Wyobra¹nia matematyczna
|
|
- Bronisław Małek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wyobra¹nia matematyczna Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl 2017 Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
2 Wst p Proste przykªady Czy masz wyobra¹ni matematyczn? Ka»dy z nas ma wyobra¹ni matematyczn. Wa»ne: w jakim zakresie i w jaki sposób z niej korzystamy. Nagroda: satysfakcja poznawcza, ozdrowienie ze zªudze«. Wyobra¹nia matematyczna a my±lenie szybkie i wolne. Kilka klasycznych ilustracji: Butelka z korkiem. Brakuj cy dolar. Wy±cig profesorów. Sznurek dookoªa Ziemi. W drówki nied¹wiedzia. Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
3 Wst p Proste przykªady Czy masz wyobra¹ni matematyczn? Butelka z korkiem. Butelka z korkiem kosztuje 1, 10 zª. Butelka jest o zªotówk dro»sza od korka. Ile kosztuje butelka, a ile korek? Niech cena korka w groszach wynosi x. Wtedy cen butelki jest x Butelka wraz z korkiem kosztuje 110 groszy, a zatem: (x + 100) + x = 110, czyli x = 5. Korek kosztuje 5 groszy, a butelka (bez korka) 105 groszy. Brakuj cy dolar. Do hotelu przybyªo trzech go±ci i zdecydowali si wynaj wspólny pokój. Hotelarz za» daª 30 dolarów, a wi c ka»dy z go±ci daª 10 i zaj li pokój. Nieco pó¹niej hotelarz (mo»na przypuszcza,»e byª protestantem) uznaª,»e za» daª zbyt wiele i ustaliª cen za pokój równ 25 dolarów. Wr czyª 5 dolarów chªopcu hotelowemu z poleceniem, aby zwróciª t kwot go±ciom. Chªopiec (mo»na przypuszcza,»e nie byª protestantem) zatrzymaª dla siebie dwa dolary, a pozostaªe trzy wr czyª go±ciom, ka»demu po dolarze. Policzmy teraz: ka»dy z go±ci zapªaciª ostatecznie za pokój dziewi dolarów, co daje razem 27 dolarów, a chªopiec zatrzymaª dwa dolary, a wi c w sumie mamy 29 dolarów. Gdzie znikn ª brakuj cy dolar? Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
4 Wst p Proste przykªady W drówki pieni dzy Hotelarz Chªopiec Go±cie Etap: ma: ma: maj : Go±cie przychodz do hotelu Go±cie pªac za hotel Hotelarz daje pi tk chªopcu Chªopiec daje trójk go±ciom. Na ko«cu tej przygody hotelarz ma zatem 25 dolarów, chªopiec ma 2 dolary (czyli obaj ª cznie maj 27 dolarów), a go±cie maj 3 dolary. Poniewa» = 30, wi c wszystko si zgadza, nie ma»adnego brakuj cego dolara. Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
5 Wst p Proste przykªady Stare i mªode nied¹wiedzie Wy±cig profesorów. Gdy prof. U. ko«czy wy±cig na 100m, to prof. W. ma jeszcze 10m do mety, a gdy prof. W. ko«czy, to prof. P. ma jeszcze 10m do mety (ka»dy biegnie ze swoj staª pr dko±ci ). Jak daleko byª U. przed P., gdy U. uko«czyª wy±cig? Sznurek dookoªa Ziemi. Obwód Ziemi to ok km. Opasujemy Ziemi ciasno sznurkiem, a potem dodajemy do sznurka 12m i tworzymy okr g lu¹no opasuj cy Ziemi. Czy ten luz wystarczy, aby przepeªzªa pod sznurkiem mrówka? Aby przeczoªgaª si pod nim Kot Prezesa? Aby dumnie wyprostowany przeszedª pod nim sam Prezes? W drówki nied¹wiedzia. Podró»nik maszerowaª kilometr na poªudnie, potem kilometr na wschód, wreszcie kilometr na póªnoc i wróciª do punktu wyj±cia. Gdzie byª ten punkt? Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
6 Wst p Proste przykªady Wstajemy z kolan Wy±cig profesorów. Pr dko±ci: v W = 9 10 v U, v P = 9 10 v W, czyli v P = ( 9 10 )2 v U = v U. Gdy U. triumfuje, P. ma jeszcze 19m do mety. Sznurek dookoªa Ziemi. Niech r b dzie promieniem kuli, a dªugo±ci dodanego sznurka, x szukan wysoko±ci. Wtedy: 2 π (r + x) = 2 π r + a, czyli x = a 2 π. Dla a = 12m nawet Prezes przejdzie w podskokach. W drówki nied¹wiedzia. Biegun Póªnocny to zwykle podawane rozwi zanie. Jest jednak niesko«czenie wiele innych poprawnych rozwi za«. Wskazówki: pomy±l te» o okolicach Bieguna Poªudniowego i przypomnij sobie powie±ci podró»nicze Juliusza Verne'a. Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
7 Wst p Wiedza i umiej tno±ci matematyczne Odkrycie i uzasadnienie Proto-intuicje (intuicje przededukacyjne), zwi zane z naszym uposa»eniem poznawczym: np. subitacja, odró»nienie wewn trz na zewn trz. Intuicje wyksztaªcone przez przemoc symboliczn szkoªy: np. o± liczbowa. Zaawansowane intuicje profesjonalnych matematyków. Umiej tno±ci algorytmiczne. Dowodzenie (kontekst uzasadnienia) jest potwierdzaniem intuicji (kontekst odkrycia). Publikowany wynik matematyczny nie ukazuje kontekstu odkrycia (styl Gaussa a nie styl Eulera). Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
8 Wiedza wªasna i cudza Czekaj c na Le±niczego Czarownica zªapaªa Jasioªa i Mgªosi. Ka»de z nich ma w odosobnieniu rzuci monet i poda wynik rzutu drugiego. Je±li oboje pomyl si, zostan po»arci. Je±li co najmniej jedno odgadnie wynik drugiego, prze»yj dany dzie«. Jasioªowi udaªo si szepn Mgªosi, co powinni mówi, aby odwleka po»arcie. Jak strategi zaproponowaª? Konkurs pi kno±ci. Ka»da z grupy osób ma wybra w sekrecie liczb od 0 do 20. Wygraj te osoby, których liczba jest najbli»sza dwóch trzecich ±redniej arytmetycznej wszystkich podanych liczb. Kto wygra? Dzielenie ªupów. Piraci A, B, C dziel ªup 100 sztuk zªota. Proponuj podziaª w porz dku swojej rangi (A > B > C ). Je±li propozycja nie zostaje przyj ta wi kszo±ci gªosów, jej autor l duje za burt (i proponuje nast pny rang, gªos wa»niejszego decyduje). Jak podziel si ªupem (ceni c wªasne»ycie bardziej od zªota)? Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
9 Wiedza wªasna i cudza Gªodna czarownica, przekora, przekupstwo Mgªosia ma poda swój wynik (jako wynik Jasioªa), a Jasioª wynik odwrotny do swojego (jako wynik Mgªosi): Wynik M: Wynik J: M mówi: J mówi: Traa: O O O R M R R R O M R O R R J O R O O J Konkurs pi kno±ci. Je±li wszyscy wybior t sam liczb, to wszyscy wygrywaj. A co pokazaªy eksperymenty? Dzielenie ªupów. A powinien pozyska gªos C. Ciekawie robi si, gdy piratów jest wi cej: zob. Stewart, I A puzzle for pirates. Scientic American, May 1999, Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
10 Wyobra¹nia przestrzenna Šy»wiarki i parasole Mucha i kropla miodu. Mucha na zewn trz powierzchni bocznej szklanki, kropla miodu wewn trz tej powierzchni. Podaj najkrótsz drog dreptania muchy do kropli. Obªe otoczaki. Nazwijmy ±redniczk gury maj cej ±rodek symetrii dowolny odcinek ª cz cy jej brzegi, przechodz cy przez ów ±rodek symetrii. Czy gura o wszystkich ±redniczkach równych jest koªem? Ósemki na pªaszczy¹nie. Pami tasz,»e rozª cznych okr gów na pªaszczy¹nie jest tyle samo, co liczb rzeczywistych. Ile rozª cznych ósemek narysowa mo»na na pªaszczy¹nie? Paradoks Bertranda. Jakie jest prawdopodobie«stwo,»e losowo wybrana ci ciwa okr gu jest dªu»sza od boku trójk ta równobocznego wpisanego w ten okr g? Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
11 Wyobra¹nia przestrzenna Niekonwencjonalni cykli±ci Mucha i kropla miodu. Rozwijamy powierzchni boczn walca i korzystamy z twierdzenia Herona. Obªe otoczaki. Niekoniecznie: zob. wielok ty Reuleaux. Konstrukcja trójk ta Reuleaux: z wierzchoªków trójk ta równobocznego zakre±l ªuki o promieniu równym dªugo±ci boku trójk ta. Ósemki na pªaszczy¹nie. Ka»dej ósemce przyporz dkujmy par punktów o obu wspóªrz dnych wymiernych, po jednym takim punkcie wewn trz ka»dej z p tli tej ósemki. Wtedy»adne dwie ósemki nie mog mie wspólnej takiej pary punktów. Par liczb wymiernych jest przeliczalnie wiele (tyle samo, co liczb naturalnych). Paradoks Bertranda. 1 2, 1 3 lub 1, w zale»no±ci od wybranej miary (czyli 4 ustalenia przestrzeni probabilistycznej). Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
12 Wyobra¹nia przestrzenna Paradoks Bertranda 1 1 : wykorzystujemy dªugo± ªuku. 3 : wykorzystujemy dªugo± odcinka : wykorzystujemy pole. Rysunek z: Ciesielski, K., Pogoda, Z Królowa bez nobla. Rozmowy o matematyce. Demart, Warszawa, 229. Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
13 Oswajanie niesko«czono±ci Rodzaje niesko«czono±ci Pytania: Niesko«czenie du»e? Niesko«czenie maªe? Niesko«czenie zªo»one? Odpowiedzi: Teoria mnogo±ci Analiza niestandardowa Struktury niearchimedesowe Zªo»ono± obliczeniowa Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
14 Oswajanie niesko«czono±ci Klasyczne zagadki dotycz ce niesko«czono±ci Niesko«czone ªapówki Aporie Zenona Supertasks Hotel Hilberta Gra Smullyana Spirale Róg Gabriela Wypeªnianie przestrzeni Krzywe patologiczne Zbiór Cantora Te oraz bardziej zªo»one przykªady omówimy na dalszych wykªadach. Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
15 Nieoczekiwany egzamin Nauczyciel zapowiada uczniom w poniedziaªek: Którego± dnia w tym tygodniu b dzie egzamin. B dzie niespodziewany, w tym sensie,»e w dniu poprzedzaj cym nie b dziecie wiedzieli,»e nast pnego dnia jest egzamin. Uczniowie rozumuj wtedy tak: w pi tek nie mo»e by egzaminu, bo wtedy w czwartek wiedzieliby±my,»e egzamin b dzie w pi tek. A wi c pi tek odpada. Skoro tak, to i w czwartek nie mo»e by egzaminu, bo w przeciwnym razie wiedzieliby±my o tym ju» w ±rod. I tak dalej, ostatecznie uczniowie konkluduj,»e»adnego dnia w tym tygodniu egzaminu by nie mo»e. Wtedy nauczyciel ogªasza,»e wªa±nie dzi± przeprowadza egzamin. Oczywi±cie, egzamin ten jest niespodziewany. W istocie, profesor powiedziaª dwie rzeczy: 1 Którego± dnia w tym tygodniu b dziesz zdawaª egzamin. 2 Rankiem w dniu egzaminu nie b dziesz wiedziaª,»e jest to wªa±nie dzie«egzaminu. Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
16 Nieoczekiwany egzamin S dz,»e wa»ne jest, aby te dwa stwierdzenia oddzieli od siebie. Mogªo by tak,»e profesor miaª racj w pierwszym stwierdzeniu, a nie miaª jej w drugim. W pi tek rano nie mógªbym bez popadania w sprzeczno± wierzy,»e profesor miaª racj w obu stwierdzeniach, ale mógªbym bez sprzeczno±ci wierzy w jego pierwsze stwierdzenie. Je±li tak jednak uczyni, to nie ma on racji w swoim drugim stwierdzeniu (poniewa» wierz,»e b d poddany egzaminowi tego dnia). Z drugiej strony, je±li w tpi w pierwsze stwierdzenie profesora, to nie wiem, czy b d miaª egzamin tego dnia czy nie, a to znaczy,»e obietnica profesora z drugiego stwierdzenia zostaje speªniona (zakªadaj c,»e dotrzymuje on sªowa i przeprowadza egzamin). Zaskakuj c (nieoczekiwan ) rzecz jest wi c to,»e drugie stwierdzenie profesora jest prawdziwe lub faªszywe w zale»no±ci odpowiednio od tego, czy wierz, czy te» nie w jego pierwsze stwierdzenie. Jedyny zatem sposób, aby profesor miaª (caªkowicie) racj, to ten, gdy w tpi o jego racji; moje w tpliwo±ci wzgl dem niego sprawiaj,»e ma on racj, podczas gdy moje peªne do niego zaufanie sprawia,»e racji on nie ma! Nie wiem, czy ten do± szczególny punkt widzenia byª kiedykolwiek dot d brany pod uwag. Smullyan: Na zawsze nierozstrzygni te, Jerzy Pogonowski (MEG) Wyobra¹nia matematyczna / 16
Czy masz wyobra¹ni matematyczn?
Czy masz wyobra¹ni matematyczn? Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl PFK 2016 Jerzy Pogonowski (MEG) Czy masz wyobra¹ni matematyczn? PFK 2016 1 / 18 Cel Wiewiórki i humanizacja
Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego
Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie
Wojewódzki Konkurs Matematyczny
sumaryczna liczba punktów (wypeªnia sprawdzaj cy) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych.
Stereometria (geometria przestrzenna)
Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy
Co i czym mo»na skonstruowa
Co i czym mo»na skonstruowa Jarosªaw Kosiorek 5 maja 016 Co mo»na skonstruowa? Maj c dany odcinek dªugo±ci 1 mo»na skonstruowa : 1. odcinek dªugo±ci równej dowolnej liczbie wymiernej dodatniej;. odcinek
XVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Ekstremalnie maªe zbiory
Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci
Geometria. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Geometria Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Dane s równania postych, w których zawarte s boki trójk ta ABC : 3x 4y + 36 = 0 x y = 0 4x + 3y + 23 = 0 1. Obliczy wspóªrz dne wierzchoªków
Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.
Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy
Funkcje. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Funkcje Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Uzasadnij,»e równanie x 3 + 2x 2 3x = 6 ma dwa niewymierne pierwiastki. Funkcja f dana jest wzorem f (x) = 2x + 1. Rozwi» równanie f (x +
Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki
Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki 1 Zadania na wiczenia nr 3 - Elementy kombinatoryki Zad. 1. Ile istnieje ró»nych liczb czterocyfrowych zakªadaj c,»e cyfry nie powtarzaj si a
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
Wojewódzki Konkurs Matematyczny
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY 16 listopada 2012 Czas 90 minut Instrukcja dla Ucznia 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych. 2. Obok
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da
VI OIG, Etap II konkurs dru»ynowy. 10 III 2012 Dost pna pami : 32 MB.
Pocisk Pocisk o masie 5g wystrzelono z powierzchni ziemi pionowo w gór z szybko±ci pocz tkow v 0. Jak szybko± b dzie miaª pocisk w chwili, gdy dogoni go odgªos wystrzaªu i na jakiej wysoko±ci to nast pi?
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Algorytmiczna teoria grafów
18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych
X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)
X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. W pewnym sonda»u partia A uzyskaªa o 8 punktów procentowych wi ksze poparcie ni» partia B. Wiadomo,»e liczba gªosów oddanych w sonda»u
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Metodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw
Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw 3 kwietnia 2014 roku 1 / 106 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
Matematyka 1 (Wydziaª Architektury) Lista 1 - funkcje elmenetarne. 2. Rozwi za nast puj ce równania lub nierówno±ci:
Matematka (Wdziaª Architektur) Lista - funkcje elmenetarne UWAGA: Umiej tno±ci potrzebne do rozwi zwania zada«z tej list b d równie» niezb dne prz rozwi zwaniu wszstkich problemów matematcznch, z jakimi
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Strategia czy intuicja?
Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),
Wektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
Lekcja 12 - POMOCNICY
Lekcja 12 - POMOCNICY 1 Pomocnicy Pomocnicy, jak sama nazwa wskazuje, pomagaj Baltiemu w programach wykonuj c cz ± czynno±ci. S oni szczególnie pomocni, gdy chcemy ci g polece«wykona kilka razy w programie.
2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
Maªgorzata Murat. Modele matematyczne.
WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
Teoria grafów i jej zastosowania. 1 / 126
Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2
Elementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Matematyka i Humanistki
Matematyka i Humanistki Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 6 grudnia 2014 Jerzy Pogonowski (MEG) Matematyka i Humanistki 6 grudnia 2014 1 / 7 Wst p Cel
Stereometria. Zimowe Powtórki Maturalne. 22 lutego 2016 r.
Stereometria Zimowe Powtórki Maturalne 22 lutego 2016 r. 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 2 1. Przek
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie
2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona
O pewnym zadaniu olimpijskim
O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby
Ksztaªt orbity planety: I prawo Keplera
V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety
Rachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:
ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +
r = x x2 2 + x2 3.
Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni
Podstawy matematyki dla informatyków
Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru
c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie
7: Spis zagadnie«twierdzenie Kuratowskiego Wªasno±ci planarno±ci Twierdzenie Eulera Grafy na innych powierzchniach Poj cie dualno±ci geometrycznej i abstrakcyjnej Graf Planarny Graf planarny to taki graf,
1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,
XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1
Program Google AdSense w Smaker.pl
Smaker.pl Program Google AdSense w Smaker.pl Pytania i odpowiedzi dotyczące programu Google AdSense Spis treści Czym jest AdSense... 2 Zasady działania AdSense?... 2 Jak AdSense działa w Smakerze?... 3
pobrano z (A1) Czas GRUDZIE
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla
Informatyka. z przedmiotu RACHUNEK PRAWDOPODOBIE STWA
Informatyka Zbiór przykªadowych prac kontrolnych oraz przykªadowych zada«egzaminacyjnych z przedmiotu RACHUNEK PRAWDOPODOBIE STWA Sprawdzian 1, M09-02 Zadanie 1 (1p) W rzucie dwiema kostkami obliczy prawdopodobie«stwo
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Arkusz 4. Elementy geometrii analitycznej w przestrzeni
Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Indeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Materiaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
Zbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12
KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu
➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Lekcja 5 Programowanie - Nowicjusz
Lekcja 5 Programowanie - Nowicjusz Akademia im. Jana Dªugosza w Cz stochowie Programowanie i program wedªug Baltiego Programowanie Programowanie jest najwy»szym trybem Baltiego. Z pomoc Baltiego mo»esz
Lekcja 9 - LICZBY LOSOWE, ZMIENNE
Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my
Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,
Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
Programowanie wspóªbie»ne
1 Zadanie 1: Bar Programowanie wspóªbie»ne wiczenia 6 monitory cz. 2 Napisz monitor Bar synchronizuj cy prac barmana obsªuguj cego klientów przy kolistym barze z N stoªkami. Ka»dy klient realizuje nast
W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba,
2 Procenty W tej lekcji przypomnimy sobie poj cie procentu i zwi zane z nim podstawowe typy zada«. Prosimy o zapoznanie si z regulaminem na ostatniej stronie. 2.1 Poj cie procentu Procent jest to jedna
Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
Logika matematyczna (16) (JiNoI I)
Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16
Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz
Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia
Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2
Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile
PRACOWNIA ZARZĄDZANIA, DIAGNOZY EDUKACYJNEJ I SZKOLNICTWA ZAWODOWEGO ODN W ZIELONEJ GÓRZE
PRACOWNIA ZARZĄDZANIA, DIAGNOZY EDUKACYJNEJ I SZKOLNICTWA ZAWODOWEGO ODN W ZIELONEJ GÓRZE RAPORTY przygotowanie do edukacji wczesnoszkolnej WEWNĄTRZSZKOLNE DIAGNOZOWANIE OSIĄGNIĘĆ Maj 22 Przedszkole i
KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6
KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.
KRYTERIA OCENIANIA ODPOWIEDZI Język POZIOM PODSTAWOWY
rosyjski Zadanie 1. Język rosyjski. Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Język POZIOM PODSTAWOWY Za każde poprawne rozwiązanie przyznajemy 1 punkt. Maksimum 5. 1.1. Ванесса Мэй очаровала зрителей
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Bash i algorytmy. Elwira Wachowicz. 20 lutego
Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad
SPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
Szeregowanie zada« Wykªad nr 5. dr Hanna Furma«czyk. 4 kwietnia 2013
Wykªad nr 5 4 kwietnia 2013 Procesory dedykowane Przypomnienie: zadania s podzielone na operacje (zadanie Z j skªada si z operacji O ij do wykonania na maszynach M i, o dªugo±ciach czasowych p ij ); zadanie
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Zadania. SiOD Cwiczenie 1 ;
1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A
Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej
Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?
Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)
W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie
Kolorowanie punktów na pªaszczy¹nie, czyli kilka sªów o geometrii kombinatorycznej.
Kolorowanie punktów na pªaszczy¹nie, czyli kilka sªów o geometrii kombinatorycznej. Paulina Michta V Liceum Ogólnoksztaªc ce im. Augusta Witkowskiego w Krakowie Opiekun: dr Jacek Dymel 2 1 Wprowadzenie
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
Elementy geometrii analitycznej w przestrzeni
Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad
http://www-users.mat.umk.pl/~pjedrzej/wstep.html 1 Opis przedmiotu Celem przedmiotu jest wyksztaªcenie u studentów podstaw j zyka matematycznego, wypracowanie podstawowych umiej tno- ±ci przeprowadzania
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
Rys.2 N = H (N cos = N) : (1) H y = q x2. y = q x2 2 H : (3) Warto± siªy H, która mo»e by uto»samiana z siª naci gu kabla, jest równa: z (3) przy
XXXV OLIMPIADA WIEDZY TECHNICZNEJ Zawody III stopnia Rozwi zania zada«dla grupy mechaniczno-budowlanej Rozwi zanie zadania Tzw. maªy zwis, a wi c cos. W zwi zku z tym mo»na przyj,»e Rys. N H (N cos N)
TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)
SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej
Matematyczne fantazje kognitywistów
Matematyczne fantazje kognitywistów Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wrocªaw 2013 Jerzy Pogonowski (MEG) Matematyczne fantazje kognitywistów Wrocªaw 2013
Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,
VII Wojewódzki Konkurs Matematyczny "W ±wiecie Matematyki" im. Prof. Wªodzimierza Krysickiego Etap drugi - 17 lutego 2015 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu skªada si