OBLICZENIA SYMBOLICZNE W PROBLEMIE WAHADŁA PODWÓJNEGO
|
|
- Robert Kozieł
- 7 lat temu
- Przeglądów:
Transkrypt
1 MODELOWANIE INŻYNIERSKIE 2016 nr 60, ISSN X OBLICZENIA SYMBOLICZNE W PROBLEMIE WAHADŁA PODWÓJNEGO Andrzej Icha 1a,b 1 Instytut Matematyki, Akademia Pomorska w Słupsku a majorana38@gmail.com, b andrzej.icha@apsl.edu.pl Streszczenie Praca dotyczy wykorzystania ograniczonego systemu obliczeń naukowych TeX-PostScript w celu analizy dynamiki wahadła podwójnego. Wykorzystując formalizm lagranżowski, otrzymano układ równań opisujący ruch wahadła i zaprezentowano rozwiązania numeryczne przy użyciu pakietu makr postscriptowych PSTricks. Przedstawiono również dwie wybrane animacje ruchu ruchu wahadła. Rozważono także możliwość rozszerzenia obliczeń na przypadek ruchu wahadła potrójnego. Słowa kluczowe: drgania, wahadło podwójne, system obliczeń symbolicznych, TeX, PostScript SYMBOLIC COMPUTATIONS IN DOUBLE PENDULUM PROBLEM Summary The paper concerns the use of the restricted scientific computations system TeX-PostScript, to pendulum dynamics analysis. On the basis of the lagrangian formalism, the set of equations describing the pendulum motion is obtained. The numerical solutions are presented, using the macro package PSTricks. Two selected animations of penulum motion are showed also. The possibility of extending calculations for case of triple pendulum is mentioned. Keywords: vibrations, double pendulum, system of symbolic computations, TeX, PostScript, PSTricks 1. WSTĘP Obliczenia symboliczne stanowią intensywnie rozwijającą się i bardzo rozbudowaną gałąź matematyki stosowanej. Świadczy o tym m.in. fakt, że problematyka ta jest odnotowana w Matematycznej Klasyfikacji Tematycznej (MSC2010) pod numerami 33F10 - Symbolic computation oraz 68W30 - Symbolic computation and algebraic computation. Zasadniczym celem tego podejścia badawczego jest próba algorytmicznego ujęcia wszelkiego rodzaju operacji naukowych poprzez tworzenie zintegrowanych systemów obliczeń symbolicznych. Systemy takie, zwane CAS (Computer Algebra System), zaczęły pojawiać się na początku lat 70. ub. wieku. Pionierskie prace w tym zakresie były prowadzone m.in. przez holenderskiego fizyka Martinusa Veltmana, który w latach 60. zaprojektował program komputerowy Schoonschip umożliwiający symboliczną manipulację równaniami matematycznymi, uważany obecnie za pierwszy komputerowy system algebry [4]. W dalszym ciągu pracy wprowadzono następujące określenia. Definicja 1. Systemem obliczeń naukowych nazywa się zintegrowane środowisko obliczeniowe zawierające procedury symboliczne, numeryczne i hybrydowe, umożliwiające wizualizacje graficzne i przetwarzanie danych. Definicja 2. Ograniczonym systemem obliczeń naukowych nazywa się środowisko obliczeniowe zawierające procedury symboliczne i (lub) numeryczne, umożliwiające wizualizacje graficzne i przetwarzanie danych. Przykładami znanych i popularnych systemów obliczeń są Maple, Mathematica i Matlab (systemy komercyjne) oraz Maxima, Octave i Scilab (systemy typu public domain) [2]. Relatywnie mało znanym, ograniczonym systemem obliczeń, jest rozpowszechniany na zasadzie dobra wspólnego bez interfejsu graficznego - system 28
2 Andrzej Icha TeX-PostScript (PSTricks). Celem pracy jest krótkie przedstawienie możliwości obliczeniowych i graficznych tego systemu w zastosowaniu do opisu dynamiki wahadła podwójnego. Rezultaty obliczeń zaprezentowano w formie graficznej oraz przedstawiono dwie przykładowe animacje ruchu wahadła dla dwóch konfiguracji początkowych. Pełne animacje dostępne są na żądanie pod adresem (andrzej.icha@apsl.edu.pl). 2. WAHADŁO MATEMATYCZNE PODWÓJNE Definicja 3 [1, s. 55]. Wahadłem matematycznym podwójnym nazywa się układ mechaniczny o dwóch stopniach swobody znajdujący się w stacjonarnym jednorodnym polu siły ciężkości o przyspieszeniu g, złożony z dwóch wahadeł jednokrotnych o masach m1, m2 skupionych na końcach wahadeł i długościach l 1 i l2, z których drugie jest zamocowane przegubowo do pierwszego. Szkic geometryczny rozpatrywanego układu przedstawia rys. 1. Ruch wahadła odbywa się w ustalonej płaszczyźnie przechodzącej przez linię pionu. Jako współrzędne uogólnione wybrano kąty 1 i 2 odchyleń wahadeł od pionu. Znaleziono równania ruchu wahadła, wykorzystując formalizm lagranżowski. Współrzędne i prędkości zawieszonych punktów wynoszą: Rys. 1. Wahadło podwójne - szkic Następnie znaleziono energie - kinetyczną T i potencjalną U wahadła. na podstawie których obliczono lagrangian układu L= T-U. Wykorzystując równania Lagrange a [3], Znaleziono równania ruchu wahadła podwójnego, zapisane w postaci dogodnej do obliczeń (1) (2) gdzie m2/(m1 + m2), = l1/l2. Równania (1) - (2) tworzą układ dwóch sprzężonych nieliniowych równań zwyczajnych drugiego rzędu, którego efektywna analiza może być dokonane tylko metodami numerycznymi. Znajdzie się przykładowe rozwiązania tego układu, wykorzystując możliwości obliczeniowe systemu TeX-PostScript i wybierając następujące dane wejściowe i warunki początkowe: (3) (4) 29
3 OBLICZENIA SYMBOLICZNE W PROBLEMIE WAHADŁA PODWÓJNEGO Poniżej zaprezentowany jest kod źródłowy zawierający procedury obliczeniowe i graficzne dla układu równań (1) - (2), zapisane zgodnie ze składnią zdefiniowaną w pakiecie makr pstricks-add [5]. Kluczowe znaczenie mają tu linie 11-28, opisujące prawe strony równań (1) - (2) i warunki (3) - (4). Realizacja programu jest przedstawiona na dwóch animacjach oraz czterech rysunkach poniżej. Kod źródłowy 1. Wahadło podwójne 30
4 Andrzej Icha Rys. 2. Trajektorie wahadła podwójnego w czasie rzeczywistym (t {5 s, 15 s, 35 s, 40 s}), dla warunków początkowych (3) Rys. 3. Trajektorie wahadła podwójnego w czasie rzeczywistym (t {5 s, 20 s, 30 s, 40 s}), dla warunków początkowych (4) Rys. 4. Zależność 1 = 1 (t) dla warunków początkowych (3) 31
5 OBLICZENIA SYMBOLICZNE W PROBLEMIE WAHADŁA PODWÓJNEGO Rys. 5. Zależność 2 = 2 (t) dla warunków początkowych (3) 32
6 Andrzej Icha Rys. 6. Zależność 1 = 1 (t) dla warunków początkowych (3) Rys. 7. Zależność 2 = 2 (t) dla warunków początkowych (3) 33
7 OBLICZENIA SYMBOLICZNE W PROBLEMIE WAHADŁA PODWÓJNEGO 3. UWAGI KOŃCOWE Należy podkreślić, że obliczenia i generowanie grafiki w systemie obliczeń TeX-Postscript są równoczesne. Jakość grafiki postscriptowej oraz całkowita swoboda w opisie rysunków stawia ten system wyżej niż systemy komercyjne, w tym np. Maple. Dzięki mechanizmowi dołączania czcionek grafika jest całkowicie przenośna i nie zdarzają się przy- kre niespodzianki związane np. z substytucją fontów. Tworzenie animacji w formacie pdf wymaga dodatkowego przetwarzanie plików formaterem pdflatex, ale sprawia, że ich jakość jest nieporównywalna z archaicznymi, obecnymi w Maple, animacjami gif. Z punktu widzenia praktyki naukowej i dydaktycznej systemu TeX-Postscript nie należy traktować konkurencyjnie, ale raczej komplementarnie w stosunku do innych. Autor dostosował i sprawdził omawiane kody w zagadnieniach klasycznego wahadła matematycznego, wahadła o zmiennej długości, wahadła obrotowego i wahadła Kapicy, uzyskując rezultaty zgodne z literaturą przedmiotu. Próby realizacji kodu obliczeniowego w przypadku wahadła potrójnego są na razie w fazie początkowej; wstępne wyniki wydają się być zachęcające, chociaż nie udało się jeszcze przy tworzeniu animacji, wygenerować grafiki torów ruchu wahadeł: górnego i środkowego (p. rys. 8). Rys. 8. Tor ruchu wahadła potrójnego (wahadło dolne) Literatura 1. Calkin M. G,: Lagrangian and Hamiltonian mechanics. Singapore: World Scientific, Krzyżanowski P.: Obliczenia naukowe. Warszawa: Uniwersytet Warszawski, Landau L. D., Lifszyc I. M.: Mechanika. Warszawa: PWN, Veltman M. J. G., Williams D. N.: Schoonschip '91. Dostęp: Voss H.: PSTricks: Graphics and PostScript for TeX and LaTeX. Cambridge: UIT, Artykuł dostępny na podstawie licencji Creative Commons Uznanie autorstwa 3.0 Polska. 34
Wykaz oznaczeń Przedmowa... 9
Spis treści Wykaz oznaczeń... 6 Przedmowa... 9 1 WPROWADZENIE... 11 1.1 Mechanika newtonowska... 14 1.2 Mechanika lagranżowska... 19 1.3 Mechanika hamiltonowska... 20 2 WIĘZY I ICH KLASYFIKACJA... 23 2.1
Bardziej szczegółowoJan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
Bardziej szczegółowoNazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Bardziej szczegółowoMECHANIKA STOSOWANA Cele kursu
MECHANIKA STOSOWANA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 9 października 2014 Karol Kołodziej Mechanika stosowana 1/6 Cele kursu Podstawowe cele zaprezentowanego
Bardziej szczegółowoKomputerowe Wspomaganie Obliczeń. dr Robert Kowalczyk
Komputerowe Wspomaganie Obliczeń dr Robert Kowalczyk Komputerowe Wspomaganie Obliczeń Programy Komputerowego Wspomagania Obliczeń to programy komputerowe wspomagające obliczenia numeryczne lub symboliczne
Bardziej szczegółowoMECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:
Bardziej szczegółowoKierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa
:Informatyka- - inż., rok I specjalność: Grafika komputerowa Metody uczenia się i studiowania. 1 Podstawy prawne. 1 Podstawy ekonomii. 1 Matematyka dyskretna. 1 Wprowadzenie do informatyki. 1 Podstawy
Bardziej szczegółowoMODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB
Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH
Bardziej szczegółowoPisząc okienkowy program w Matlabie wykorzystujemy gotowe obiekty graficzne, lub możemy tworzyć własne obiekty dziedzicząc już zdefiniowane.
MATLAB Co to jest? program komputerowy będący interaktywnym środowiskiem do wykonywania obliczeń naukowych i inżynierskich oraz do tworzenia symulacji komputerowych. Nazwa Nazwa programu pochodzi od angielskich
Bardziej szczegółowoRozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera
Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań
Bardziej szczegółowoMETODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03
METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Przedmiot: Mechanika analityczna Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 2 S 0 1 02-0_1 Rok: 1 Semestr: 1
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 21
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Analiza płaskiego dowolnego układu sił Dr hab. inż. Krzysztof
Bardziej szczegółowoZasada prac przygotowanych
1 Ćwiczenie 20 Zasada prac przygotowanych 20.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z praktycznym zastosowaniem zasady prac przygotowanych przy rozpatrywaniu równowagi układu o dwóch stopniach
Bardziej szczegółowoRÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Bardziej szczegółowodr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH
dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne optymalizacja
Bardziej szczegółowoMECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna
Bardziej szczegółowoANALIZA KINEMATYCZNA PALCÓW RĘKI
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika
Bardziej szczegółowoPRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ
53/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ J. STRZAŁKO
Bardziej szczegółowoMechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Bardziej szczegółowoMechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych
Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: WYBRANE ZAGADNIENIA MECHANIKI ANALITYCZNEJ, DRGAŃ I STATECZNOŚCI KONSTRUKCJI MECHANICZNYCH (cz. I MECHANIKA ANALITYCZNA) Kierunki: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: obieralny
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling
Bardziej szczegółowoKierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Bardziej szczegółowoKierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa
:Informatyka- - inż., rok I specjalność: Grafika komputerowa Rok akademicki 018/019 Metody uczenia się i studiowania. 1 Podstawy prawne. 1 Podstawy ekonomii. 1 Matematyka dyskretna. 1 30 Wprowadzenie do
Bardziej szczegółowoUOGÓNIONE KRZYWE POŚCIGOWE
MODELOWANIE INŻYNIERSKIE 2017 nr 62, ISSN 1896-771X UOGÓNIONE KRZYWE POŚCIGOWE Andrzej Icha 1a,b 1 Instytut Matematyki, Akademia Pomorska w Słupsku a majorana38@gmail.com, b andrzej.icha@apsl.edu.pl Streszczenie
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku: Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Bardziej szczegółowoWspomaganie obliczeń matematycznych. dr inż. Michał Michna
Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja
Bardziej szczegółowoPWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
Bardziej szczegółowoWstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
Bardziej szczegółowoStanisław SZABŁOWSKI
Dydaktyka Informatyki 12(2017) ISSN 2083-3156 DOI: 10.15584/di.2017.12.26 http://www.di.univ.rzeszow.pl Wydział Matematyczno-Przyrodniczy UR Laboratorium Zagadnień Społeczeństwa Informacyjnego Stanisław
Bardziej szczegółowoObliczenia Naukowe. Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie. Bartek Wilczyński
Obliczenia Naukowe Wykład 11:Pakiety do obliczeń: naukowych i inżynierskich Przegląd i porównanie Bartek Wilczyński 30.5.2016 Plan na dziś Pakiety do obliczeń: przegląd zastosowań różnice w zapotrzebowaniu:
Bardziej szczegółowoOpis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia
Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Bardziej szczegółowoWykład Ćwiczenia Laboratorium Projekt Seminarium 15 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Bardziej szczegółowoNowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów
Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Mateusz Szubel, Mariusz Filipowicz Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and
Bardziej szczegółowoMechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2015/2016
Bardziej szczegółowoPodstawy Informatyki Computer basics
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoKarta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma
Bardziej szczegółowoWykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Bardziej szczegółowoWspomaganie obliczeń matematycznych. dr inż. Michał Michna
Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja
Bardziej szczegółowoZ-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Z-ETI-1027 Mechanika
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Wybrane zagadnienia modelowania i obliczeń inżynierskich Chosen problems of engineer modeling and numerical analysis Dyscyplina: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: Przedmiot
Bardziej szczegółowoKierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia
:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Metody uczenia się i studiowania. 1 15 1 Środowisko programisty. 1 30 3 Komputerowy
Bardziej szczegółowoWstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 2
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o jednym stopniu
Bardziej szczegółowoSPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD
Dr inż. Jacek WARCHULSKI Dr inż. Marcin WARCHULSKI Mgr inż. Witold BUŻANTOWICZ Wojskowa Akademia Techniczna SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Streszczenie: W referacie przedstawiono możliwości
Bardziej szczegółowoOpis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Bardziej szczegółowoRozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Prof. dr hab. inż. Janusz Frączek Instytut
Bardziej szczegółowoKATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 1 Badanie kinematyki czworoboku przegubowego metodą analitycznonumeryczną. 1 Cel ćwiczenia Celem ćwiczenia jest
Bardziej szczegółowoDRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Bardziej szczegółowoĆwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Równania różniczkowe Differential equations Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj
Bardziej szczegółowoModelowanie układów dynamicznych
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian
Bardziej szczegółowoOpis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Bardziej szczegółowoRozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Wybrane zagadnienia modelowania i obliczeń inżynierskich Chosen problems of engineer modeling and numerical analysis Dyscyplina: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: Przedmiot
Bardziej szczegółowoKatarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 4
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o dwóch stopniach
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
Bardziej szczegółowoSYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia. rachunkowe
SYLABUS Nazwa przedmiotu Mechanika Techniczna Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy, Katedra przedmiot Fizyki Teoretycznej Kod przedmiotu Studia Kierunek studiów Poziom kształcenia
Bardziej szczegółowoElektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoRuch granulatu w rozdrabniaczu wielotarczowym
JÓZEF FLIZIKOWSKI ADAM BUDZYŃSKI WOJCIECH BIENIASZEWSKI Wydział Mechaniczny, Akademia Techniczno-Rolnicza, Bydgoszcz Ruch granulatu w rozdrabniaczu wielotarczowym Streszczenie: W pracy usystematyzowano
Bardziej szczegółowoWYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PAKIETY MATEMATYCZNE Nazwa w języku angielskim Mathematical Programming Packages Kierunek studiów (jeśli
Bardziej szczegółowoI rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.
Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu
Bardziej szczegółowoInżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Bardziej szczegółowoKierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia
:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Repetytorium z matematyki. 1 30 3 Środowisko programisty. 1 30 3 Komputerowy
Bardziej szczegółowoModelowanie Fizyczne w Animacji Komputerowej
Modelowanie Fizyczne w Animacji Komputerowej Wykład 2 Dynamika Bryły Sztywnej Animacja w Blenderze Maciej Matyka http://panoramix.ift.uni.wroc.pl/~maq/ Rigid Body Dynamics https://youtu.be/_e70usvrjra
Bardziej szczegółowoMatlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE
Bardziej szczegółowoE-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku
Bardziej szczegółowoPakiet webmathematica jako narzędzie wspomagające proces dydaktyczny przedmiotu mechanika. Łukasz Maciejewski, Wojciech Myszka, Stanisław Piesiak
Pakiet webmathematica jako narzędzie wspomagające proces dydaktyczny przedmiotu mechanika Łukasz Maciejewski, Wojciech Myszka, Stanisław Piesiak Mathematica Pakiet obliczeniowy do rozwiązywania zagadnień
Bardziej szczegółowomechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Bardziej szczegółowoKATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 1 Badanie kinematyki czworoboku przegubowego metodą analitycznonumeryczną. 1 Cel ćwiczenia Celem ćwiczenia jest
Bardziej szczegółowoZałącznik nr 1 do Zapytania ofertowego: Opis przedmiotu zamówienia
Załącznik nr 1 do Zapytania ofertowego: Opis przedmiotu zamówienia Postępowanie na świadczenie usług badawczo-rozwojowych referencyjny Zamawiającego: ZO CERTA 1/2017 Celem Projektu jest opracowanie wielokryterialnych
Bardziej szczegółowoTreści programowe przedmiotu
WM Karta (sylabus) przedmiotu Zarządzanie i Inżynieria Produkcji Studia stacjonarne pierwszego stopnia o profilu: ogólnoakademickim A P Przedmiot: Mechanika techniczna z wytrzymałością materiałów I Status
Bardziej szczegółowoWykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Bardziej szczegółowoELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Bardziej szczegółowoW naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Bardziej szczegółowoPrzykłady: zderzenia ciał
Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski
Bardziej szczegółowoDrgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Bardziej szczegółowoM2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Bardziej szczegółowoNowoczesne metody nauczania przedmiotów ścisłych
Nowoczesne metody nauczania przedmiotów ścisłych Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń 14 VI 2012 Bartosz Ziemkiewicz Nowoczesne metody nauczania... 1/14 Zdalne nauczanie na UMK
Bardziej szczegółowoMechanika Ogólna General Mechanics. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoDrgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
Bardziej szczegółowoPakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 22.05.2013 Wykład 12 Mathematica. Wprowadzenie Obliczenia w Mathematice Wolfram Alpha Slajdy powstały na podstawie strony www.mathematica.pl
Bardziej szczegółowoKurs wybieralny: Zastosowanie technik informatycznych i metod numerycznych w elektronice
Kurs wybieralny: Zastosowanie technik informatycznych i metod numerycznych w elektronice Opis kursu Przygotowanie praktyczne do realizacji projektów w elektronice z zastosowaniem podstawowych narzędzi
Bardziej szczegółowoKARTA KURSU (realizowanego w module specjalności) Metody numeryczne
KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:
Bardziej szczegółowoMechanika Techniczna I Engineering Mechanics I. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoĆ W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
Bardziej szczegółowoElementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Bardziej szczegółowoĆwiczenia nr 7. TEMATYKA: Krzywe Bézier a
TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji
Bardziej szczegółowoField of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time studies. Auditorium classes.
Faculty of: Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time
Bardziej szczegółowoANALIZA DYNAMIKI RUCHU WYBRANYCH MODELI UKŁADÓW WAHADEŁ PODWÓJNYCH
MECHANIK 7/0 Dr inż. Włodzimierz A. LUBNAUER Katedra Dynamiki Maszyn Politechniki Łódzkiej ANALIZA DYNAMIKI RUCHU WYBRANYCH MODELI UKŁADÓW WAHADEŁ PODWÓJNYCH Streszczenie: W pracy zaprezentowano badania
Bardziej szczegółowo