Słynni matematycy od starożytności po współczesność

Wielkość: px
Rozpocząć pokaz od strony:

Download "Słynni matematycy od starożytności po współczesność"

Transkrypt

1 Słynni matematycy od starożytności po współczesność

2 Postacie które sobie przybliżymy Pitagoas Tales z Miletu Leonhard Euler Rene Descartes Isaac Newton Archimedes Kazimierz Żorawski Blaise Pascal

3 Pitagoras Pitagoras grecki matematyk, filozof, mistyk kojarzony ze słynnym twierdzeniem matematycznym nazwanym jego imieniem. Z relacji anonimowego autora wiadomo, że Pitagoras żył 104 lata, ale większość opisów wzmiankuje jedynie około 80 lat Data i miejsce urodzenia: 571 p.n.e., Samos, Grecja Data i miejsce śmierci: 495 p.n.e., Metapontum, Włochy Żona: Teano Rodzice: Mnesarchus, Pythais Dzieci: Damo, Arignote, Telauges, Myia Rodzeństwo: Themistoclea, Eunomus, Tyrrhenus

4 Twierdzenie Pitagorasa W dowolnym trójkącie prostokątnym suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej tego trójkąta. Zgodnie z oznaczeniami na rysunku obok zachodzi tożsamość

5 Animacja ilustrująca twierdzenie Pitagorasa

6 Leonhard Euler Leonhard Euler (ur. 15 kwietnia 1707 w Bazylei, zm. 18 września 1783 w Petersburgu) szwajcarski matematyk i fizyk. Był pionierem w wielu obszarach obu tych nauk. Większą część życia spędził w Rosji i Prusach. Jest uważany za jednego z najbardziej produktywnych matematyków w historii. Dokonał licznych odkryć w tak różnych gałęziach matematyki jak rachunek różniczkowy i całkowy oraz teoria grafów. Wniósł duży wkład w rozwój terminologii i notacji matematycznej, szczególnie trwały w dziedzinie analizy matematycznej. Jako pierwszy w historii użył na przykład pojęcia i oznaczenia funkcji. Opublikował wiele ważnych prac z zakresu mechaniki, optyki i astronomii.

7 Rene Descartes (Kartezjusz) Kartezjusz francuski filozof, matematyk i fizyk, jeden z najwybitniejszych uczonych XVII wieku. Data i miejsce urodzenia: 31 marca 1596, Descartes, Francja Data i miejsce śmierci: 11 lutego 1650, Sztokholm, Szwecja Wykształcenie: Université de Poitiers ( ), Prytanée National Militaire Dzieci: Francine Descartes Rodzice: Joachim Descartes, Jeanne Brochard

8 Układ współrzędnych kartezjańskich Układem współrzędnych kartezjańskich nazywa się układ współrzędnych, w którym zadane są: punkt zwany początkiem układu współrzędnych, którego wszystkie współrzędne są równe zeru, często oznaczany literą O lub cyfrą 0. zestaw n parami prostopadłych osi liczbowych zwanych osiami układu współrzędnych. Dwie pierwsze osie często oznaczane są jako: X (pierwsza oś, zwana osią odciętych), Y (druga, zwana osią rzędnych),

9 Tales Tales urodził się w Milecie, stolicy starożytnej greckiej prowincji Jonia, nad morzem Egejskim. Jemu zawdzięczamy słynne powiedzenie: "Poznaj samego siebie!" Uważany jest za jednego z "siedmiu mędrców" starożytności, był pierwszym, który ogłosił ogólne wyniki dotyczące obiektów matematycznych. Tales był założycielem jońskiej szkoły filozofów przyrody. Brał aktywny udział w życiu politycznym i gospodarczym swego miasta. Utrzymywał ożywione stosunki handlowe z Egiptem, Fenicją i Babilonią.

10 Twierdzenie Talesa Jeżeli ramiona kąta przecięte są prostymi równoległymi, to odpowiednie odcinki wyznaczone przez te proste na jednym ramieniu kąta są proporcjonalne do odpowiednich odcinków wyznaczonych przez te proste na drugim ramieniu kąta.

11 Isaac Newton Sir Isaac Newton (ur. 25 grudnia stycznia 1643 w Woolsthorpe-by-Colsterworth, zm. 20 marca marca 1727 w Kensington) angielski fizyk, matematyk, astronom, filozof, historyk, badacz Biblii i alchemik. Odkrywca zasad dynamiki.

12 Prawo powszechnego ciążenia Prawo powszechnego ciążenia, zwane także prawem powszechnego ciążenia Newtona, głosi, że każdy obiekt we wszechświecie przyciąga każdy inny obiekt z siłą, która jest wprost proporcjonalna do iloczynu ich mas i odwrotnie proporcjonalna do kwadratu odległości między ich środkami. Wzór :

13 Zasady dynamiki Newtona

14 I zasada dynamiki (zasada bezwładności) W inercjalnym układzie odniesienia, jeśli na ciało nie działa żadna siła lub siły działające równoważą się, to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym. Lex I. Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare. ''

15 II zasada dynamiki W inercjalnym układzie odniesienia jeśli siły działające na ciało nie równoważą się (czyli wypadkowa sił jest różna od zera), to ciało porusza się z przyspieszeniem wprost proporcjonalnym do siły wypadkowej, a odwrotnie proporcjonalnym do masy ciała. Współczynnik proporcjonalności jest równy odwrotności masy ciała:

16 III zasada dynamiki (zasada akcji i reakcji) Oddziaływania ciał są zawsze wzajemne. W inercjalnym układzie odniesienia siły wzajemnego oddziaływania dwóch ciał mają takie same wartości, taki sam kierunek, przeciwne zwroty i różne punkty przyłożenia (każda działa na inne ciało). '' Lex III. Actioni contrariam semper et aequalem esse reactionem; sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi

17 Blaise Pascal Francuski matematyk, fizyk i filozof religii. Był niezwykle uzdolnionym dzieckiem, wyedukowanym przez ojca. Jego wczesne dzieła powstawały spontanicznie, lecz w istotny sposób przyczyniły się do rozwoju nauki. Miał on znaczący wkład w konstrukcję mechanicznych kalkulatorów i mechanikę płynów; sprecyzował także pojęcia ciśnienia i próżni, uogólniając prace Torricellego. W swoich opracowaniach bronił metody naukowej. Pascal był przede wszystkim matematykiem, wniósł znaczący wkład w powstanie i rozwój dwóch nowych działów wiedzy. Już jako szesnastolatek napisał pracę obejmującą zagadnienia geometrii rzutowej później zaś wraz z Pierre'em de Fermatem rozważał kwestie teorii prawdopodobieństwa, wywierając tym samym niemały wpływ na rozwój nowoczesnej ekonomii i nauk społecznych.w następstwie doświadczonego przezeń w roku 1654 mistycznego przeżycia porzucił działalność naukową, poświęcając się filozofii i teologii. Z tego okresu jego życia pochodzą dwa najbardziej znane dzieła Pascala: Prowincjałki i Myśli. Przez całe życie borykał się z problemami zdrowotnymi; zmarł w wieku 39 lat.

18 Dokonania

19 Trójkąt Pascala Trójkąt Pascala trójkątna tablica liczb. Uważa się, że trójkąt ten został odkryty na przełomie XI i XII w. przez Chińczyków i niezależnie przez Omara Chajjama XI. W XVII w. matematyk francuski Blaise Pascal połączył studia nad prawdopodobieństwem z tym trójkątem, osiągając tak znakomite wyniki, że trójkąt ten nazwany został trójkątem Pascala.

20 Działanie

21 Prawdopodobieństwo Ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz prawdopodobieństwo odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę przewidywalności bądź pewności względem zjawiska (przy danej o nim wiedzy), co umożliwia ocenę potencjalnie związanego z nim ryzyka.

22 Kazimierz Żorawski Matematyk, autor prac z teorii form różniczkowych, teorii niezmienników całkowych, kinematyki ośrodków ciągłych i geometrii różniczkowej. Studia matematyczne ukończył na Uniwersytecie Warszawskim (UW). Następnie studiował w Niemczech, w Lipsku (gdzie uzyskał doktorat) i w Getyndze. Po powrocie do kraju podjął pracę naukową i dydaktyczną, uzyskał habilitację i był profesorem Uniwersytetu Jagiellońskiego (UJ), a następnie politechniki i uniwersytetu w Warszawie. W okresie zaborów Ż. był obok S. Zaremby jednym z dwóch liczących się w świecie matematyków pol. - jedynym jakiego wymienia matematyk niem. F. Klein w swym dziele o rozwoju matematyki w XIX w. Badania Ż. dotyczyły gł. zagadnień konstrukcji niezmienników przekształceń różniczkowych, tworów geometrycznych, a także stworzonej przez matematyka franc. H. Poincarégo i matematyka norw. M. S. Liego teorii niezmienników całkowych. Ż. uzyskał również ważne wyniki w teorii ruchu ośrodka ciągłego i ciała sztywnego, w dziedzinie równań różniczkowych oraz w geometrii różniczkowej. Większość badań Ż. opublikował jedynie w języku pol., co ograniczyło ich znajomość do wąskiego kręgu matematyków pol. Niektóre wyniki badań zostały po latach ponownie uzyskane, opublikowane i przypisane innym matematykom. Prace Ż. wywarły wpływ na osiągnięcia W. Ślebodzińskiego.

23 Archimedes Archimedes z Syrakuz-grecki filozof przyrody i matematyk, urodzony i zmarły w Syrakuzach; wykształcenie zdobył w Aleksandrii. Był synem astronoma Fidiasza i prawdopodobnie krewnym lub powinowatym władcy Syrakuz Hierona II.W czasie drugiej wojny punickiej kierował pracami inżynieryjnymi przy obronie Syrakuz. Rzymianie myśleli, że sami bogowie bronią miasta, gdyż skonstruowane przez Archimedesa i schowane za murami machiny ciskały pociski w ich stronę. Archimedes został zabity przez żołnierzy rzymskich po zdobyciu miasta, mimo wyraźnego rozkazu dowódcy, Marcellusa, by go ująć żywego. Później gorzko tego żałowano. Na życzenie Archimedesa na jego nagrobku wyryto kulę, stożek i walec.historię życia Archimedesa przyrównuje się często do procesu podbijania Starożytnej Grecji przez Republikę rzymską. Rzymianie swą okupacją spowodowali stagnację w rozwoju tak bogatej kultury, nauki i filozofii hellenistycznej, ale jednocześnie zachowali ogromny szacunek dla greckich osiągnięć, z których niejednokrotnie czerpali. Symbolem tego faktu jest właśnie śmierć Archimedesa zabitego przez rzymskiego legionistę w chwili roztrząsania jakiegoś problemu matematycznego, a następnie z honorami pochowanego przez rzymskiego wodza. Zanim odcięto mu głowę miał powiedzieć noli turbare circulos meos, co znaczy nie zamazuj moich kół

24 Prawo Archimedesa Podstawowe prawo hydro- i aerostatyki określające siłę wyporu. Nazwa prawa wywodzi się od jego odkrywcy Archimedesa z Syrakuz.Wersja współczesna: Na ciało zanurzone w płynie (cieczy, gazie lub plazmie) działa pionowa, skierowana ku górze siła wyporu. Wartość siły jest równa ciężarowi wypartego płynu. Siła ta jest wypadkową wszystkich sił parcia płynu na ciało.stara wersja prawa: Ciało zanurzone w cieczy lub gazie traci pozornie na ciężarze tyle, ile waży ciecz lub gaz wyparty przez to ciało.

25 Działanie prawa Archimedesa

26 Podsumowanie Dziś poznaliśmy: Twierdzenie Pitagorasa 3 Zasady dynamiki Newtona Układ współrzędnych kartezjańskich Twierdzenie Tales Trójkąt Pascala Prawdopodobieństwo Prawo Archimedesa

27 Wykonawcy Kamil Kurczyk Michał Fołta Jakub Krzempek

O układzie współrzędnych. Kinga Kolczyńska - Przybycień

O układzie współrzędnych. Kinga Kolczyńska - Przybycień Spis tresci 1 Spis tresci 1 Każdy z was na pewno w swoim życiu widział mapę W naturalny sposób powstaje pytanie po co w ogóle są mapy? Najbardziej prostą odpowiedzią jest to, że pomagają w przemieszczaniu

Bardziej szczegółowo

Wzór Eulera z wykorzystaniem klocków Reko

Wzór Eulera z wykorzystaniem klocków Reko Wzór Eulera z wykorzystaniem klocków Reko Bartłomiej Zemlik Klasa IVa Szkoła Podstawowa im. Bohaterów Monte Cassino w Kętach ul. Wyspiańskiego 1 32-650 Kęty Opiekun dr Katarzyna Wadoń-Kasprzak 1 Spis Treści

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

(ok p.n.e.)

(ok p.n.e.) (ok. 572-497 p.n.e.) Pitagoras pochodził z wyspy Samos. Znany jest głównie z słynnego twierdzenia o trójkącie prostokątnym, powszechnie zwanego jako twierdzenie Pitagorasa. Twierdzenie Pitagorasa ilustracja

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

Spis treści: 3. Geometrii innych niż euklidesowa.

Spis treści: 3. Geometrii innych niż euklidesowa. Matematyka Geometria Spis treści: 1. Co to jest geometria? 2. Kiedy powstała geometria? 3. Geometrii innych niż euklidesowa. 4. Geometrii różniczkowej. 5. Geometria. 6. Matematyka-konieckoniec Co to jest

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Grecki matematyk, filozof, mistyk PITAGORAS

Grecki matematyk, filozof, mistyk PITAGORAS Grecki matematyk, filozof, mistyk PITAGORAS FAKTY I MITY Dotarcie do prawdy związanej z życiem Pitagorasa jest bardzo trudne, ponieważ nie zostawił on po sobie żadnego pisma. Wywarł jednak ogromny wpływ

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Grawitacja okiem biol chemów i Linuxów.

Grawitacja okiem biol chemów i Linuxów. Grawitacja okiem biol chemów i Linuxów. Spis treści 1. Odrobina teorii 2. Prawo powszechnego ciążenia 3. Geotropizm 4. Grawitacja na małą skalę ciężkość ciał 5. Grawitacja nie z tej Ziemi 6. Grawitacja

Bardziej szczegółowo

Troszkę Geometrii. Kinga Kolczyńska - Przybycień

Troszkę Geometrii. Kinga Kolczyńska - Przybycień Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Kilka słów o mierzeniu Otóż jak sama nazwa Geometria (z gr geo-ziemia, metria-miara) ma ona coś wspólnego

Bardziej szczegółowo

Zasady dynamiki przypomnienie wiadomości z klasy I

Zasady dynamiki przypomnienie wiadomości z klasy I Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka)

Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka) 2012 Katedra Fizyki SGGW Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Ćwiczenie 402 Godzina... Wyznaczanie siły wyporu i gęstości ciał WIELKOŚCI FIZYCZNE JEDNOSTKI WALEC (wpisz

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22. Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Leonhard Euler ur. 15 kwietnia 1707 w Bazylei zm. 18 września 1783 w Petersburgu uważany za jednego z najbardziej produktywnych matematyków w historii

Leonhard Euler ur. 15 kwietnia 1707 w Bazylei zm. 18 września 1783 w Petersburgu uważany za jednego z najbardziej produktywnych matematyków w historii Leonhard Euler Leonhard Euler ur. 15 kwietnia 1707 w Bazylei zm. 18 września 1783 w Petersburgu uważany za jednego z najbardziej produktywnych matematyków w historii Dzieciństwo i młodość przeprowadzka

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie

Bardziej szczegółowo

Twierdzenie Pitagorasa

Twierdzenie Pitagorasa Imię Nazwisko: Paweł Rogaliński Nr indeksu: 123456 Grupa: wtorek 7:30 Data: 10-10-2012 Twierdzenie Pitagorasa Tekst artykułu jest skrótem artykułu Twierdzenie Pitagorasa zamieszczonego w polskiej edycji

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Cud grecki. Cud grecki. Wrocław, 2 marca 2016

Cud grecki. Cud grecki. Wrocław, 2 marca 2016 Wrocław, 2 marca 2016 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Wykształcenie podstawowe

Bardziej szczegółowo

J. Szantyr - Wykład 5 Pływanie ciał

J. Szantyr - Wykład 5 Pływanie ciał J. Szantyr - Wykład 5 Pływanie ciał Prawo Archimedesa Na każdy element pola ds działa elementarny napór Napór całkowity P ρg S nzds Główny wektor momentu siły naporu M ρg r nzds S dp Αρχίµηδης ο Σΰρακοσιος

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1

GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1 GSP077 klasa Pakiet 6 KArty pracy MateMatyka Ekstraklasa 6klasisty matematyka kpracy 6 pak.indd 9/24/3 2:2 PM Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania zapisz długopisem

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo

"Bialska Liga Matematyczna Gimnazjalistów" II EDYCJA Harmonogram i zakres materiału

Bialska Liga Matematyczna Gimnazjalistów II EDYCJA Harmonogram i zakres materiału "Bialska Liga Matematyczna Gimnazjalistów" II EDYCJA Harmonogram i zakres materiału Etap I Termin konkursu: 15 października 2014 r. godz. 17.00 Wyniki konkursu: do 25 października 2014r. 1. Matematyka-

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328 Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań

Bardziej szczegółowo

ZASADY DYNAMIKI NEWTONA

ZASADY DYNAMIKI NEWTONA ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Max liczba pkt. Rodzaj/forma zadania. Zasady przyznawania punktów zamknięte 1 1 p. każda poprawna odpowiedź. zamknięte 1 1 p.

Max liczba pkt. Rodzaj/forma zadania. Zasady przyznawania punktów zamknięte 1 1 p. każda poprawna odpowiedź. zamknięte 1 1 p. KARTOTEKA TESTU I SCHEMAT OCENIANIA - szkoła podstawowa Nr zadania Cele ogólne 1 I. Wykorzystanie pojęć i Cele szczegółowe II.5. Uczeń nazywa ruchem jednostajnym ruch, w którym droga przebyta w jednostkowych

Bardziej szczegółowo

JOANNA GONDEK UNIWERSYTET GDAŃSKI INSTYTUT FIZYKI DOŚWIADCZALNEJ ZAKŁAD DYDAKTYKI FIZYKI 3 XII 2015 TORUŃ

JOANNA GONDEK UNIWERSYTET GDAŃSKI INSTYTUT FIZYKI DOŚWIADCZALNEJ ZAKŁAD DYDAKTYKI FIZYKI 3 XII 2015 TORUŃ O DOBRZE ZNANYCH ZASADACH DYNAMIKI NEWTONA JOANNA GONDEK UNIWERSYTET GDAŃSKI INSTYTUT FIZYKI DOŚWIADCZALNEJ ZAKŁAD DYDAKTYKI FIZYKI DOBRZE ZNANE ZASADY DYNAMIKI NEWTONA I. Jeśli na ciało nie działajążadne

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

dynamika ver

dynamika ver dynamika ver-18.10.11 prawa dynamiki przyczyna zmiany ruchu: siła (oddziaływanie) Sir Isaak Newton (1643 1727) 1. jeżeli na ciało nie działa żadna siła to istnieje układ odniesienia ( zwany inercjalnym

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Oddziaływania Grawitacja

Oddziaływania Grawitacja Oddziaływania Grawitacja OPRACOWANIE Oddziaływania. Żadne ciało nie jest wolne od oddziaływania innych ciał na nie. Każdy z nas poddany jest przyciąganiu ziemskiemu, które utrzymuje nas na powierzchni

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h

Bardziej szczegółowo

Funkcja liniowa - podsumowanie

Funkcja liniowa - podsumowanie Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (Mechanika) Wykład III: Bezwładność I zasada dynamiki, układ inercjalny II zasada dynamiki III zasada dynamiki Bezwładność Bezwładność (inercja) PWN 1998: właściwość układu

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA System rzymski. Powtórzenie i utrwalenie umiejętności z zakresu podstawy

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ 1) ocenę celującą otrzymuje uczeń, który spełnił wymagania na ocenę bardzo dobrą oraz: - umie zapisać i odczytać w

Bardziej szczegółowo

Wykłady z Fizyki. Grawitacja

Wykłady z Fizyki. Grawitacja Wykłady z Fizyki 04 Zbigniew Osiak Grawitacja OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

HISTORIA MATEMATYKI. Wykonali: Marcin Bugno Kacper Janek Natalia Koszyk Anna Przybycień Klaudia Wisłocka

HISTORIA MATEMATYKI. Wykonali: Marcin Bugno Kacper Janek Natalia Koszyk Anna Przybycień Klaudia Wisłocka HISTORIA MATEMATYKI Wykonali: Marcin Bugno Kacper Janek Natalia Koszyk Anna Przybycień Klaudia Wisłocka Zarys prezentacji: 1. Początki matematyki 2. Sławni matematycy 3. Zalety umiejętności matematyki

Bardziej szczegółowo

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowana liczba godzin POMIARY I RUCH 12 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy

Bardziej szczegółowo

mgr Anna Hulboj Treści nauczania

mgr Anna Hulboj Treści nauczania mgr Anna Hulboj Realizacja treści nauczania wraz z wymaganiami szczegółowymi podstawy programowej z fizyki dla klas 7 szkoły podstawowej do serii Spotkania z fizyką w roku szkolnym 2017/2018 (na podstawie

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Naukowcy, którzy nie bali się wierzyć

Naukowcy, którzy nie bali się wierzyć Artykuł pobrano ze strony eioba.pl Naukowcy, którzy nie bali się wierzyć ( fot. sxc.hu ) Po przeczytaniu słynnej książki Richarda Dawkinsa "Bóg urojony", w której autor krytykuję religię i propaguje tezę,

Bardziej szczegółowo

Historia matematyki. Ci, którym tak wiele zawdzięczamy

Historia matematyki. Ci, którym tak wiele zawdzięczamy Historia matematyki Ci, którym tak wiele zawdzięczamy Tales z Miletu (ok. 620 - ok. 540 p.n.e.), filozof, matematyk i astronom grecki, jeden z twórców tzw. szkoły jońskiej. Rozpoczął systematyzowanie wiedzy

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

DOBRE PRAKTYKI ERASMUS +

DOBRE PRAKTYKI ERASMUS + DOBRE PRAKTYKI ERASMUS + mgr Mirosława Studzińska Lekcja fizyki Temat zajęć: Lekcja powtórzeniowa. Zasady dynamiki. Praca, moc, energia mechaniczna Metody: Praca w grupie uczniowie w grupach wykonują wylosowane

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie trzeciej technikum po zasadniczej szkole zawodowej

Scenariusz lekcji matematyki w klasie trzeciej technikum po zasadniczej szkole zawodowej Scenariusz lekcji matematyki w klasie trzeciej technikum po zasadniczej szkole zawodowej Temat: Geometria analityczna powtórzenie. Cele lekcji: Głównym celem lekcji jest diagnoza stopnia osiągnięcia standardów

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

CZTERY ŻYWIOŁY. Q=mg ZIEMIA. prawo powszechnej grawitacji. mgr Andrzej Gołębiewski

CZTERY ŻYWIOŁY. Q=mg ZIEMIA. prawo powszechnej grawitacji. mgr Andrzej Gołębiewski CZTERY ŻYWIOŁY mgr Andrzej Gołębiewski W starożytności cztery żywioły (ziemia, powietrze, woda i ogień) uznawano jako podstawę do życia na ziemi. ZIEMIA Ziemia była nazywana żywicielką. Rośliny i zwierzęta

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo