Analiza zrekonstruowanych śladów w danych pp 13 TeV
|
|
- Eugeniusz Czech
- 9 lat temu
- Przeglądów:
Transkrypt
1 Analiza zrekonstruowanych śladów w danych pp 13 TeV Odtwarzanie rozk ladów za pomoc a danych Monte Carlo Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka 31 lipca 2015 r. Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 1/32
2 Spis treści 1 Wstep 2 Dane 3 Odtwarzanie rozk ladów 4 Podsumowania i zastosowanie Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 2/32
3 Pseudo-rapidity Jest to wartość zwi azana z katem θ, znajduj acym siȩ pomiȩdzy kierunkiem lotu cz astki wyprodukowanej w zderzeniu, a kierunkiem zderzaj acej sie wi azki. η η = ln[tan( θ )] (1) 2 Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 3/32
4 Pȩd poprzeczny Wartość sk ladowej pȩdu cz asteczki w kierunku prostopad lym do wi azki. p t p t = p 2 x + p 2 y (2) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 4/32
5 Dane pomiarowe Struktura danych Dane pochodz ace z eksperymentu ATLAS. Wielkość danych zrekontruowanych śladów zarejestrowanych zderzeń Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 5/32
6 Dane pomiarowe Struktura danych Zawartość danych Wspó lrzȩdne po lożenia wierzcho lka Informacje nt. uruchomionych triggerów Liczba zrekonstruowanych śladów w danym zdarzenu Informacje nt. konkretnego śladu, czyli η, p t, θ, z 0, d 0, χ oraz liczba trafionych elementów detektora, nieaktywnych elementów detektora oraz spodziewana liczba trafień w detektor i liczba stopni swobody. Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 6/32
7 Dane z symulacji Struktura danych Monte Carlo Dane wytworzone metod a Monte Carlo. Wielkość danych zrekonstruowanych śladów zarejestrowanych zderzeń Dane podzielone na w pliki. Różnice Dane Monte Carlo poza informacjami z rekonstrukcji śladów zawieraj a również informacje o wszytkich czastkach obecnych w zderzeniu. Ponadto zawieraj a informacje o tym czy dana cz astka jest pierwotna czy wtórna. Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 7/32
8 Dane z symulacji Struktura danych Monte Carlo Zawartość danych Wszystkie poprzednie dane Każdy ślad posiada informacje o swoim typie tj. pierwotna lub wtórna i przypisanej mu cz astce, b adź o tym że jest fa lszywy. Posiadamy informacje o wszystkich cz astkach powsta lych w wyniku zderzenia (również tych niezarejestrowanych), wiemy o ich pedzie poprzecznym, pseudorapidity oraz pdgid i typie. Do powi azania śladów i czastek s luży unikatowy w zakresie danego zderzenia barcode, który posiada każda z cz astek. Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 8/32
9 Wydajność Pojȩcie wydajności Wydajność mówi nam o stosunku liczby zrekonstruowanych na ladowanych cz astek pierwotnych do wszystkich cz atek pierwotnych, które powsta ly w wyniku zderzenia. Wydajność ɛ = cz astki pierwotne zrekonstruowane cz astki pierwotne powsta le w zderzeniu (3) Przy odtwarzaniu rozk ladów jest nam potrzebna wydajność dla konkretnych przedzia lów zmiennych kinematycznych (η, p t ), a nie sama średnia dla ca lych danych. Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 9/32
10 Wydajność Wydajność w funkcji η Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 10/32
11 Wydajność Wydajność w funkcji η - CERN Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 11/32
12 Test obliczonej wydajności Test odtworzenia rozk ladu pseudorapidity (ten sam zbiór danych) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 12/32
13 Test obliczonej wydajności Test odtworzenia rozk ladu pȩdu (ten sam zbiór danych) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 13/32
14 Test obliczonej wydajności Test odtworzenia rozk ladu pseudorapidity (inny zbiór danych) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 14/32
15 Test obliczonej wydajności Test odtworzenia rozk ladu pseudorapidity (inny zbiór danych) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 15/32
16 Test obliczonej wydajności Test odtworzenia rozk ladu pȩdu (inny zbiór danych) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 16/32
17 Odtwarzanie rozk ladów Rozk lad pseudorapidity zrekonstruowanych cz astek Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 17/32
18 Odtwarzanie rozk ladów Odtworzony rozk lad pseudorapidity Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 18/32
19 Odtwarzanie rozk ladów Odtworzony rozk lad pseudorapidity - CERN Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 19/32
20 Odtwarzanie rozk ladów Rozk lad pȩdu poprzecznego zrekonstruowanych cz astek Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 20/32
21 Odtwarzanie rozk ladów Odtworzony rozk lad pȩdu poprzecznego Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 21/32
22 Odtwarzanie rozk ladów Rozk lad pȩdu poprzecznego zrekonstruowanych cz astek - CERN Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 22/32
23 Krotność Rozk lad krotności Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 23/32
24 Test obliczania rozk ladu Test odtworzenia rozk ladu krotnosci Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 24/32
25 Test obliczania rozk ladu Test odtworzenia rozk ladu krotnosci (inne dane) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 25/32
26 Iteracyjne rozwik lywanie macierzy Wzór Bayesa w naszym wypadku: P(C i E j ) = E - zaobserwowane zdarzenie C - zdarzenie, które je spowodowa lo P(E j C i )P 0 (C i ) nc l=1 P(E j C l )P 0 (C l ) (4) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 26/32
27 Iteracyjne rozwik lywanie macierzy Algorytm n(c i ) = gdzie: n E j=1 n(e j )P(C i E j ) (5) n(c i ) - liczba zdarzeń z i cz astkami n(e i ) - liczba zdarzeń z i cz astkami zrekonstruowanymi M ij = P(E j C i )P 0 (C i ) [ n E l=1 P(E l C i )][ n C l=1 P(E j C l )P 0 (C l )] (6) n(c i ) = n E j=1 n(e j )M ij (7) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 27/32
28 Krotność Odtworzona krotność Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 28/32
29 Krotność Macierz M Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 29/32
30 Podsumowanie Wnioski i spostrzeżenia Testy obliczonej wydajności pozwalaj a uznać, że zosta la ona wyliczona poprawnie Odtworzone rozk lady s a zgodne z oczekiwaniami B lȩdy wynikaj a miȩdzy innymi z nieuzwzglȩdnienia triggerow (zw laszcza dla ma lych krotności) Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 30/32
31 Podsumowanie Bibliografia CONF / Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 31/32
32 Podsumowanie Koniec Dziekujȩ za uwagȩ Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka Analiza zrekonstruowanych śladów w danych pp 13 TeV 32/32
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F
Scriptiones Geometrica Volumen I (2014), No. 6F, 1 10. Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C
Scriptiones Geometrica Volumen I (2014), No. 6C, 1 8. Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa czo lowa wnȩtrza Rys. 6C-01:
1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7.
Weronika Biela 1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Obliczenie przekroju czynnego 8. Porównanie
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
Sylwa czyli silva rerum na temat fizyki cz astek elementarnych
Sylwa czyli silva rerum na temat fizyki cz astek elementarnych Barbara Badełek Uniwersytet Warszawski i Uniwersytet Uppsalski Nauczyciele fizyki w CERN 20 26 maja 2007 B. Badełek (Warsaw and Uppsala) Silva
Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3
Geometria odwzorowań inżynierskich rzut środkowy 06A
Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA
SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 z y 0 x Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA Prof. dr. Tadeusz STYŠ Warszawa 2018 1 1 Projekt trzynasty
Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium
Zastosowanie Robotów laboratorium Ćwiczenie 6 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.002.01, 7 Listopada, 2005 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania
Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D
Scriptiones Geometrica Volumen I (2014), No. 6D, 1 9. Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie w perspektywie i perspektywie
Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka
Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.
Geometria odwzorowań inżynierskich Zadania 01
Scriptiones Geometrica Volumen I (2007), No. Z1, 1 4. Geometria odwzorowań inżynierskich Zadania 01 Edwin Koźniewski Instytut Inżynierii Budowlanej, Politechnika Bia lostocka 1. Twierdzenie o punkcie wȩz
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA. Spis pojȩċ teoretycznych
1 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Spis pojȩċ teoretycznych 1. Podstawowe pojȩcia: doświadczenie losowe, zdarzenie elementarne, zdarzenie losowe, przestrzeń zdarzeń elementarnych, zbiór zdarzeń
Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23
Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS
Geometria odwzorowań inżynierskich Wyk lad 03B
Scriptionis Geometrica Volumen I (2014), No. 3B, 1 9. Geometria odwzorowań inżynierskich Wyk lad 03B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie wzajemne w aksonometrii Przyk lad 1 Wyznaczyć
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Statystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Geometria odwzorowań inżynierskich Zadania 02
Scriptiones Geometrica Volumen I (2007), No. Z2, 1 3. Geometria odwzorowań inżynierskich Zadania 02 1. Odwzorowania w rzucie równoleg lym. Przekroje cd. Konstrukcje p laskie 1.1. Przekszat lcenia na p
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:
A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +
Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:
Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki
Geometria odwzorowań inżynierskich rzut środkowy 06B
Scriptiones Geometrica Volumen I (2014), No. 6B, 1 17. Geometria odwzorowań inżynierskich rzut środkowy 06B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. K lad p laszczyzny Rys. 6B-01: Konstrukcja
Badanie właściwości przypadków produkcji dżet-przerwa w rapidity-dżet na Wielkim Zderzaczu Hadronów
Badanie właściwości przypadków produkcji dżet-przerwa w rapidity-dżet na Wielkim Zderzaczu Hadronów Paula Świerska Promotor: dr Maciej Trzebiński Politechnika Krakowska im. Tadeusza Kościuszki / 24 Plan
Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej:
ROZDZIA L Metoda sympleksowa Motto: Matematyka nie może wype lnić życia ale jej nieznajomość już niejednemu je wype lni la H Steinhaus Tablica sympleksowa Rozważmy ZPL w postaci klasycznej maksymalizować
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Równoleg le sortowanie przez scalanie
Równoleg le sortowanie przez scalanie Bartosz Zieliński 1 Zadanie Napisanie programu sortuj acego przez scalanie tablicȩ wygenerowanych losowo liczb typu double w którym każda z procedur scalania odbywa
Logika matematyczna i teoria mnogości (I) J. de Lucas
Logika matematyczna i teoria mnogości (I) J. de Lucas Ćwiczenie 1. (Zad. L. Newelskiego) Niech p oznacza zdanie Ala je, zaś q zdanie As wyje. Zapisz jako formu ly rachunku zdań nastȩpuj ace zdania: 1.1.
Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010
R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne
Rozdzia l 3. Relacje binarne
Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Wyk lad 7: Drzewa decyzyjne dla dużych zbiorów danych
Wyk lad 7: Drzewa decyzyjne dla dużych zbiorów danych Funkcja rekurencyjna buduj drzewo(u, dec, T): 1: if (kryterium stopu(u, dec) = true) then 2: T.etykieta = kategoria(u, dec); 3: return; 4: end if 5:
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Geometria odwzorowań inżynierskich. Zadania 10
Scriptiones Geometrica Volumen I (2014), No. Z10, 1 12. Geometria odwzorowań inżynierskich. Zadania 10 Edwin Koźniewski Zak lad Infoemacji Przestrzennej 1. Cień sfery na p lszczyznȩ 1.1. Jeszcze o kolineacji
176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie.
176 Wtȩp do tatytyki matematycznej trści wynika że H o : p 1 przeciwko hipotezie H 3 1: p< 1. Aby zweryfikować tȩ 3 hipotezȩ zatujemy tet dla frekwencji. Wtedy z ob 45 1 150 3 1 3 2 3 150 0 346. Tymczaem
Metody obliczeniowe chemii teoretycznej
Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
LOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
20PLN dla pierwszych 50 sztuk oraz 15PLN dla dalszych. Zysk ze sprzedaży biurka wynosi 40PLN dla pierwszych 20 sztuk oraz 50PLN dla dalszych.
Z1. Sformu lować model dla optymalnego planowania produkcji w nast epujacych warunkach: Wytwórca mebli potrzebuje określić, ile sto lów, krzese l i biurek powinien produkować, aby optymalnie wykorzystać
Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
Ń Ż Ó Ó Ó Ż Ę Ó Ś Ó Ę Ś Ś Ó ż Ó Ó Ż Ś Ś Ó Ó Ś Ś Ś Ó Ść Ó ż Ść Ę Ó Ń Ś Ó Ś Ó Ż Ż Ż ć Ż Ó Ó Ż Ś Ó Ś ć Ń ć Ó Ó Ś ż Ś Ż Ż Ść Ó Ś ż ćż ć Ó Ż Ś Ć Ó Ż Ó Ó Ż Ś Ó Ó Ś Ó ż Ó Ż Ź Ś ż Ń Ó Ó Ś ż Ś Ó Ó Ś ż Ś Ś Ś Ć Ż
na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0
Chapter 1 Interpolacja 1.1 Interpolacja liniowa Zacznijmy opis pojȩcia inter-polacji od prostego przyk ladu. Przyk lad 1.1 Oblicz ile kilometrȯw przejecha l samochȯd po 3 godzinach jazdy, jeżeli po jednej
Statystyka w analizie i planowaniu eksperymentu
19 kwietnia 2011 Testy dla dwóch grup 1 Analiza danych dla dwóch grup: test t-studenta dla dwóch grup sparowanych; test t-studenta dla dwóch grup niezależnych (jednakowe wariancje) test Z dla dwóch grup
Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe
Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Uniwersytet Warszawski - Wydział Fizyki opiekun: dr Artur Kalinowski 1 Plan prezentacji Eksperyment CMS Układ wyzwalania Metoda
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Fizyka cząstek elementarnych warsztaty popularnonaukowe
Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński
Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej
Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej Maciej Czarnecki Uniwersytet Lódzki 8 Forum Matematyków Polskich Lublin, 21 września 2017 r. Forma hermitowska na C n+1 X Y = X 1 Y 1 +...
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Statystyka w analizie i planowaniu eksperymentu
4 kwietnia 2012 Testy nieparametryczne Dotychczas zajmowaliśmy si e praktycznym zastosowaniem testów istotności nasze zadanie sprowadza lo si e do testowania hipotez o parametrach rozk ladu. Teraz b edziemy
Zamiast ogólnych wzorów w przestrzeni euklidesowej o dwolnym wymiarze, rozważmy przestrzeń trójwymiarow a. Przypuśćmy, że ktoś podaje nam równanie
S. D. G lazek, www.fuw.edu.pl/ stglazek, 4.IV.005 I. ROZMAITOŚCI STOPNIA W PRZESTRZENI EUKLIDESOWEJ Rozmaitość drugiego stopnia w przestrzeni euklidesowej to hiperpowierzchnia opisana warunkiem, który
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Wykorzystanie symetrii przy pomiarze rozkładu kąta rozproszenia w procesie pp pp
Wykorzystanie symetrii przy pomiarze rozkładu kąta rozproszenia w procesie pp pp M. Barej 1 K. Wójcik 2 1 Akademia Górniczo-Hutnicza w Krakowie 2 Uniwersytet Śląski w Katowicach 16 września 2016 M. Barej,
Geometria odwzorowań inżynierskich Zadania 04
Scriptiones Geometrica Volumen I (2014), No. Z4, 1 3. Geometria odwzorowań inżynierskich Zadania 04 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Punkt przebicia p laszczyzny prost a w aksonometrii
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
Transformacja Lorentza - Wyprowadzenie
Transformacja Lorentza - Wyprowadzenie Rozważmy obserwatorów zwiazanych z różnymi inercjalnymi uk ladami odniesienia, S i S. Odpowiednie osie uk ladów S i S sa równoleg le, przy czym uk lad S porusza sie
Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.
Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania
MasterClass-międzynarodowy program zajęć dla uczniów szkół średnich
MasterClass-międzynarodowy program zajęć dla uczniów szkół średnich Zakład Fizyki Jądrowej na Wydziale Fizyki: Pracownia Zderzeń Ciężkich Jonów 25.06.2013 MasterClass MasterClass ALICE MasterClass jest
r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC
V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC 1 V.1 WYNIKI LEP 2 e + e - Z 0 Calkowity przekroj czynny 3 4 r. akad. 2008/2009 s Q N 3 4 s M s N Q I M 12 s ) M (s s s 2 f C 2 Z C f f
Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E
Scriptiones Geometrica Volumen I (2014), No. 6E, 1 14. Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa boczna wnȩtrza
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Ćwiczenie 52 Spektroskopia β
Ćwiczenie 52 Spektroskopia β II PRACOWNIA FIZYCZNA UNIWERSYTET ŚLA SKI W KATOWICACH 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przy użyciu spektrometru magnetycznego widm energetycznych elektronów
2.2 Model odsetek prostych 9
2.2 Model odsetek prostych 9 Uwaga 2.2.2 Komentarza wymaga znaczenie stopy bazowej. Z definicji wynika, że i T = FV PV, co wcale nie oznacza, że wartość indeksu i PV T zależy od wartości pocz atkowej PV.Wskaźnik
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj
y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Statystyka w analizie i planowaniu eksperymentu
10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Uruchamianie SNNS. Po uruchomieniu. xgui & lub snns & pojawia si e okno. programu. Symulator sztucznych sieci neuronowych SNNS 1
Uruchamianie SNNS Ca ly pakiet SNNS sk lada si e z programu interfejsu graficznego xgui, oraz z szeregu programów sk ladowych: analyze isnns netlearn snnsbat batchman linknets netperf td_bignet convert2snns
stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv
Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży
edzi (local edge detectors) Lokalne operatory wykrywania kraw
Lokalne operatory wykrywania kraw edzi (local edge detectors) Jeśli dwie reprezentacje sa zbyt odleg le, by można by lo latwo określić transformacje miedzy nimi, to u latwić zadanie można przez wprowadzenie
Geometria odwzorowań inżynierskich dachy 04
Scriptiones Geometrica Volumen I (2014), No. 4, 1 23. Geometria odwzorowań inżynierskich dachy 04 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Obroty i k lady Wykorzystywaliśmy już pojȩcie obrotu
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Dynamika molekularna - gaz van der Waalsa
Hamiltonian uk ladu Dynamika molekularna - gaz van der Waalsa Sk lada siȩ z N atomów u, oddzia luj acych parami miȩdzy sob a oraz ze ściankami sferycznego naczynia. Oddzia lywania opisuje potencja l Lennarda-
A. Kasperski, M. Kulej, BO -Wyk lad 5, Optymalizacja sieciowa 1
A. Kaperki, M. Kulej, BO -Wyk lad, Opymalizacja ieciowa 1 Zagadnienie makymalnego przep lywu (MP). Przyk lad. W pewnym mieście inieje fragmen wodoci agów zadany w poaci naȩpuj acej ieci: 1 Luki oznaczaj
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r
to w pobliżu dna (lub szczytu) pasma (k k 0 ) zależność E(k) jest paraboliczna ale z mas a m m 0 Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane)
Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc
Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag
Liczby naturalne i ca lkowite
Chapter 1 Liczby naturalne i ca lkowite Koncepcja liczb naturalnych i proste operacje arytmetyczne by ly znane już od oko lo 50000 tysiȩcy lat temu. To wiemy na podstawie archeologicznych i historycznych
POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy
POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji
Jeden przyk lad... czyli dlaczego warto wybrać MIESI.
Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Micha l Ramsza Szko la G lówna Handlowa Micha l Ramsza (Szko la G lówna Handlowa) Jeden przyk lad... czyli dlaczego warto wybrać MIESI. 1 / 13 Dlaczego
MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 3 1 0 1 3 Oś liczbowa. Liczby ca lkowite x MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE Prof. dr. Tadeusz STYŠ WARSZAWA 018 1
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
Liniowe uk lady sterowania.
Liniowe uk lady sterowania Rozwi azywanie liniowych rownań stanu Uk lady z czasem ci ag lym Liniowe stacjonarne równania stanu Przyk lad: Uk lad sterowania tarcz a obrotow a prȩt sprȩżysty tarcza obrotowa
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą
Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć
Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą
Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć
Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę
Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę
Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć