Warsztaty metod fizyki teoretycznej
|
|
- Michalina Popławska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Warsztaty metod fizyki teoretycznej Zestaw 6 Układy złożone- sieci w otaczającym nas świecie Marcin Zagórski, Jan Kaczmarczyk Wprowadzenie W otaczającym nas świecie odnajdujemy wiele struktur, które w naturalny sposób można opisać z użyciem pojęcia grafu(sieci): sieć WWW, Internet, cytowania prac naukowych, transport, metabolizm, sieć kontaktów seksualnych... Zauważmy, że opis takiego systemu będzie znacząco różny od przykładowo regularnej struktury kryształu. Niemniej, jeśli analizowany układ potraktujemy jako zbiór bardzo wielu obiektów(wierzchołki grafu) połączonych prostymi relacjami(krawędzie grafu; np. linki między stronami WWW, połączenia między serwerami, referencje w publikacjach itp.) to z pomocą przychodzą nam metofy fizyki statystycznej[1]. 2 Sformułowanieproblemu Każdy z powyższych systemów w dużym uproszczeniu można przedstawić jako zbiór identycznych wierzchołków połączonych krawędziami. Jednak dopiero zdefiniowanie praw rządzących ewolucją takiego układu(przyłączanie nowych wierzchołków, przepinanie krawędzi) pozwala nam analizować jego dynamikę i statystyczne własności. W tym zestawie skupimy się na modelu BA zaproponowanym przez Barabási i Albert[2], który wywołał lawinowy wysyp publikacji o podobnej tematyce. Spróbujemy zobaczyć jak zastosowanie prostych praw do pojedynczych elementów układu powoduje jego samoorganizację. Równocześnie obliczymy rozkład krotności oraz średnią odległość będące istotnymi charakterystykami sieci w otaczającym nas świecie. Zad.1.Zebranedane.Coznichwynika? W pracy[3] autorzy zebrali informacje o topologii fragmentu sieci WWW liczącego w przybliżeniu 325 tys. dokumentów HTML oraz 1469 tys. linków między nimi. Zamieszczone wykresy pokazują rozkład krotności P(k) dla tych danych, czyli jakie jest prawdopodobieństwo zaobserwowania strony posiadającej k wychodzących(rys. 1a)/ wchodzących(rys. 1b) linków. Na rys. 1 przerywane linie odpowiadają dopasowaniom analitycznym. Zastanów się: a) jakie jest zachowanie dopasowanej funkcji dla ogona rozkładu P(k)(powiedzmy dla k > 50)? 1
2 Rysunek 1: Histogram(a) liczby linków wychodzących(znajdujących się w dokumencie HTML) oraz (b) liczby linków prowadzących do danego dokumentu HTML. Rysunek zaczerpnięto z pracy[3]. b) znając jakościowy charakter zaniku oceń na podstawie wykresu jego ilościowy charakter. Zad. 2. Czy umiemy modelować/zrozumieć tego typu zależność? W fizyce oraz w innych naukach, kiedy analizujemy dany problem, często kluczowe jest wybranie jego istotnych cech, a pominięcie takich, które tylko zaciemniają obraz zagadnienia lub utrudniają rachunki. Niebezpieczne bywa również zbytnie uproszczenie modelu, gdyż wtedy możemy nie uzyskać właściwego wyniku końcowego. Okazuje się, że powyższe jakościowe zachowanie można otrzymać rozpatrując model grafu z przypadkowo(ale wg pewnej reguły) przyłączanymi wierzchołkami.czymaszpomysłodczego(jakiegoparametrugrafu)mogłabyzależećtareguła 1? Zad. 3. Równania wzrostu. Model BA Rozpatrzmynastępującymodelsieci.Zaczynającodjednegowierzchołkakonstruujemygraf 2 przez pojedyncze przyłączanie nowych wierzchołków. Przy czym każdy nowy wierzchołek przyłączamy do dokładnie jednego z wierzchołków istniejących już w grafie z prawdopodobieństwem p k k.głównąwielkościąjakąchcemyobliczyćjest n k (N),czyliliczbawierzchołkówokrotności k w chwili gdy graf ma rozmiar N(posiada N wszystkich wierzchołków). Wtymcelurozwiążemyrównaniemówiącejakn k zmieniasiępodołączeniunowegowierzchołka: n k (N +1) = n k (N)+ξ(k,N), (1) 1 Wskazówka.Regułatanosinazwę preferencyjnegoprzyłączania. 2 Zakładamy,żegrafjestnieskierowanywodróżnieniuodzad.1gdzierozważanygrafbyłskierowany. 2
3 gdzie ξ(k,n)jestzmiennąlosowąprzyjmującąwartości-1,0,1.znającpostać ξmoglibyśmysymulowaćrozkład n k (N),jednaknasinteresowaćbędzieśredniawartość 3 n k (N).Z(1)mamy: By rozwiązać powyższe równanie: n k (N +1) = n k (N) + ξ(k,n), (2) a)znajdźstałąnormalizacyjnądlaprawdopodobieństwa p k kdlagrafuorozmiarzen.jaki jest jej związek z liczbą wszystkich krawędzi L w grafie? b) wydedukuj postać ξ(k, N), c)korzystającz(a)i(b)rozwiąż(2)wgranicytermodynamicznejtzn.dla N podstaw n k (N) = NP(k)iznajdźwyrażeniena P(k). Choć wynik otrzymaliśmy w granicy N zmierzającego do, to bez większych odstępstw można go stosować dla odpowiednio dużych skończonych wartości N. Dyskusja rozwiązania: a)jakiejestasymptotycznezachowanie P(k)dladużych kijakpogodzićtozn <? b) oblicz średnią krotność k. Czy można było przewidzieć ten wynik? c)jakzachowujesię k 2 zewzrostem N? d)przykładowodla N = 10 6 oblicz n 1 (N) oraz n 100 (N).Jakiepłynąztegownioskidla topologii badanej sieci? Zad. 4. Efekt małego świata W latach 60-tych ubiegłego wieku S. Milgram przeprowadził eksperyment mający na celu zbadanie jaka jest średnia odległość w sieci skonstruowanej z wzajemnych znajomych spośród osób zamieszkujących w Stanach Zjednoczonych. Stwierdził on, że odległość ta wynosi około 6 osób. Przyjmując,żebadanasiećmarozmiar N = ,zastanówsięjakiegorzędubędzieśrednia odległość l dla: a) sieci regularnej kwadratowej w d wymiarach? b) grafu przypadkowego, np. takiego jak opisany w zad. 3? Czy na podstawie znajomości rozwiązań(a) i(b) można określić, z którą siecią- regularną czy przypadkową- miał do czynienia Milgram? 3 Liczonapozespolestatystycznymwszystkichgrafówmogącychpowstaćwprocesiewzrostu.Dla N średnia taka jest dobrze określona[5]. 3
4 Zad. 5. Graf zupełnie przypadkowy Początki teorii grafów przypadkowych wiążą się z klasyczną konstrukcję zaproponowaną przez Erdösa i Rényi ego prawie pół wieku temu[6]. W modelu tym liczba wierzchołków N i krawędzi L( jest ustalona a krawędzie są rozmieszczone zupełnie losowo, tzn. jednorodnie spośród wszystkich N ) 2 = N(N 1)/2możliwościpołączeniawierzchołków(krawędzieniemogąsiępokrywać). Bezpośrednio związany z modelem ER jest tzw. model binomialny, w którym zaczynamy konstruować graf z N pustych wierzchołków a następnie każdą parę wierzchołków łączymy z prawdopodobieństwem p. Oblicz: a)rozkład P(L)liczbykrawędzi LdlagrafuoustalonymN, b) rozkład krotności P(k), a następnie znajdź rozkład, w który przechodzi P(k) w granicy dużych N przy ustalonej średniej krotności k. Jaką wartość mają pierwszy(średnia) i drugi moment (wariancja) tego rozkładu? Zad.6.ModelBAdladowolnego m Konstrukcja grafu przypadkowego rozważana w zad. 3 była szczególnym przypadkiem modelu BA. W ogólnym modelu występuje jeszcze jeden parametr m mówiący ile krawędzi ma nowo przyłączanywierzchołek 4.Postępującanalogiczniejakwzad.3znajdźrozkład P(k)dladowolnego m 1.Wtymceluzałóż,żegrafpoczątkowyskładasięzmpołączonychzesobąwierzchołków. Dodatkowo przyjmij, że każda z nowo przyłączanych do grafu krawędzi jest przyłączana niezależnie tzn. wykonaj obliczenia tak jakby zdarzenie, że dwa wierzchołki mogą być połączone więcej niż jednąkrawędziąbyłomożliwe 5.Możemytakzrobić,ponieważinteresujenascodziejesiędla N a przyczynki od takich zdarzeń są pomijalne w tej granicy. Czy coś zmieni się gdy przeprowadzisz dyskusję rozwiązania analogiczną do tej w zad. 3? Literatura [1] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys (2002). Liczba cytowań: [2] R. Albert, A.-L. Barabási, Emergence of scaling in random networks, Science (1999). [3] A.-L. Barabási, R. Albert, H. Jeong, Scale-free characteristics of random networks: The topology oftheworldwideweb,physicaa (2000). [4] P. L. Krapivsky, S. Redner, Organization of growing random networks, Phys. Rev. E (2001). [5] S. N. Dorogovtsev, J. F. F. Mendes, A. N. Samukhin, Structure of growing networks: exact solution of the Barabasi-Albert s model, Phys. Rev. Lett (2000). [6]P.Erdös,A.Rényi,Publ.MathDebrecen6290(1959);Publ.Math.InstHung.Acad.Sci517 (1960). 4 Wzad.3mieliśmy m = 1. 5 Wrozpatrywanymmodelutakasytuacjajestzabroniona. 4
5 3 Rozwiązania Zad. 1. a)zachowaniejestpotęgowetzn. P(k)malejejak k γ, b)wartośćγdlarys.1wynosiodpowiednio2.45(lewy)oraz2.1(prawy).odczytującγzwykresu, oczywiście wystarczy mniejsza dokładność:-) Zad.2 Reguła preferencyjnego przyłączania mówi, że im więcej dany wierzchołek ma sąsiadów(im większą ma krotność) tym większe jest prawdopodobieństwo przyłączenia do niego kolejnych wierzchołków. W najprostszym przypadku prawdopodobieństwo to jest proporcjonalne do krotności k wierzchołka. Zad.3 a) Ponieważ suma krotności wszystkich wierzchołków wynosi 2L, prawdopodobieństwo przyłączeniajednejkrawędzidodanegowierzchołkawynosip k = k/2l.zachodziteżzwiązekl = N. b) Postać wartości oczekiwanej ze zmiennej ξ może być wydedukowana z procesu wzrostu. Dla ustalenia uwagi, zastanówmy się o ile zmieni się sumaryczna krotność wszystkich wierzchołków o krotności k. W wyniku dodania nowego wierzchołka do sieci każdy z nich może pozyskać nową krawędź z prawdopodobieństwem k/2l. Ponieważ do grafu przyłączamy jedną krawędź, to n k (N) zmalejeo n k (N) k/2l,gdyżkrotnośćwierzchołkapoprzyłączeniukrawędzi wzrastao1.wobectegojeślipopatrzymynawierzchołkiokrotności k 1tokrawędziedo nichprzyłączonespowodująwzrost n k (N) odpowiednioo n k 1 (N) (k 1)/2L.Ostatni przyczynekdo ξpochodziodwkładuodnowegowierzchołkaokrotności k = 1iwynosi δ k,1. Zatemcałkowiterównanienawzrost n k (N) przyjmieformę: n k (N +1) = n k (N) +δ k,1 + k 1 2L n k 1(N) k 2L n k(n). (3) c)równanietojestdokładnedladowolnegonipozwalaznaleźćrozwiązaniena n k (N) nietylko w granicy termodynamicznej. Natomiast jeśli pominąć poprawki związane ze skończonym rozmiaremukładu,możemypodstawić n k (N) = NP(k).Dodatkowo,liczbakrawędziw grafiewynosi L = N.Następniekorzystajączfaktu,że P(k)dążydostanustacjonarnegow granicy termodynamicznej[4], dostajemy: P(k) = δ k,1 + k 1 P(k 1) k P(k)+O(1/N). (4) 2 2 W granicy N człon O(1/N) może być zaniedbany i powyższe równanie przyjmuje postać: (k +2)P(k) = (k 1)P(k 1)+2δ k,1, (5) 5
6 skąd otrzymujemy P(1) = 2 3, P(k) = k 1 P(k 1), k > 1, k +2 (6b) (6a) zkonstrukcji P(0) = 0.Iterującrównanie(6b)otrzymujemyostateczniedla k 1: Dyskusja rozwiązania: P(k) = 4 k(k +1)(k +2), (7) a) P(k) k γ gdzie γ = 3.Dla N < związektenjestprawdziwytylkodlapewnychwartości k: 1 k < k c < N,gdzie k c jestwartościąobcięcia,którejniebędzimytudyskutować, b) k = 2, c) k 2 N k 2 k 3 lnn, d)dla N = 10 6 mamy n 1 (N) natomiast n 100 (N) 4.Wbadanejsieciobserwujemy bardzo wiele wierzchołków o niskiej krotności oraz bardzo niewiele o wysokiej krotności (tzw. centra). Zad.4 a)korzystamyzezwiązku l N 1/d,dlasiecikwadratowej(d = 2)iN 10 8 mamy l 10 4, b) liczbę wierzchołków grafu przypadkowego w odległości l od dowolnego wierzchołka można oszacowaćjako k l,stąddlaśrednicygrafu k l = N,czyli l lnn. Zależność obserwowana przez Milgrama miała taką postać jak w(b). Zad.5 a) Rozkład liczby krawędzi ( ) N(N 1)/2 P(L) = p L (1 p) N(N 1)/2 L. (8) L b) Rozkład krotności ( ) N 1 P(k) = p k (1 p) N 1 k (9) k dladużychniprzyustalonym k = Np = µprzechodziwrozkładpoissona P(k) = e µµk k!. (10) 6
7 Zad.6 Rozwiązanie przebiega analogicznie do rozwiązania Zad. 3, przy czym równanie wzrostu ma postać: m(k 1) n k (N +1) = n k (N) +δ k,m + n k 1 (N) mk 2L 2L n k(n). (11) Dla N otrzymujemy gdzie Θ(x) = 1dla x 0oraz Θ(x) = 0dla x < 0. P(k) = 2m(m+1) Θ(k m), (12) k(k +1)(k +2) 7
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
Przejście fazowe w sieciach złożonych w modelu Axelroda
Przejście fazowe w sieciach złożonych w modelu Axelroda Korzeń W., Maćkowski M., Rozwadowski P., Szczeblewska P., Sznajder W. 1 Opiekun: Tomasz Raducha 1 Uniwersytet Warszawski, Wydział Fizyki 3 Streszczenie
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
Model odpowiedzi i schemat oceniania do arkusza I
Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
W sieci małego świata od DNA po facebooka. Dr hab. Katarzyna Sznajd-Weron, prof. PWr.
W sieci małego świata od DNA po facebooka Dr hab. Katarzyna Sznajd-Weron, prof. PWr. Plan Co to jest sieć? Przykłady sieci złożonych Cechy rzeczywistych sieci Modele sieci Sieci złożone i układy złożone
Ruch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Metody radzenia sobie z brakującymi obserwacjami
Metody radzenia sobie z brakującymi obserwacjami 29 kwietnia 2009 Wprowadzenie są to informacje, które zamierzaliśmy zebrać, ale nam się to nie udało. Przykłady: Badany odpowiada tylko na niektóre pytania
Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.
XLVIII OLIMPIADA FIZYCZNA (1998/1999). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, 2000. Autor: Nazwa zadania: Działy: Słowa kluczowe:
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2018/2019 - klasa 3a, 3b, 3c 1, Ciągi
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Własności i charakterystyki czwórników
Własności i charakterystyki czwórników nstytut Fizyki kademia Pomorska w Słupsku Cel ćwiczenia. Celem ćwiczenia jest poznanie własności i charakterystyk czwórników. Zagadnienia teoretyczne. Pojęcia podstawowe
Sieci bezskalowe. Filip Piękniewski
Wydział Matematyki i Informatyki UMK Prezentacja na Seminarium Doktoranckie dostępna na http://www.mat.uni.torun.pl/ philip/sem-2008-2.pdf 24 listopada 2008 1 Model Erdős a-rényi Przejścia fazowe w modelu
Sieci złożone. Modelarnia 2014/2015 Katarzyna Sznajd-Weron
Sieci złożone Modelarnia 2014/2015 Katarzyna Sznajd-Weron Sieć = network Węzły Węzły jednego typu lub wielu Połączenia Połączenia kierunkowe lub nie Czy fizycy zawsze muszą mieć inne zdanie? Fizycy sieć
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Grafy stochastyczne i sieci złożone
Witold Bołt Grafy stochastyczne i sieci złożone 9 stycznia 007 Wstęp i ostrzeżenie Opracowanie to powstało w oparciu o notatki do wykładu Układy Złożone prowadzonego przez prof. dr hab. Danutę Makowiec
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Modelowanie komputerowe
Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza
Obszary strukturalne i funkcyjne mózgu
Spis treści 2010-03-16 Spis treści 1 Spis treści 2 Jak charakteryzować grafy? 3 4 Wielkości charakterystyczne Jak charakteryzować grafy? Średni stopień wierzchołków Rozkład stopni wierzchołków Graf jest
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
EGZAMIN MAGISTERSKI, 18 września 2013 Biomatematyka
Biomatematyka Liczebność populacji pewnego gatunku jest modelowana przez równanie różnicowe w którym N k stałymi. rn 2 n N n+1 =, A+Nn 2 oznacza liczebność populacji w k tej generacji, a r i A są dodatnimi
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
1.Funkcja logarytmiczna
Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Modelowanie niezawodności prostych struktur sprzętowych
Modelowanie niezawodności prostych struktur sprzętowych W ćwiczeniu tym przedstawione zostaną proste struktury sprzętowe oraz sposób obliczania ich niezawodności przy założeniu, że funkcja niezawodności
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1
Regresja linearyzowalna
1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:
FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
5 Błąd średniokwadratowy i obciążenie
5 Błąd średniokwadratowy i obciążenie Przeprowadziliśmy 200 powtórzeń przebiegu próbnika dla tego samego zestawu parametrów modelowych co w Rozdziale 1, to znaczy µ = 0, s = 10, v = 10, n i = 10 (i = 1,...,
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
6.4 Podstawowe metody statystyczne
156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi
Z Wikipedii, wolnej encyklopedii.
Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
STATYSTYKA MAŁYCH OBSZARÓW II.ESTYMATOR HORVITZA-THOMPSONA, ESTYMATOR KALIBROWANY
STATYSTYKA MAŁYCH OBSZARÓW II.ESTYMATOR HORVITZA-THOMPSONA, ESTYMATOR KALIBROWANY 2.1 Estymator Horvitza-Thompsona 2.1.1 Estymator Horvitza-Thompsona wartości średniej i globalnej w populacji p-nieobciążony
Zachowania odbiorców. Grupa taryfowa G
Zachowania odbiorców. Grupa taryfowa G Autor: Jarosław Tomczykowski Biuro PTPiREE ( Energia elektryczna luty 2013) Jednym z założeń wprowadzania smart meteringu jest optymalizacja zużycia energii elektrycznej,
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem
MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Propensity Score Matching
Zajęcia 2 Plan dzisiejszych zajęć 1 Doświadczenia Idealne doświadczenie Nie-idealne doświadczenia 2 Idealne doświadczenie Nie-idealne doświadczenia Plan idealnego doświadczenia (eksperymentu) Plan doświadczenia
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Prognoza terminu sadzenia rozsady sałaty w uprawach szklarniowych. Janusz Górczyński, Jolanta Kobryń, Wojciech Zieliński
Prognoza terminu sadzenia rozsady sałaty w uprawach szklarniowych Janusz Górczyński, Jolanta Kobryń, Wojciech Zieliński Streszczenie. W uprawach szklarniowych sałaty pojawia się następujący problem: kiedy
Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
Praca dyplomowa inżynierska
Wydział Matematyki kierunek studiów: matematyka stosowana specjalność Praca dyplomowa inżynierska Dynamika opinii w sieciach bezskalowych Dominik Miażdżyk słowa kluczowe: dynamika opinii model q-wyborcy
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Obliczanie długości łuku krzywych. Autorzy: Witold Majdak
Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną