYJNEJ 2014/2015 STUDIA STACJONARNE WIL

HARMONOGRAM ZIMOWEJ SESJI EGZAMINACYJNEJ 2014/2015 STUDIA STACJONARNE WIL HARMONOGRAM ZIMOWEJ SESJI EGZAMINACYJNEJ 14/15 STUDIA STACJONARNE WIL zimowa sesja egzaminacyjna luty ( łącznie z egzaminami poprawkowymi ) GOSPODARKA PRZESTRZENNA I stopnia Matematyka Ekonomia I Geografia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wybrane zagadnienia modelowania i obliczeń inżynierskich Chosen problems of engineer modeling and numerical analysis Dyscyplina: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: Przedmiot

Bardziej szczegółowo

HARMONOGRAM ZIMOWEJ SESJI EGZAMINACYJNEJ 2015/2016 STUDIA STACJONARNE WIL

HARMONOGRAM ZIMOWEJ SESJI EGZAMINACYJNEJ 2015/2016 STUDIA STACJONARNE WIL HARMONOGRAM ZIMOWEJ SESJI EGZAMINACYJNEJ 201/2016 STUDIA STACJONARNE WIL zimowa sesja egzaminacyjna luty (łącznie z egzaminami poprawkowymi ) GOSPODARKA PRZESTRZENNA I stopnia rok I Matematyka do 1.30

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: WYBRANE ZAGADNIENIA MECHANIKI ANALITYCZNEJ, DRGAŃ I STATECZNOŚCI KONSTRUKCJI MECHANICZNYCH (cz. I MECHANIKA ANALITYCZNA) Kierunki: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: obieralny

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

( ) Płaskie ramy i łuki paraboliczne. η =. Rozważania ograniczymy do łuków o osi parabolicznej, opisanej funkcją

( ) Płaskie ramy i łuki paraboliczne. η =. Rozważania ograniczymy do łuków o osi parabolicznej, opisanej funkcją ..7. Płaskie ramy i łuki paraboiczne Wstęp W bieżącym podpunkcie omówimy kika przykładów zastosowania metody sił do obiczeń sił wewnętrznych w płaskich ramach i łukach paraboicznych statycznie niewyznaczanych,

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Problem Odwrotny rozchodzenia się fali Love'a w falowodach sprężystych obciążonych cieczą lepką

Problem Odwrotny rozchodzenia się fali Love'a w falowodach sprężystych obciążonych cieczą lepką Problem Odwrotny rozchodzenia się fali Love'a w falowodach sprężystych obciążonych cieczą lepką Dr hab. Piotr Kiełczyński, prof. w IPPT PAN, Instytut Podstawowych Problemów Techniki PAN Zakład Teorii Ośrodków

Bardziej szczegółowo

W przestrzeni liniowej funkcji ciągłych na przedziale [a, b] można określić iloczyn skalarny jako następującą całkę:

W przestrzeni liniowej funkcji ciągłych na przedziale [a, b] można określić iloczyn skalarny jako następującą całkę: Układy funkcji ortogonanych Ioczyn skaarny w przestrzeniach funkcji ciągłych W przestrzeni iniowej funkcji ciągłych na przedziae [a, b] można okreśić ioczyn skaarny jako następującą całkę: f, g = b a f(x)g(x)w(x)

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Przedmiot: Mechanika analityczna Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 2 S 0 1 02-0_1 Rok: 1 Semestr: 1

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

Treści programowe przedmiotu

Treści programowe przedmiotu WM Karta (sylabus) przedmiotu Zarządzanie i Inżynieria Produkcji Studia stacjonarne pierwszego stopnia o profilu: ogólnoakademickim A P Przedmiot: Mechanika techniczna z wytrzymałością materiałów I Status

Bardziej szczegółowo

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== =========================

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

Mechanika Analityczna

Mechanika Analityczna Mechanika Analityczna Wykład 1 - Organizacja wykładu (sprawy zaliczeniowe, tematyka). Więzy i ich klasyfikacja Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

Numeryczna symulacja rozpływu płynu w węźle

Numeryczna symulacja rozpływu płynu w węźle 231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,

Bardziej szczegółowo

SYSTEM MONITOROWANIA DECYZYJNEGO STANU OBIEKTÓW TECHNICZNYCH

SYSTEM MONITOROWANIA DECYZYJNEGO STANU OBIEKTÓW TECHNICZNYCH Aleksander JASTRIEBOW 1 Stanisław GAD 2 Radosław GAD 3 monitorowanie, układ zasilania w paliwo, diagnostyka SYSTEM MONITOROWANIA DECYZYJNEGO STANU OBIEKTÓW TECHNICZNYCH Praca poświęcona przedstawieniu

Bardziej szczegółowo

SEKWENCJA PRZEDMIOTÓW KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA STACJONARNE

SEKWENCJA PRZEDMIOTÓW KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA STACJONARNE 13 maj 2013 KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA STACJONARNE Strona 1 z 20 SEKWENCJA PRZEDMIOTÓW KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA STACJONARNE UWAGI: 1. Oznaczenie dla przedmiotów prowadzonych

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

Informatyka I Lab 06, r.a. 2011/2012 prow. Sławomir Czarnecki. Zadania na laboratorium nr. 6

Informatyka I Lab 06, r.a. 2011/2012 prow. Sławomir Czarnecki. Zadania na laboratorium nr. 6 Informatyka I Lab 6, r.a. / prow. Sławomir Czarnecki Zadania na laboratorium nr. 6 Po utworzeniu nowego projektu, dołącz bibliotekę bibs.h.. Największy wspólny dzielnik liczb naturalnych a, b oznaczamy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PRAC INŻYNIERSKICH Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Komputerowe projektowanie maszyn i urządzeń Rodzaj zajęć:

Bardziej szczegółowo

Natomiast dowolny ruch chaotyczny, np. ruchy Browna, czy wszelkie postacie ruchu postępowego są przykładami ruchu nie będącego ruchem drgającym.

Natomiast dowolny ruch chaotyczny, np. ruchy Browna, czy wszelkie postacie ruchu postępowego są przykładami ruchu nie będącego ruchem drgającym. Wstęp Z wszelkiego radzaju drganiami mamy doczyniania w życiu codziennym. Na przykład codziennie korzystamy z prądu. Gdy pobieramy go z sieci miejskiej natężenie prądu zmienia się periodycznie z czasem.

Bardziej szczegółowo

Modelowanie komputerowe konstrukcji w budownictwie transportowym

Modelowanie komputerowe konstrukcji w budownictwie transportowym SZCZECINA Michał 1 Modelowanie komputerowe konstrukcji w budownictwie transportowym WSTĘP Projektowanie konstrukcji budowlanych dla potrzeb szeroko rozumianego transportu wymaga zwrócenia uwagi na pewne

Bardziej szczegółowo

Spis treści. Ważniejsze oznaczenia Wstęp... 13

Spis treści. Ważniejsze oznaczenia Wstęp... 13 Spis treści Ważniejsze oznaczenia...................................................... 10 Wstęp...................................................................... 13 1 Procesy falowe...........................................................

Bardziej szczegółowo

Uszkodzenia Pojazdów Szynowych Wywołane Usterkami Toru Kolejowego

Uszkodzenia Pojazdów Szynowych Wywołane Usterkami Toru Kolejowego Uszkodzenia Pojazdów Szynowych Wywołane Usterkami Toru Kolejowego Roman Bogacz 1,2, Robert Konowrocki 2 1 Politechnika Warszawska, Wydział Samochodów Maszyn Roboczych, Instytut Pojazdów, ul.narbutta 84,

Bardziej szczegółowo

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time studies. Auditorium classes.

Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time studies. Auditorium classes. Faculty of: Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time

Bardziej szczegółowo

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę

Bardziej szczegółowo

specjalnościowy obowiązkowy polski pierwszy letni Mechanika ogólna, wytrzymałość materiałów, metoda elementów skończonych Egzamin

specjalnościowy obowiązkowy polski pierwszy letni Mechanika ogólna, wytrzymałość materiałów, metoda elementów skończonych Egzamin KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Modelowanie układów dynamicznych Nazwa w języku angielskim Modelling of dynamic systems Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Szczególne warunki pracy nawierzchni mostowych

Szczególne warunki pracy nawierzchni mostowych Szczególne warunki pracy nawierzchni mostowych mgr inż. Piotr Pokorski prof. dr hab. inż. Piotr Radziszewski Politechnika Warszawska Plan Prezentacji Wstęp Konstrukcja nawierzchni na naziomie i moście

Bardziej szczegółowo

Linie wpływu w belce statycznie niewyznaczalnej

Linie wpływu w belce statycznie niewyznaczalnej Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Poznań, 19.01.2013 Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Semestr 7 METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: dr

Bardziej szczegółowo

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika

Bardziej szczegółowo

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych kinematyka równoległa, symulacja, model numeryczny, sterowanie mgr inż. Paweł Maślak, dr inż. Piotr Górski, dr inż. Stanisław Iżykowski, dr inż. Krzysztof Chrapek Wyznaczanie sił w przegubach maszyny o

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 21

INSTRUKCJA DO ĆWICZENIA NR 21 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Analiza płaskiego dowolnego układu sił Dr hab. inż. Krzysztof

Bardziej szczegółowo

MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki

MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2016/2017 MES1 Metoda elementów skończonych - I Finite Element Method - I A. USYTUOWANIE

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

Naukowe Koło Nowoczesnych Technologii

Naukowe Koło Nowoczesnych Technologii Naukowe Koło Nowoczesnych Technologii Naukowe Koło Nowoczesnych Technologii Opiekun: dr hab., prof. ndzw. Tadeusz Szumiata Przewodniczący: Mateusz Staszewski, MiBM semestr IV Poszczególne dziedziny działań

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo