dynamika ver
|
|
- Wiktoria Czarnecka
- 8 lat temu
- Przeglądów:
Transkrypt
1 dynamika ver
2 prawa dynamiki przyczyna zmiany ruchu: siła (oddziaływanie) Sir Isaak Newton ( ) 1. jeżeli na ciało nie działa żadna siła to istnieje układ odniesienia ( zwany inercjalnym ), w którym: v=const 2. w układzie inercjalnym: a = 1 m { x=ma x y =ma y z =ma z
3 przyczynowość siła masa przyspieszenie =m a przyczyna obiekt skutek masa - skalar, addytywna, niezmienna masa jest miarą bezwładności newton: [ ] = kg m2 = N s SI
4 pęd =m d v = d m v dt dt pęd: d p = dt gdy: p =m v = i i =0 d p =0 dt p =const
5 wzajemne oddziaływanie ciał - - m1 m1 m2 3. m2 = AB BA nie równoważą się gdyż działają na różne ciała
6 zasada zachowania pędu gdy w układzie działają tylko siły wewnętrzne: 1 = 2= d p1 dt d p2 =0 1 2 dt d p1 d p 2 =0 dt dt d p p 2 =0 dt 1 ogólniej w układzie odosobnionym: p1 p 2 =const p i =const i
7 środek masy P = pi = m i i def r C = 1 M i mi r i i d r i d = dt dt mi r i i M = m i i jest to środek masy układu ciał d r C d P = M r C =M =M v C dt dt d r C v C = dt prędkość środka masy M a C = zew środek masy porusza się jak punkt materialny
8 całkowanie równań ruchu wielkości zadane: masa m siła = r,v,t d r2 1 dr = r,,t m dt dt 2 t 1 v=v o dt m o t t r=r o v dt =r o o o t 1 vo dt dt m o są to trzy równania różniczkowe, zwyczajne, drugiego rzędu, z warunkami początkowymi (brzegowymi): r 0, v0
9 rozwiązanie t t r=r o v dt =r o o o t 1 v o dt dt m o rozwiązaniem są parametryczne równania ruchu: { x= x t y= y t z= z t
10 przykład mamy: = 0,0, d2x =0 dt 2 =const d2 y =0 dt 2 d2z 1 = dt 2 m t vz= dz 1 t =voz dt = v oz dt m o m t t 2 z= z o v z dt = z o v oz t 2m o t y= y o v y dt = y o v oy t o t x= x o v x dt = x o v ox t o torem jest parabola
11 przykład: napęd rakietowy v0 v(t) m0 dm= μ dt m(t) spaliny wylatują z prędkością u = const m t =m 0 μ t zasada zachowania pędu: uμ dt = m μ dt dv 0
12 Ciołkowski mdv = udm dv= u dm m v v 0=u ln m0 m m0 v t =v 0 u ln m0 μ t Константин Эдуардович Циолковский
13 nieinercjalne ω C v
14 transformacja Galileusza dwa układy inercjalne: y u y r z x, y, z,t x, y, z, t r x z x przy założeniu, że: x 0 = x 0 x = x ut y =y z = z t =t Galileusz
15 niezmienniczość y y u v r r z v x z r = r u t v = v u a = a -u x 2 d r m 2 = dt 2 d r m 2 = dt równania mechaniki klasycznej są niezmiennicze względem transformacji Galileusza
16 nieinercjalne układy odniesienia m a= inny inercjalny: inny nieinercjalny: ruch postępowy a 0 t ruch obrotowy a 0 t, r a = 1 a 0 m a = a a = a a0 b m a = b = m a 0 siła bezwładności
17 siła bezwładności b m a = b = m a 0 -ma0 a0 mg mg a0 = 0 a0 > 0
18 nie do odróżnienia a= /m m
19 siła odśrodkowa z b =mω2 R ω b x R v2 a n =ω R= R Rω=v 2 y układ inercjalny: siła dośrodkowa zakrzywia tor kulki. układ obracający się: siła odśrodkowa równoważy dośrodkową, kulka spoczywa
20 ogólniej z R r b = m ω 2 R ω b =m [ ω r ω ] r ω
21 siła Coriolisa z C = 2 m ω v v ω C C ω v c ω Gaspard Coriolis C v
22 ostatecznie a = a a 0 ω r ω 2 ω v = m a m ω r ω 2m ω v 0 Jean Bernard Léon oucault ( ) Pantenon (1851)
23 skiboard mω 2R R mg
24 zadanie 1 Na płaskiej powierzchni leżą dwa bloczki o masie m1 i m2, połączone nieważką nierozciągliwą nicią. Na bloczek m1 działa pozioma siła. Podaj przyspieszenie układu. Pomijamy siły tarcia. T T m2 m1 { T =m1 a T =m 2 a m2 a=m1 a = m1 m 2 a a= T= m2 m1 m 2 m1 m 2
25 zadanie 2 Rakieta dwustopniowa składa się z modułu 1 o masie 2 ton zawierająego 20 ton paliwa i modułu 2 o masie 0.5 tony zawierającego 3 tony paliwa. Prędkość wylotowa paliwa v0 to 1 km/s. Jaka będzie prędkość rakiety po zużyciu pierwszego członu? Jaka będzie końcowa prędkość rakiety? Jaka byłaby końcowa prędkość rakiety o tej samej masie ale jednoczłonowej? m1 m p1 m2 m p2 km v 1=v 0 log =1.53 m1 m2 m p2 s m2 m p2 km v 2=v 0 log =1.94 m2 s km km km v k = v 1 v 2 = =3.47 s s s m1 m p1 m 2 m p2 km v s =v 0 log =2.32 m1 m 2 s
26 zadanie 3 Oblicz przyspieszenia działające na samochód jadący z prędkością 20 m/s ulicą Nowy Świat w Warszawie na północ. Podaj warości przyspieszeń i ich kierunek i zwrot. Szerokość geograficzna Warszawy to 52 stopnie na północ. Przyspieszenie grawitacyjne m a= g= s Przyspieszenie odśrodkowe m 2 a= R= R Z cos = dzień 360 s Przyspieszenie Coriolisa 2 m 52 2 m a= v = v sin = 20 sin = dzień s 360 s
27 koniec
28 zagadnienia pierwsze prawo Newtona drugie prawo Newtona trzecie prawo Newtona zasada zachowania pędu ruch środka masy transformacja Galileusza układy nieinercjalne siła odśrodkowa siła Coriolisa
29 glossary principle of relativity newtonian laws of motion force, external, internal, central attractive, repulsive, centripetal mass, inertia, centre of mass linear momentum, impulse closed system, isolated, open dynamics (non-) inertial reference frame initial conditions momentum consevation law parabolic trajectory Ciolkowski rocket Galilean transformation of coord. invariance inertial force, centrifugal, Coriolis fictitious force oucault, pendulum action and reaction Newton s cradle
30 newtonian laws of motion irst Law If no external force acts on a particle, then it is possible to select a set of reference frames, called inertial reference frames, observed from which the particle moves without any change in velocity. Second Law Observed from an inertial reference frame, the net force on a particle is proportional to the time rate of change of its linear momentum. Momentum is the product of mass and velocity. This law is often stated as = ma (the force on an object is equal to its mass multiplied by its acceleration). Third Law Whenever A exerts a force on B, B simultaneously exerts a force on A with the same magnitude in the opposite direction. The strong form of the law further postulates that these two forces act along the same line.
31 philosophiae naturalis principia mathematica Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare. An object at rest will remain at rest unless acted upon by an external and unbalanced force. An object in motion will remain in motion unless acted upon by an external and unbalanced force. Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur. The rate of change of momentum of a body is proportional to the resultant force acting on the body and is in the same direction. Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi. All forces occur in pairs, and these two forces are equal in magnitude and opposite in direction.
32 notes The animation describes the motion of a oucault Pendulum at a latitude of 30 N. The plane of oscillation rotates by an angle of -180 during one day, so after two days the plane returns to its original orientation. NB. 1l (H2O) + 1l (C2H5OH) < 2l Schematic representation of flow around a low-pressure area in the Northern hemisphere. The pressure gradient force is represented by blue arrows, the Coriolis acceleration (always perpendicular to the velocity) by red arrows
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
ver grawitacja
ver-7.11.11 grawitacja początki Galileusz 1564-164 układ słoneczny http://www.arachnoid.com/gravitation/small.html prawa Keplera 1. orbity planet krążących wokół słońca są elipsami ze słońcem w ognisku
Siły oporu prędkość graniczna w spadku swobodnym
FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g
Podstawy fizyki sezon 1 II. DYNAMIKA
Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka
Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności
Dynamika Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Fizyka I (Mechanika) Prawa ruchu w układzie obracajacym się siła odśrodkowa siła Coriolissa Zasada zachowania pędu Zasada zachowania
ver teoria względności
ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm
ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Podstawy fizyki sezon 1 II. DYNAMIKA
Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka
Zasady zachowania. Fizyka I (Mechanika) Wykład V: Zasada zachowania pędu
Zasady zachowania Wykład V: Zasada zachowania pędu izyka I (Mechanika) Ruch ciał o zmiennej masie Praca, moc, energia kinetyczna Siły zachowawcze i energia potencjalna Zasada zachowania energii Przypomnienie
Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
ver wektory
ver-12.10.11 wektory wektory (w przestrzeni trójwymiarowej) wektor: długość kierunek zwrot długość: a= a dodawanie: a b= c b a b a mnożenie mnożenie przez skalar: α a= b a α a wersor: e =1 a=a e e x, e
KINEMATYKA (punkt materialny)
KINEMATYKA (punkt materialny) Wykład 2 2012/2013, zima 1 MECHANIKA KINEMATYKA DYNAMIKA Opis ruchu Przyczyny ruchu Wykład 2 2012/2013, zima 2 1 Y RUCH KRZYWOLINIOWY P XY - Układ odniesienia r y - wektor
Obraz Ziemi widzianej z Księżyca
Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną
MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki
MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ.
I zasada dynamiki Newtona
I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ).
O ruchu Założenia kinematyki Najprostsza obserwowana zmiana. Ignorujemy czynniki sprawcze ruchu, rozmiar, kształt, strukturę ciała (punkt materialny). Opis w kategoriach przestrzeni i czasu ( geometria
Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
2.3. Pierwsza zasada dynamiki Newtona
Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa
ZASADY ZALICZANIA PRZEDMIOTU:
WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima
Wykład 2 Mechanika Newtona
Wykład Mechanika Newtona Dynamika jest nauką, która zajmuję się ruchem ciał z uwzględnieniem sił, które działają na ciało. Podstawą mechaniki klasycznej są trzy doświadczalne zasady, które po raz pierwszy
Zasady dynamiki Newtona. dr inż. Romuald Kędzierski
Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym
Modelowanie Fizyczne w Animacji Komputerowej
Modelowanie Fizyczne w Animacji Komputerowej Wykład 2 Dynamika Bryły Sztywnej Animacja w Blenderze Maciej Matyka http://panoramix.ift.uni.wroc.pl/~maq/ Rigid Body Dynamics https://youtu.be/_e70usvrjra
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Słynni matematycy od starożytności po współczesność
Słynni matematycy od starożytności po współczesność Postacie które sobie przybliżymy Pitagoas Tales z Miletu Leonhard Euler Rene Descartes Isaac Newton Archimedes Kazimierz Żorawski Blaise Pascal Pitagoras
Zasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Zasada zachowania pędu
Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań
Wykład 10. Ruch w układach nieinercjalnych
Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
Dynamika: układy nieinercjalne
Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny
Dynamika punktu materialnego Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT
Dynamika punktu materialnego Katarzyna Sznajd-Weron Wykład dla Informatyki WPPT Fizycy lubią pytać Dlaczego? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (Mechanika) Wykład III: Bezwładność I zasada dynamiki, układ inercjalny II zasada dynamiki III zasada dynamiki Bezwładność Bezwładność (inercja) PWN 1998: właściwość układu
Elementy dynamiki mechanizmów
Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Elementy dynamiki mechanizmów
Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła
Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu
Oddziaływania te mogą być różne i dlatego można podzieli je np. na:
DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Ćwiczenie: "Dynamika"
Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne
MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych
MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu
III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.
III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA. Piotr Nieżurawski.
PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/
Fizyka 1(mechanika) AF14. Wykład 5
Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (Mechanika) Wykład V: Bezwładność I zasada dynamiki, układ inercjalny II zasada dynamiki III zasada dynamiki Równania ruchu Więzy Bezwładność Bezwładność (inercja) PWN 1998:
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.
Dynamika. Fizyka I (Mechanika) Wykład VI:
Dynamika Fizyka I (Mechanika) Wykład VI: Siły sprężyste i opory ruchu Prawa ruchu w układzie nieinercjalnym siły bezwładności Zasada zachowania pędu Zasada zachowania momentu pędu Ruch ciał o zmiennej
Elementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
Mechanika i wytrzymałośd materiałów.
1 W1 Mechanika i wytrzymałośd materiałów. Przedmiot obejmuje swym zakresem: 1. Mechanika ogólna: a. STATYKA b. KINEMATYKA c. DYNAMIKA 2. Wytrzymałośd materiałów: i. rozciąganie ii. ściskanie iii. zginanie
Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO.1. Względność ruchu. Układy współrzędnych.. Prędkość i przyspieszenie.3. Ruch prostoliniowy.4. Ruch krzywoliniowy 1 KINEMATYKA PUNKTU MATERIALNEGO
Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia
Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)
Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
r(t): [x(t), y(t), z(t)] y
MECHANIKA KLASYCZNA Tradycyjnie mechanikę klasyczną dzieli się na: - Kinematykę i - Dynamikę 1. KINEMATYKA Kinematyka zajmuje się opisem ruchu ciał bez wnikania w przyczyny ruchu. TOR RUCHU z r(t): [(t),
ver dynamika
ve-1.10.07 dynaika pawa dynaiki Si Isaak Newn (1643 177) pzyczyna ziany uchu: siła (ddziaływanie) 1. jeżeli na ciał nie działa żadna siła isnieje układ dniesienia ( zwany inecjalny ), w kóy: v cns 1. w
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
KINEMATYKA (punkt materialny)
KINEMATYKA (punkt materialny) Wykład 3 2016/2017, zima 1 MECHANIKA KINEMATYKA DYNAMIKA Opis ruchu Przyczyny ruchu Wykład 3 2016/2017, zima 2 Y r RUCH KRZYWOLINIOWY P r OP y XY - Układ odniesienia - wektor
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie
teoria wzgl wzgl dności
ver-8.6.7 teoria względnośi interferometr Mihelsona eter? Albert Mihelson 85 Strzelno, Kujawy 93 Pasadena, Kalifornia Nobel - 97 http://galileoandeinstein.physis.virginia.edu/more_stuff/flashlets/mmexpt6.htm
Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,
Zadania z mechaniki dla nanostudentów. Seria 3. (wykład prof. J. Majewskiego)
Zadania z mechaniki dla nanostudentów Seria 3 (wykład prof J Majewskiego) Zadanie 1 Po równi pochyłej o kącie nachylenia do poziomu równym α zsuwa się klocek o masie m, na który działa siła oporu F = m
Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:
III. DYAMIKA 7. Dynamika ruchu postępowego Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki ewtona. Przykładowe sformułowania tych zasad: I. Istnieje taki układ
Podstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Prawa ruchu: dynamika
Prawa ruchu: dynamika Spis treści 1 Bezwładność 2 I zasada dynamiki 2.1 Zasada bezwładności 2.2 Układ odniesienia 2.3 Ciało izolowane 2.4 Układ inercjalny 3 II zasada dynamiki 3.1 II prawo Newtona 3.2
Mechanika ogólna II Kinematyka i dynamika
Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,
I ZASADA DYNAMIKI. m a
DYNAMIKA (cz.1) Zasady dynamiki Newtona Siły w mechanice - przykłady Zasady zachowania w mechanice Praca, energia i moc Pęd i zasada zachowania pędu Popęd siły Zderzenia ciał DYNAMIKA Oddziaływanie między
Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0
Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się
ZASADY DYNAMIKI NEWTONA
ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania
Zasady dynamiki Newtona
Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź
Dynamika Newtonowska trzy zasady dynamiki
Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac