Justyna Signerska. Grafy losowe jako modele sieci
|
|
- Adrian Matuszewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Justyna Signerska Grafy losowe jako modele sieci 1
2 G lówne metody konstruowania sieci: klasyczny graf losowy G n,p (Erdős, Rényi ) graf losowy z ustalonym rozk ladem stopni wierzcho lków ( 1972)- tzw. model konfiguracyjny sieć ma lych światów (Small-world networks, Watts i Strogatz ) sieć Barabasi-Albert (1999) 2
3 G n,p : średni stopień wierzcho lka n(n 1)p z = = (n 1)p np (1) n (ostatnie przybliżenie w laściwe dla dostatecznie dużych n)
4 G n,p a rzeczywiste sieci Niech p k oznacza prawdopodobieństwo, że losowo wybrany wierzcho lek ma stopień k 1. klasyczny graf losowy posiada dwumianowy rozk lad stopni wierzcho lków ( ) n 1 p k = p k (1 p) n 1 k, (2) k który w granicy n kz przechodzi w rozk lad Poissona: p k = zk e z (3) k! (wiȩkszość sieci rzeczywistych posiada rozk lad potȩgowy) 2. niski wspó lczynnik grupowania C z n (4) - wiȩkszość rzeczywistych sieci ma wysoki wspó lczynnik C (zjawisko the friend of my friend is also my friend) 4
5 5
6
7 W jaki sposób uogólnić klasyczny model grafu losowego, aby lepiej modelowa l sieci rzeczywiste? - graf posiadaj acy specyficzny rozk lad stopni wierzcho lków p k (lub ustalony ci ag stopni wierzcho lków {k i }, i = 1, 2,..., n zbiegaj acy do p k dla n ). 6
8 Dla tak zdefiniowanego modelu: z = k = k kp k, (5) z 2 = k 2 k, (6) gdzie z 2 - średnia liczba s asiadów drugiego rzȩdu dla losowo wybranego wierzcho lka Ogólnie: z m = k2 k z m 1 = k ( z2 z 1 ) m 1 z 1 (7) 7
9 Przejścia fazowe Przejście fazowe to taka zmiana uk ladu, której towarzyszy nag la zmiana parametrów uk ladu, np. zmiana stanu skupienia uk ladu lub jego sk ladowych, perkolacja. Wyróżniamy dwa parametry: parametr kontroli -np. p w modelu G(n, p) parametr porz adku -np. S-liczba wierzcho lków grafu G(n, p) w tzw. giant connected component w stosunku do n Podstawow a zasad a, która konstytuuje dziedzinȩ fizyki zajmuj ac a siȩ teori a przejść fazowych jako samodzielny obszar badawczy, jest fakt, że zupe lnie różne substancje przejawiaj a w ramach zjawisk towarzysz acych przejściom fazowym takie samo zachowanie, co jest treści a hipotezy uniwersalności opisu przejść fazowych. Przejście fazowe w grafie losowym polega na pojawieniu siȩ tzw. giant connected component. 8
10 Perkolacja W matematyce teoria perkolacji opisuje zachowanie siȩ po l aczonych grup wierzcho lków w grafie losowym. Znajduje ona także szersze zastosowanie, np. w chemii czy inżynierii materia lowej nz = 458 9
11 nz = 1509
12 W klasycznym grafie losowym G n,p obserwujemy przejście fazowe, gdy z = 1. W grafie z danym rozk ladem stopni wierzcho lków, gdy z 1 = z 2 lub równoważnie, gdy: k 2 2 k = 0 (Molloy, Reed 1995) k=0 k(k 2)p k = 0 (8) Powyżej przejścia fazowego możemy rozważać średni a odleg lość miȩdzy dwoma wierzcho lkami grafu - l: l = log(n/z 1) log(z 2 /z 1 ) + 1 (9) Zauważmy, że nawet w bardzo dużych sieciach l jest dosyć ma le-zjawisko to znane jest jako small-world effect 10
13 Wspó lczynnik grupowania dla uogólnionego grafu losowego: C = k ik j nz = z n [ k 2 ] 2 k = z k 2 n [ ] 2 c 2 v + z 1 z (10) 11
14 Funkcje generuj ace rozk lady prawdopodobieństwa a) p k -prawdopodobieństwo, że losowo wybrany wierzcho lek ma stopień k: G 0 (x) = p k = 1 k! k=0 [ d k ] G 0 dx k x=0 p k x k, (11) (12) b) q k -prawdopodobieństwo, że losowo wybrana krawȩdz kończy siȩ wierzcho lkiem stopnia k + 1: k=0 G 1 (x) = q k x k (k + 1)p k+1 x k = = j jp j = k=0 k=0 (k)p k x k 1 j jp j = G 0 (x) z (13) 12
15 W lasności funkcji generuj acych: 1) jeżeli rozk lad, który generuje funkcja jest poprawnie znormalizowany, to: G 0 (1) = k p k = 1 (14) 2) wartość oczekiwan a możemy obliczyć jako: G 0 (1) = k kp k = k (15) 3) ogólnie, n-ty moment rozk ladu obliczamy jako: k n = [ ( k n p k = x d ) n G 0 (x)] dx k x=1 (16) 4) jeśli funkcja generuje rozk lad prawdopodobieństwa dla pewnej w lasnośći k danego obiektu (np. stopień wierzcho lka w grafie), to rozk lad tej w lasnośći dla n niezależnych obiektów jest generowany przez [G 0 (x)] n 13
16 Rozmiary sk ladowych spójnośći grafu A. Poniżej przejścia fazowego Każda skończona sk ladowa grafu nie ma cykli - ma strukturȩ drzewa (C 0 dla n ). Wybierzmy losow a krawȩdź. Rozważmy zbiór wierzcho lków, które s a osi agalne z jednego końca tej krawȩdzi - klaster. Niech H 1 (x) generuje rozk lad liczby wierzcho lków w takim klasterze (jego rozmiar): H 1 (x) = x k=0 q k [H 1 (x)] k = xg 1 (H 1 (x)) (17) 14
17 Funkcja generuj aca rozk lad liczby wierzcho lków w sk ladowej spójnośći, do której należy losowo wybrany wierzcho lek: H 0 (x) = x k=0 p k [H 1 (x)] k = xg 0 (H 1 (x)). Średni rozmiar sk ladowej spójnośći: (18) s = H 0 (1) = [ G 0 (H 1 (x)) + xg 0 (H 1(x))H 1 (x)] x=1 lub równoważnie: = 1 + G 0 (1)H 1 (1) (19) s = 1 + z2 1 z 1 z 2 (20) Przejście fazowe obserwujemy, gdy z 1 = z 2 lub G 1 (1) = 1. 15
18 B. Powyżej przejścia fazowego -wiȩkszość sieci badanych doświadczalnie znajduje siȩ w tym stanie, ma tzw. giant connected component (GCC). GCC nia ma struktury drzewa dla n. H 0 (x), H 1 (x) - funkcje generuj ace dla rozk ladu wielkości sk ladowych spójności z wy l aczeniem GCC P s -rozk lad prawdopodobieństwa dla rozmiarów sk ladowych spójnośći (poza GCC): H 0 (1) = s P s, H 0 (1) = liczba wierzcho lków grafu poza GCC w stosunku do n. Rozmiar GCC, S, musi być rozwi azaniem uk ladu: S = 1 G 0 (v), v = G 1 (v), (21) gdzie v H 1 (1). 16
19 Średni rozmiar sk ladowej spójności grafu: s = 1 + zv 2 [1 S][1 G 1 (v)] (22) 17
20 Teoria perkolacji a odporność sieci na uszkodzenia Proces perkolacji w sieci polega ogólnie na losowym podziale wierzcho lków lub krawȩdzi na dwa zbiory: czynne i nieczynne (working and not working). Model perkolacji zosta l po raz pierwszy zaproponowany w latach 50-tych; motywacj a by la chȩć lepszego zrozumienia zjawiska rozprzestrzeniania siȩ chorób zakaźnych. Wyróżniamy dwa rodzaje perkolacji: site percolation i bond percolation: 18
21 Miar a odporności sieci na losowe usuwanie wierzcho lków może być zmiana (lub brak zmiany) liczby wierzcho lków, które znajduj a siȩ w najwiȩkszej sk ladowej grafu (GCC). Proces losowego wy l aczania wierzcho lków można rozpatrywać jako site percolation. Wierzcho lki, które pozostaj a w sieci czynne (mog a komunikować siȩ ze sob a) tworz a giant connected component w odpowiadaj acym modelu perkolacji. 19
22 Rozważmy model grafu losowego, gdzie p k to rozk lad prawdopodobieństwa stopni wierzcho lków. Za lóżmy, że q to czȩść wierzcho lków grafu, które s a czynne (wierzcho lki te losujemy jednostajnie z ca lego grafu). Wtedy p ( ) k k = k q k (1 q) k k (23) k=k p k jest prawdopodobieństwem, że losowo wybrany wierzcho lek czynny jest po laczony z k innymi czynnymi wierzcho lkami. Ponieważ wy l aczanie wierzcho lków jest losowe i niezależne, to podzbiór wierzcho lków czynnych tworzy inny model konfiguracyjny, gdzie p k jest rozk ladem stopni wierzcho lków. 20
23 Ciekawe wyniki zosta ly pokazane dla sieci z rozk ladem potȩgowym p k k α (α ustalone). Dla α 3 wartość krytyczna q c, kiedy dochodzi do przejścia fazowego i tworzy siȩ GCC, jest niedodatnia, co oznacza, że sieć zawsze perkoluje. Pokazano ogólnie, że g c 0 dla sieci o rozk ladzie p k, gdzie k 2 dla n. 21
24 Prawdopodobieństwo, że dany wierzcho lek jest czynny może zależeć od jego stopnia k. Wtedy zamiast sta lej q mamy q k - prawdopodobieństwo, że wierzcho lek stopnia k jest czynny. Funkcje generuj ace: k F 0 (x) = p k q k x k kp, F 1 (x) = k q k x k 1 k=0 k kp k (24) Rozk lad prawdopodobieństwa rozmiarów sk ladowych grafu, tworzonych przez wierzcho lki czynne, do których należy losowo wybrany wierzcho lek, jest generowany poprzez funkcjȩ H 0 (x): gdzie: H 0 (x) = 1 F 0 (1) + xf 0 (H 1 (x)), (25) H 1 (x) = 1 F 1 (1) + xf 1 (H 1 (x)) (26) Średni rozmiar sk ladowej grafu (tworzonej przez wierzcho lki czynne): s = F 0 (1) + F 0 (1)F 1(1) 1 F 1 (1) (27) GCC formuje siȩ, gdy F 1 (1) = 1. 22
25 W niektórych sieciach, np. sieciach przesy laj acych energiȩ elektryczn a, zjawisko, gdy nagle jedna krawȩdź lub wierzcho lek przestaje dzia lać, może w rezultacie zaburzyć funkcjonowanie ca lej sieci. Sieci opisane rozk ladem potȩgowym s a szczególnie wrażliwe na usuwanie wierzcho lów o wysokim stopniu. 23
26 Epidemiologia Standardowe matematyczne podejście do problemu rozprzestrzeniania siȩ choroby zakaźnej w populacji opiera siȩ na za lożeniu, że każda para osób ma równe szanse kontaktu ze sob a (tzw. fully mixed approximation). Za lożenie to jest nierealistyczne. Realistyczne modele używaj a struktury sieci. Najprostszym z nich jest model SIR (Reed, Frost 1920): S - susceptible I - infective R - recovered Proces rozprzestrzeniania siȩ choroby w sieci reprezentuj acej populacjȩ może być utożsamiany z bond percolation dla tej samej sieci. 24
27 Niech β oznacza prawdopodobieśtwo, że osoba zainfekowana zarazi swojego s asiada (z grupy S) w ustalonej jednostce czasu. Wielkości β s a wylosowane z rozk ladu P i (β). Niech γ oznacza prawdopodobieństwo, że losowo wybrana osoba zainfekowana wyzdrowieje (w jednostce czasu), gdzie P r (γ) jest rozk ladem odpowiadaj acym tej wielkości. Uzyskany model okazuje siȩ być równoważny z jednostajnym bond percolation: T = 1 P i(β)p r (γ)e β/γ dβdγ, (28) 0 gdzie T to prawdopodobieństwo, że losowo wybrana krawȩdź jest czynna (nast api zarażenie). 25
28 Model perkolacji dostarcza nam wielu informacji na temat rozprzestrzeniania siȩ choroby, g lównie jej rozmiarów: rozk lad rozmiarów sk ladowych grafu utworzonych przez funkcjonuj ace krawȩdzie to rozk lad rozmiarów ognisk choroby zapocz atkowanych przez pojedyncz a zainfekowan a osobȩ, a przejście fazowe to tzw. próg epidemiologiczny -stan, powyżej którego możliwy jest wybuch epidemii-jej zasiȩg to liczba wierzcho lków w GCC. Niestety model ten nie pozwala wnioskować o ewolucji ognisk choroby w czasie. 26
29 Interesuj ace wnioski zosta ly sformu lowane dla sieci z rozk ladem potȩgowym p k k α : jeśli tylko α 3, to próg epidemiologiczny 0. Wiȩkszoś ć realistycznych sieci realizuje to za lożenie, tak wiȩc choroby bȩd a siȩ zawsze na nich rozprzestrzenia ly, nie zależnie od rozk ladu β (po raz pierwszy pokazano to dla wirusów komputerowych - Pastor-Satorras i Vespignani) 27
30 Po l aczenie zjawiska odporności sieci na losowe usuwanie wierzcho lków z problemem rozprzestrzeniania siȩ na niej choroby uzyskujemy, gdy rozważamy szczepienie losowo wybranych osób z populacji przeciwko danej chorobie - to z kolei możemy modelować jako site percolation. Jeżeli proces site percolation jest dodatnio skorelowany ze stopniem wierzcho lka, to otrzymujemy efektywn a strategiȩ przeciwdzia lania rozprzestrzenianiu siȩ choroby. 28
31 Bibliografia: 1. M. Newman: Random graphs as model of networks. 2. S.Dorogovtsev, J.Mendes, A.Samukhin: Modern architecture of random graphs: correlations. Constructions and 3. M. Newman: The structure and function of complex networks. 4. S.Janson, D.Knuth, T. Luczak, B.Pittel The Birth of the Giant Component. 5. M. Newman, S.Strogatz, D. Watts: Random graphs with arbitrary degree distributions and their applications. 29
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka
Instytut Matematyki, Politechnika Lódzka Graf losowy jako granica Fraisse Przez K graf oznaczmy rodzinȩ wszystkich skończonych grafów (np. na N). Niech G bȩdzie granic a Fraisse rodziny K graf. Strukturȩ
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA. Spis pojȩċ teoretycznych
1 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Spis pojȩċ teoretycznych 1. Podstawowe pojȩcia: doświadczenie losowe, zdarzenie elementarne, zdarzenie losowe, przestrzeń zdarzeń elementarnych, zbiór zdarzeń
Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F
Scriptiones Geometrica Volumen I (2014), No. 6F, 1 10. Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa
Geometria odwzorowań inżynierskich rzut środkowy 06A
Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Geometria odwzorowań inżynierskich Zadania 01
Scriptiones Geometrica Volumen I (2007), No. Z1, 1 4. Geometria odwzorowań inżynierskich Zadania 01 Edwin Koźniewski Instytut Inżynierii Budowlanej, Politechnika Bia lostocka 1. Twierdzenie o punkcie wȩz
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii
Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej
Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej Maciej Czarnecki Uniwersytet Lódzki 8 Forum Matematyków Polskich Lublin, 21 września 2017 r. Forma hermitowska na C n+1 X Y = X 1 Y 1 +...
z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1
3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy
POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C
Scriptiones Geometrica Volumen I (2014), No. 6C, 1 8. Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa czo lowa wnȩtrza Rys. 6C-01:
Sieci bezskalowe. Filip Piękniewski
Wydział Matematyki i Informatyki UMK Prezentacja na Seminarium Doktoranckie dostępna na http://www.mat.uni.torun.pl/ philip/sem-2008-2.pdf 24 listopada 2008 1 Model Erdős a-rényi Przejścia fazowe w modelu
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Statystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Równania różniczkowe cz astkowe rzȩdu pierwszego
Równania różniczkowe cz astkowe rzȩd pierwszego 1 Równania liniowe jednorodne Rozważmy równanie a 1 ( 1,..., n ) 1 +... + a n ( 1,..., n ) n = 0, (1) gdzie a i, i = 1,..., n s a dane, a fnkcja = ( 1,...,
Analiza zrekonstruowanych śladów w danych pp 13 TeV
Analiza zrekonstruowanych śladów w danych pp 13 TeV Odtwarzanie rozk ladów za pomoc a danych Monte Carlo Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka 31 lipca 2015 r. Jakub Cholewiński, pod
Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej:
ROZDZIA L Metoda sympleksowa Motto: Matematyka nie może wype lnić życia ale jej nieznajomość już niejednemu je wype lni la H Steinhaus Tablica sympleksowa Rozważmy ZPL w postaci klasycznej maksymalizować
Procesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu
Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:
Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:
Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x
EGZAMIN MAGISTERSKI, 18 września 2013 Biomatematyka
Biomatematyka Liczebność populacji pewnego gatunku jest modelowana przez równanie różnicowe w którym N k stałymi. rn 2 n N n+1 =, A+Nn 2 oznacza liczebność populacji w k tej generacji, a r i A są dodatnimi
Grafy stochastyczne i sieci złożone
Witold Bołt Grafy stochastyczne i sieci złożone 9 stycznia 007 Wstęp i ostrzeżenie Opracowanie to powstało w oparciu o notatki do wykładu Układy Złożone prowadzonego przez prof. dr hab. Danutę Makowiec
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:
Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()
Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1?
1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 2. Czy prawda jest, że a) 5 8 1 jest podzielne przez 4 ; b) 5 7 1 jest podzielne przez 4 ; c) 3
176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie.
176 Wtȩp do tatytyki matematycznej trści wynika że H o : p 1 przeciwko hipotezie H 3 1: p< 1. Aby zweryfikować tȩ 3 hipotezȩ zatujemy tet dla frekwencji. Wtedy z ob 45 1 150 3 1 3 2 3 150 0 346. Tymczaem
PROBABILISTYKA - test numery zestawów 1,3,5,7,9,...,41
1 numery zestawów 1,3,5,7,9,...,41 (a) Jeśli P (A) = 0.5 oraz P (B) = 0.3 oraz B A, to P (B \ A) = 0.2. (b) Przy jednokrotnym rzucie kostk a prawdopodobieństwo, że wypadnie szóstka pod warunkiem, że wypad
Warsztaty metod fizyki teoretycznej
Warsztaty metod fizyki teoretycznej Zestaw 6 Układy złożone- sieci w otaczającym nas świecie Marcin Zagórski, Jan Kaczmarczyk 17.04.2012 1 Wprowadzenie W otaczającym nas świecie odnajdujemy wiele struktur,
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
13 Zastosowania Lematu Szemerédiego
13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{
Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu
Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 4 1. Zbiory otwarte i domkniȩte Pojȩcia które teraz wprowadzimy można rozpatrywać w każdej przestrzeni metrycznej
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji
Cia la i wielomiany Javier de Lucas
Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma
P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja
19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.
T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla
Rozdzia l 6. Wstȩp do statystyki matematycznej. 6.1 Cecha populacji generalnej
Rozdzia l 6 Wstȩp do statystyki matematycznej 6.1 Cecha populacji generalnej W rozdziale tym zaprezentujemy metodȩ probabilistycznego opisu zaobserwowanego zjawiska. W takim razie (patrz rozdzia l 2.4)zjawiskotobȩdziemy
KOMBINATORYKA 1 WYK LAD 9 Zasada szufladkowa i jej uogólnienia
KOMBINATORYKA 1 WYK LAD 9 Zasada szufladkowa i jej uogólnienia 18 grudnia 2006 Zasada szufladkowa, zwana też zasada Dirichleta, a w jez. ang.,,pigeonhole Principle może być sformu lowana naste puja co.
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 3 1 0 1 3 Oś liczbowa. Liczby ca lkowite x MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE Prof. dr. Tadeusz STYŠ WARSZAWA 018 1
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace
y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
PODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH
PODSTAWOWE W LASNOŚCI DZIA LAŃ I NIERÓWNOŚCI W ZBIORZE LICZB RZECZYWISTYCH W dalszym cia gu be dziemy zajmować sie g lównie w lasnościami liczb rzeczywistych, funkcjami określonymi na zbiorach z lożonych
Liczby naturalne i ca lkowite
Chapter 1 Liczby naturalne i ca lkowite Koncepcja liczb naturalnych i proste operacje arytmetyczne by ly znane już od oko lo 50000 tysiȩcy lat temu. To wiemy na podstawie archeologicznych i historycznych
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka
Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.
FUNKCJE LICZBOWE. x 1
FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy
3.1 Wprowadzenie teoretyczne i przyk lady
Rozdzia l 3 Model probabilistyczny Ko lmogorowa 3.1 Wprowadzenie teoretyczne i przyk lady Przez model probabilistyczny Ko lmogorowa, zwany też przestrzeni a probabilistyczn a, bȩdziemy rozumieli nastȩpuj
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
Statystyka w analizie i planowaniu eksperymentu
5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
Uproszczony dowod twierdzenia Fredricksona-Maiorany
Uproszczony dowod twierdzenia Fredricksona-Maiorany W. Rytter Dla uproszczenia rozważamy tylko teksty binarne. S lowa Lyndona sa zwartymi reprezentacjami liniowymi s lów cyklicznych. Dla s lowa x niech
Wyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie
1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
u nk = n c nn u n 0 wyznacza siȩ empirycznie (elementy przejść) lub próbuje oszacować w obliczeniach typu ab initio Rachunek zaburzeń Löwdina
Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane) to ich wzajemny wp lyw musi być uwzglȩdniony wariacyjnie - w I rzȩdzie RZ dla stanow zdegenerowanych
Rozdzia l 10. Najważniejsze normalne logiki modalne
Rozdzia l 10. Najważniejsze normalne logiki modalne 1. Logiki modalne normalne Definicja. Inwariantny zbiór formu l X jȩzyka modalnego L = (L,,,,, ) nazywamy logik a modaln a zbazowan a na logice klasycznej
A. Kasperski, M. Kulej, BO -Wyk lad 5, Optymalizacja sieciowa 1
A. Kaperki, M. Kulej, BO -Wyk lad, Opymalizacja ieciowa 1 Zagadnienie makymalnego przep lywu (MP). Przyk lad. W pewnym mieście inieje fragmen wodoci agów zadany w poaci naȩpuj acej ieci: 1 Luki oznaczaj
4. Decyzje dotycza ce przyznawania świadczeń pomocy materialnej. doktorantów
ZASADY PRZYZNAWANIA ŚWIADCZEŃ POMOCY MATERIALNEJ DLA DOKTORANTÓW W INSTYTUCIE MATEMATYCZNYM POLSKIEJ AKADEMII NAUK OBOWIA ZUJA CE OD ROKU AKADEMICKIEGO 2013/14 1. PODSTAWA PRAWNA Świadczenia pomocy materialnej
Funkcje wielu zmiennych
Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem
WPPT 2r., sem. letni KOLOKWIUM 1 Wroc law, 19 kwietnia 2011
A N A L I Z A F U N K C J O N A L N A WPPT r, sem letni KOLOKWIUM Wroc law, 9 kwietnia 0 ZADANIE ab W pewnej przestrzeni mamy wie metryki i przy czym czyni nasz a przestrzeń zwart a a jest s labsza o (tzn
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Jarosław Piersa, Tomasz Schreiber {piersaj, tomeks}(at)mat.umk.pl 2010-07-21 1 2 Dany podzbiór V R 3. N neuronów należących do V N Poiss(c
{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r
to w pobliżu dna (lub szczytu) pasma (k k 0 ) zależność E(k) jest paraboliczna ale z mas a m m 0 Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane)
w = w i ξ i. (1) i=1 w 1 w 2 :
S. D. G lazek, www.fuw.edu.pl/ stglazek, 11.III.2005 1 I. MACIERZ LINIOWEGO ODWZOROWANIA PRZESTRZENI WEKTOROWYCH Wyobraźmy sobie, że przestrzeń wektorowa W jest zbudowana z kombinacji liniowych n liniowo
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Statystyka w analizie i planowaniu eksperymentu
10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1.
1. Czy prawda jest, że a) x R y R y 2 > 1 1+x 2 ; b) y R x R y 2 > 1 1+x 2 ; c) x R y R y 2 > 1 1+x 2 ; d) x R y R y 2 > 1 1+x 2? 2. Czy naste puja ca relacja na zbiorze liczb rzeczywistych jest relacja
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie z rejestracja jakiś sygna lów (danych). Moga to być na
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Geometria odwzorowań inżynierskich Wyk lad 03B
Scriptionis Geometrica Volumen I (2014), No. 3B, 1 9. Geometria odwzorowań inżynierskich Wyk lad 03B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie wzajemne w aksonometrii Przyk lad 1 Wyznaczyć
Niezmienniki i pó lniezmienniki w zadaniach
Niezmienniki i pó lniezmienniki w zadaniach Krzysztof Che lmiński Wydzia l Matematyki i Nauk Informacyjnych Politechnika Warszawska MiNI-Akademia Matematyki Warszawa, 2 marca, 2013 Na czym polega metoda
TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski. Typeset by AMS-TEX
TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski 20 Typeset by AMS-TEX 8. GRAFY PLANARNE. 8.1. Grafy p laskie i planarne. TEORIA GRAFÓW. MATERIA LY VI. 21 Mówimy, że graf jest uk ladalny
Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min.
Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 001 ROKU Czas trwania egzaminu: 180 min Liczba zadań: 30 Każde zadanie sk lada sie z trzech cześci Odpowiedź do
Równoleg le sortowanie przez scalanie
Równoleg le sortowanie przez scalanie Bartosz Zieliński 1 Zadanie Napisanie programu sortuj acego przez scalanie tablicȩ wygenerowanych losowo liczb typu double w którym każda z procedur scalania odbywa
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D
Scriptiones Geometrica Volumen I (2014), No. 6D, 1 9. Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie w perspektywie i perspektywie
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej