SPRAWDZIANY Z MATEMATYKI
|
|
- Michał Wierzbicki
- 9 lat temu
- Przeglądów:
Transkrypt
1 SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur
2 LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci o ile większy jest obwód kwadratu o boku x +10 od obwodu prostokątaobokach x 1 ix+? 3 3 Zad.. Usuń niewymierność z mianownika: Rozwiąż algebraicznie i graficznie równanie x - 3 = 5. Zad.4. Rozwiąż dowolną metodą układ równań: y= x+ ( x 3) + 5y = ( x 1)( x+ 1) Zad.5. W klasach IIIa i IIIb było razem 57 uczniów. Zorganizowano zawody sportowe, w których wzięło udział 80% uczniów klasy IIIa i 75% uczniów klasy IIIb, co stanowiło razem 44 uczniów. Ile uczniów liczy każda z tych klas? Zad.6. Ile obrotów na minutę robi koło lokomotywy o średnicy 1,5 m, jeżeli pociąg porusza się zprędkością 47,1 km/godz.? Wynik zaokrąglij do całości. Grupa II Zad.1. Zapisz w jak najprostszej postaci o ile mniejsza od liczby x jest średnia arytmetyczna liczb x, x 5 i x 7? 4 3 Zad.. Usuń niewymierność z mianownika: 5 + Rozwiąż algebraicznie i graficznie równanie x - 1 = 4. Zad.4. Rozwiąż dowolną metodą układ równań: x + y = 4 ( x ) ( x y) = 1 (3 x)(3 + x) Zad.5. Zbudowano rurociągdługości 17 m złożony z 3 rur dwojakiego rodzaju, które miały długość po 470 cm i 85 cm odpowiednio. Ile zużyto rur krótkich, a ile dłuższych? Zad.6. Ile obrotów na minutę robi koło lokomotywy o średnicy 1,5 m, jeżeli pociąg porusza się zprędkością 47,1 km/godz.? Wynik zaokrąglij do całości.
3 FUNKCJE GRUPA I Zad.1. Narysuj w układzie współrzędnych przyporządkowanie, które: a. nie jest funkcją b. jest funkcją parzystą Zad.. Narysuj wykres funkcji, który jednocześnie spełnia warunki: a. D = 5;1) (; ) b. funkcja jest malejąca w przedziale ; 3 rosnąca w przedziale ( ; ) Podaj wzór funkcji liniowej przedstawionej na wykresie oraz 5, stała w przedziale 3;1 ) i a. odczytaj współrzędne punktów przecięcia się wykresu funkcji z osiami układu współrzędnych b. określ monotoniczność funkcji c. podaj ćwiartki układu, przez które przechodzi wykres d. odczytaj jakim argumentom odpowiadają dodatnie, a jakim ujemne wartości funkcji e. podaj wzór funkcji liniowej, której wykres jest równoległy do tego wykresu i przechodzi przez punkt P(-1,4) Zad. 4. Funkcja określona jest następująco: każdej liczbie rzeczywistej przyporządkowujemy liczbę przeciwną do jej kwadratu. Podaj wzór tej funkcji, sporządź jej wykres, podaj zbiór wartości oraz określ przedziały monotoniczności.
4 GRUPA II Zad.1. Narysuj w układzie współrzędnych przyporządkowanie, które: a. jest funkcją b. jest funkcją nieparzystą Zad.. Narysuj wykres funkcji, który jednocześnie spełnia warunki: a. D = ( ; 1) 3; ) b. funkcja jest rosnąca w przedziale ( ; 1) stała w przedziale 5; )., malejąca w przedziale ; 5 Podaj wzór funkcji liniowej przedstawionej na wykresie oraz 3 i a. odczytaj współrzędne punktów przecięcia się wykresu funkcji z osiami układu współrzędnych b. określ monotoniczność funkcji c. podaj ćwiartki układu, przez które przechodzi wykres d. odczytaj jakim argumentom odpowiadają dodatnie, a jakim ujemne wartości funkcji e. podaj wzór funkcji liniowej, której wykres jest równoległy do tego wykresu i przechodzi przez punkt P(-1,4) Zad. 4. Funkcja określona jest następująco: każdej liczbie rzeczywistej przyporządkowujemy jej kwadrat. Podaj wzór tej funkcji, sporządź jej wykres, podaj zbiór wartości oraz określ przedziały monotoniczności.
5 UKŁADY RÓWNAŃ Grupa I Zad.1. Zad.. Dopisz drugie równanie tak, aby otrzymać układ: a. oznaczony b. nieoznaczony c. sprzeczny x y = 1... Rozwiąż metodą graficzną układ równań: ( x+ 1) = 1 ( y ) x y= Suma dwóch liczb wynosi 4. Jeżeli jedną znichzwiększymy o 40 %, a drugą zmniejszymy o 4, to suma zwiększy się dwarazy.jakietoliczby? Zad.4. Wyznacz wszystkie liczby całkowite, których różnica kwadratów wynosi 17. Zad.5. Po owalnym torze o długości 0,8 km jeździ dwóch rowerzystów. Jeśli jadą w tym samym kierunku, to mijają się co 1 minut. Jeśli jadą w przeciwnych kierunkach, to mijają się co minuty. Oblicz prędkość każdego z rowerzystów w km/h. Grupa II Zad.1. Zad.. Dopisz drugie równanie tak, aby otrzymać układ: a. oznaczony b. nieoznaczony c. sprzeczny x + y = 3... Rozwiąż metodą graficzną układ równań: y = x + 5 ( y )( y + ) 3x = ( y + 1) 10% pierwszej liczby i 8% drugiej liczby daje w sumie liczbę 83, a 0 % pierwszej i 5% drugiej daje w sumie liczbę 0. Jakie to liczby? Zad.4. Wyznacz wszystkie liczby całkowite, których różnica kwadratów wynosi 13. Zad.5. Po owalnym torze o długości 0,9 km poruszają się motorowerzyści. Jeśli jadą w tym samym kierunku, to mijają się co 5,4 minuty. Jeśli jadą w przeciwnych kierunkach, to mijają się co 1,08 minuty. Oblicz prędkość każdego z motorowerzystów w km/h.
6 WIELOKĄTY, KOŁA I OKRĘGI GRUPA I Zad.1. Oblicz miarę kąta wewnętrznego 15-kąta foremnego. Zad.. Określ wzajemne położenie okręgów o promieniach 3 cm i 5 cm wiedząc, że ichśrodki leżą wodległości 4 cm. Oblicz obwód trójkąta o wierzchołkach A=(-4,), B=(-1,1), C=(,5). Zad.4. Dany jest trójkąt równoboczny o boku a=3. Oblicz jego pole, oraz pole pierścienia kołowego wyznaczonego przez okrąg opisany na tym trójkącie i okrąg wpisany w ten trójkąt. Zad.5. Oblicz długość tej wysokości trójkąta prostokątnego o przyprostokątnych3cmi4cm,która jest poprowadzona do przeciwprostokątnej. GRUPA II Zad.1. Oblicz miarę kąta wewnętrznego 1-kąta foremnego. Zad.. Określ wzajemne położenie okręgów o promieniach cm i 4 cm wiedząc, że ichśrodki leżą wodległości 1 cm. Oblicz obwód trójkąta o wierzchołkach A=(-4,0), B=(5,3), C=(,6). Zad.4. Dany jest trójkąt równoboczny o boku a=5. Oblicz jego pole, oraz pole pierścienia kołowego wyznaczonego przez okrąg opisany na tym trójkącie i okrąg wpisany w ten trójkąt. Zad.5. Oblicz długość tej wysokości trójkąta prostokątnego o przyprostokątnych6cmi8cm,która jest poprowadzona do przeciwprostokątnej.
7 FIGURY PODOBNE GRUPA I Zad.1. Dany odcinek podziel w stosunku : 5. Zad.. Wtrójkącie prostokątnym o przyprostokątnych długości 3 i 6 cm wyznacz długość wysokości poprowadzonej z wierzchołka kąta prostego. Pewna miejscowość zajmuje powierzchnię 1,6 km.jaką powierzchnię zajmuje na mapie o skali 1:100000? Zad.4. Trójkąt ABC, w którym A=(-8,4), B=(-4,-), C=(-,) przekształć przez 1 jednokładność o środku w punkcie (0,0) i skali k =. Zad.5. Dwa zewnętrznie styczne okręgi są stycznedoramionkąt. Odległości ich środków od wierzchołka kąta wynoszą odpowiednio 10 i 15. Oblicz promienie tych okręgów. Zad.1. Dany odcinek podziel w stosunku 3 : 4. GRUPA II Zad.. Wtrójkącie prostokątnym o przyprostokątnych długości i 4 cm wyznacz długość wysokości poprowadzonej z wierzchołka kąta prostego. Pewne miasto zajmuje powierzchnię 0 km.jaką powierzchnię zajmuje na mapie o skali 1: ? Zad.4. Trójkąt ABC, w którym A=(-4,4), B=(4,), C=(-,-4) przekształć przez jednokładność o środku w punkcie (0,0) i skali k = 1. Zad.5. Dwa zewnętrznie styczne okręgi są stycznedoramionkąt. Odległości ich środków od wierzchołka kąta wynoszą odpowiednio 8 i 14. Oblicz promienie tych okręgów.
8 BRYŁY GRUPA I Zad.1. Zad.. Zad.4. Oblicz pole powierzchni całkowitej sześcianu, jeżeli przekątna ściany bocznej ma długość dm. W ostrosłupie prawidłowym czworokątnym kąt między przeciwległymi krawędziami bocznymi ma miarę 90º. Przekątna podstawy ostrosłupa ma długość 5 dm. Oblicz ile metrów drutu potrzeba na wykonanie modelu tego ostrosłupa. Oblicz objętość ostrosłupa prawidłowego sześciokątnego, którego krawędź podstawy ma długość 6 cm, jeśli wysokość ostrosłupa ma długość 11 cm. Stos żwiru ma kształt stożka, którego promień podstawy ma długość m,a tworząca,5 m. Jeden metr sześcienny żwiru waży 3 tony. Oblicz ile ciężarówek o ładowności do 9 ton każda potrzeba do przewiezienia 10 takich stosów. Zad.5. Pewne miasto leży na 60º szerokości geograficznej. Promień kuli ziemskiej ma długość 6300 km. Jaką drogę zakreśla to miasto, na skutek obrotu ziemi dookoła osi, wciągu 45 minut? GRUPA II Zad.1. Oblicz pole powierzchni całkowitej sześcianu, jeżeli przekątna sześcianu ma długość 8 3 cm. Zad.. W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość 1 dm, a krawędź boczna 8 dm. Oblicz długość wysokości ściany bocznej. Oblicz objętość ostrosłupa prawidłowego sześciokątnego, którego krawędź podstawy ma długość 6 cm, jeśli krawędź bocznamadługość 11 cm. Zad.4. Studnia zbudowana jest z 7 kręgów. Każdy krąg ma kształt powierzchni bocznej walca, którego wymiary są następujące: średnica podstawy ma długość 80 cm, a wysokość 60 cm. Jeśli spojrzy się do wnętrza studni, to widać ponad wodą 5 kręgów. Oblicz ile litrów wody znajduje się w tej studni (z dokładnością do 1 litra). Zad.5. Pewne miasto leży na 30º szerokości geograficznej. Promień kuli ziemskiej ma długość 6300 km. Jaką drogę zakreśla to miasto, na skutek obrotu ziemi dookoła osi, wciągu 0 minut?
9
Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk Ocenę dopuszczającą otrzymuje uczeń, który: definiuje notację
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES I. LICZBY I WYRAŻENIA ALGEBRAICZNE Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie notacji wykładniczej. 2. Zna sposób
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6
KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla
Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D
WYMAGANIA EDUKACYJNE W ROKU SZKOLNYM 2014 /2015
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Z MATEMATYKI W KLASIE III GIMNAZJUM W ROKU SZKOLNYM 2014 /2015 Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM LICZBY I WYRAŻENIA ALGEBRAICZNE
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014
WMG DUKCJ Z MTMTK W KLS TRZCJ GMZJUM WG PROGRMU MTMTK Z PLUSM w roku szkolnym 2013/2014 L C Z B OC DOPUSZCZJĄC DOSTTCZ DOBR BRDZO DOBR CLUJĄC zna pojęcie liczby naturalnej, zna pojęcie notacji wykładniczej
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Wymagania na poszczególne oceny klasa 4
Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń:
DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń: Uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,
Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią
Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi
Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne Wielokąty i okręgi zna twierdzenie Pitagorasa rozumie potrzebę stosowania twierdzenia Pitagorasa umie obliczyć
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
ROK SZKOLNY 2012/2013
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH ROK SZKOLNY 2012/2013 OPRACOWANY NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN-5002-17/08
Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)
W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
K P K P R K P R D K P R D W
KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
Zadanie 2. Funkcja jest funkcją kwadratową. Zbiorem wszystkich rozwiązań nierówności f x jest przedział
Zadanie. Na początku roku akademickiego mężczyźni stanowili 40% wszystkich studentów. Na koniec roku liczba wszystkich studentów zmalała o 0% i wówczas okazało się, że mężczyźni stanowią % wszystkich studentów.
Rozkład materiału klasa 1BW
Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,
pobrano z (A1) Czas GRUDZIE
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla
EGZAMIN MATURALNY 2013 MATEMATYKA
entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie (0 ) Obszar standardów Zadanie (0 ) Opis wymagań pojęcia
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie
MATEMATYKA. Zadania maturalne poziom rozszerzony.
MATEMATYKA Zadania maturalne poziom rozszerzony I Liczby, zbiory, wartość bezwzględna b Porównaj liczby a oraz Rozw: b a b a [MRI009/pkt] 8 a, b 7 9 a b, gdzie 69, : cos0 5 6 Uzasadnij, że 6 8 [MR/pkt]
nie zdałeś naszej próbnej matury z matematyki?
Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda
Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz?
ZADANIE 1. (4pkt./12min.) Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz? 1. Wszelkie potrzebne dane
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk
LICZBY I DZIAŁANIA - POZIOM PODSTAWOWY
LICZBY I DZIAŁANIA - POZIOM PODSTAWOWY Zadanie 1. (1 pkt) Liczba 3 30 9 90 jest równa A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zadanie 2. (1 pkt) Liczba 2 40 4 20 jest równa A. 4 40 B. 4 50 C. 8 60 D. 8 800
14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY
14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY
MATEMATYKA Poziom wyższy TEST DYDAKTYCZNY Maksymalna ilość punktów: 50 Próg zaliczenia: 33 % 1 Podstawowe informacje dotyczące zadań Test dydaktyczny zawiera 23 zadania. Czas pracy oznaczono w kartach
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla
Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr 1 im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia.
Aleksandra Zalejko Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia.pl Organizacja kolejnych edycji Konkursu Matematycznego
Załącznik nr 4 do PSO z matematyki
Załącznik nr 4 do PSO z matematyki Wymagania na poszczególne oceny szkolne z matematyki na poziomie rozszerzonym Charakterystyka wymagań na poszczególne oceny: Wymagania na ocenę dopuszczającą dotyczą
i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.
Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM ROK SZKOLNY 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM ROK SZKOLNY 2015/2016 1 Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. pobrano z
Uk ad graficzny CKE 010 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
Kurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut
Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania
Matematyka z plusem dla szkoły ponadgimnazjalnej
1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH Nauczyciel matematyki:
TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3
KLASA IV Pierwszy autobus odjeżdża z przystanku o godzinie 5.30, a następne autobusy odjeżdżają z tego przystanku co 45 minut. Janek przyszedł na przystanek o godzinie 14.22. o ile minut przyszedł za późno
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009
jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów A i B.
Zadanie PP-GA-1. W trójkącie równoramiennym prostokątnym punkt C = ( 3, 1) jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny
Standardowe tolerancje wymiarowe WWW.ALBATROS-ALUMINIUM.COM
Standardowe tolerancje wymiarowe WWW.ALBATROSALUMINIUM.COM Tolerancje standardowe gwarantowane przez Albatros Aluminium obowiązują dla wymiarów co do których nie dokonano innych uzgodnień podczas potwierdzania
Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II
Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II 1.Uzupełnienie treści ujętych w działach klasy I. 1.Rozwiązywanie prostych równań i nierówności z wartością bezwzględną
Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest
KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2011 UZUPE NIA ZESPÓ NADZORUJ CY KOD UCZNIA PESEL miejsce na naklejk z kodem
XIII KONKURS MATEMATYCZNY
XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania
SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM
SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Zasady wystawiania ocen na pierwsze półrocze i koniec roku I. Ocenie podlegają: odpowiedzi ustne, prace pisemne: Kartkówki,
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH opracowane na podstawie programu nauczania Matematyka
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)
SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej
MATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
Program nauczania matematyki
Program nauczania matematyki w klasach 1-3 gimnazjum Policzmy to razem Jerzy Janowicz Zgodny z podstawą z podstawą programową z dnia 23 grudnia 2008 r. Spis treści 1. Ogólna charakterystyka programu 3
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.
EGZAMIN MATURALNY Z MATEMATYKI
pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-P1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2007 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
Plan wynikowy dla klasy 6 Matematyka wokół nas"
Plan wynikowy dla klasy 6 Matematyka wokół nas" NR LEKCJI 3-4 TEMAT LEKCJI Nowy rok szkolny poznajemy program oraz podręcznik do klasy VI. Zapoznanie z systemem oceniania i wymaganiami edukacyjnymi z matematyki.
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale
Zadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3
Zadania zamknięte ZADANIE 1 (1 PKT) Równanie x2 3x+2 = 0 ma: x 2 4 A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki ZADANIE 2 (1 PKT) Liczba b jest 3 razy większa od liczby a. Wtedy
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Przedmiotowy system oceniania z matematyki w klasach IV - VI
Przedmiotowy system oceniania z matematyki w klasach IV - VI 1. Ocenie podlegają: a) wiadomości i umiejętności związane z realizacją podstawy programowej kształcenia ogólnego z matematyki, b) praca na
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2014/2015 Zadanie I. 1. Według podanych współrzędnych punktów wyznaczyć ich położenie w przestrzeni (na jednym rysunku aksonometrycznym) i określić,
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 150 minut ARKUSZ II STYCZE ROK 2005 Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 10