DYNAMICZNE MODELE EKONOMETRYCZNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "DYNAMICZNE MODELE EKONOMETRYCZNE"

Transkrypt

1 DYNAICZNE ODELE EKONOERYCZNE IX Ogólnoolsie Seminarium Nauowe, 6 8 września 005 w oruniu Katedra Eonometrii i Statystyi, Uniwersytet iołaja Koernia w oruniu Jace Kwiatowsi Uniwersytet iołaja Koernia w oruniu Bayesowsie testowanie rocesów SUR analiza indesów i sółe notowanych na GPW. Wstę Przerowadzone w ostatnim czasie badania emiryczne dotyczące rocesów maroeonomicznych i finansowych wsazują, że rocesy te mogą osiadać losowy ierwiaste jednostowy. Procesy te oreślane mianem rocesów ze stochastycznym ierwiastiem jednostowym (SUR) ze względu na wystęujący w nich losowy arametr są częściowo stacjonarne lub niestacjonarne. Celem rezentowanego artyułu jest rzedstawienie w oarciu o wniosowanie bayesowsie wyniów badań dotyczących identyfiacji rocesów ze stochastycznym ierwiastiem jednostowym dla wybranych sółe i indesów giełdowych notowanych na GPW w Warszawie. Na gruncie lasycznym, wynii dotyczące identyfiacji modeli SUR zamieścili w swoich racach m.in. Leybourne, ccabe i remayne (996), Granger i Swanson (997), Sollis, Leybourne i Newbold (000), Kwiatowsi i Osińsa (004), Kwiatowsi (004). W zaresie wniosowania bayesowsiego badania emiryczne rzerowadzili Jones i arriott (999). Szerszy ois bayesowsiej analizy rocesów (SUR) można znaleźć w artyule Kwiatowsiego (005). Jao wcześniejsza racę z tego zaresu należy wymienić artyuł Jonesa i arriotta (999), w tórym rzedstawiono bayesowsą estymację modelu SUR w wersji Grangera i Swansona (997). W rezentowanym artyule roonuje się natomiast wyorzystanie modelu SUR w wersji Leybourne, ccabe i remayne (996), tóra zdaniem autora Praca zrealizowana w ramach rojetu badawczego nr H0B 05 5; jwiat@uni.torun.l

2 8 Jace Kwiatowsi jest łatwiejsza w stosowaniu i znacznie mniej wymagająca od strony numerycznej. Uład artyułu jest nastęujący. Część druga rzedstawia model ze stochastycznym ierwiastiem jednostowym oraz związane z nim wniosowanie bayesowsie. Część trzecia zawiera badania emiryczne rzerowadzone dla wybranych sółe i indesów giełdowych notowanych na GPW w Warszawie. W części czwartej zamieszczone są wniosi.. odel i wniosowanie bayesowsie Rozważaną rerezentację modelu SUR (stochastic unit roots rocess) można rzedstawić nastęująco: gdzie y = β y + ε, t t t t t = α + φ βt α φ βt ( ) ( α) t β + η, () yt oznacza realizację rocesu w chwili t. Losowy arametr β t jest sta- ε i η są białymi szumami cjonarnym rocesem autoregresyjnym. Procesy t odowiednio z wariancjami σ i ω. Dodatowo załada się, że są wzajemnie niezależne. Jeżeli jest rocesem błądzenia rzyadowego to wariancja białego szumu ω y t równa jest zero. Dodatowo bezwarunowa wariancja w równaniu () ma zdegenerowany rozład w zerze. Dla ω > 0 () jest rocesem ze stochastycznym ierwiastiem jednostowym. Parametr w tym modelu zmienia się w czasie woół jedyni, zatem jest to roces, tóry jest częściowo stacjonarny lub niestacjonarny. Przyjmując, że arametr β t jest rocesem autoregresyjnym rzędu drugiego oraz załadając, że rozład obserwacji i nieobserwowanego arametru w modelu SUR jest warunowym rozładem normalnym możemy zaisać: y t y ( β y ) t βt, σ ~ N t t,, σ, dla t + ( ) β t βt, βt, α, φ, φ, ω ~ N α φi βt i α, ω. () i= W szczególnych rzyadach, w tórych stochastyczny ierwiaste jednostowy jest rocesem autoregresyjnym rzędu ierwszego lub białym szumem wystarczy założyć w (), że odowiednie wsółczynnii autoregresji są równe zero tj. φ i = 0, i =,. W oarciu o wymienione wyżej założenia gęstość róbową w modelu SUR można rzedstawić nastęująco: ( y y ) ( ) 0, β, θ = N α + φi βt i α, ω N( βt yt, σ ), (3) t= i= t= t

3 Bayesowsie testowanie rocesów SUR... 9 σ gdzie θ = ( α, φ, φ, ω, )', R ( ) α, Φ = (, φ )' C φ, ω R +, σ R+, β = β, β,..., ' R ; - oznacza liczbę obserwacji, natomiast - jest β obszarem zmienności arametrów, rzy tórych roces autoregresyjny w modelu () jest stacjonarny. Jeżeli rzyjmiemy założenie o niezależności arametrów w modelu SUR, to rozład a riori wetora θ jest iloczynem gęstości brzegowych rozładów jego sładowych: ( θ) ( α) ( φ ) ( φ ) ( ω ) ( ) =. (4) σ Dla wszystich arametrów rzyjęto standardowe rozłady właściwe: ( ) ( α = N µ α, σα ), ( ) (, φ = N µ φ σ ) φ, ( φ ) ( ) N µ, φ σ φ ( ω ) = IG( a,b ), ( ) = IG( a,b ) gdzie ( µ,σ ) =, C σ, (5) N oznacza rozład normalny o średniej µ i wariancji σ, natomiast IG ( a, b) oznacza odwrócony rozład gamma z arametrami a > 0, b > 0. Ze względu na fat, że arametr β t jest częścią modelu, można założyć, że wszystie zawarte o nim informacje znajdują się w funcji wiarygodności (Jones i arriott, 999; Jostova i Philiov, 004). Stąd łączny rozład a osteriori wetora θ będący iloczynem rozładu a riori (5) i róbowej gęstości (3) ma ostać: (, θ y, y0 ) N( µ α, σα ) N( µ φ, σφ ) N( µ φ, σφ ) IG( a, b ) IG( a, b β ) N α + φi t i t= i= = α, ω N βt yt, σ ). (6) t ( β ) ( W celu otrzymania brzegowych rozładów a osteriori można zastosować algorytm Gibbsa, tóry jest jedną z bardziej oularnych metod stosowanych we wniosowaniu bayesowsim do wyznaczenia róbowych gęstości brzegowych i ich charaterysty. Poszczególne rozłady brzegowe wyorzystywane rzy algorytmie Gibbsa dla sładowych wetora θ oraz dla losowego arametru β t znajdują się w racy Kwiatowsiego (005). Jednym z fundamentalnych zagadnień w analizie szeregów czasowych jest wybór odowiedniego modelu. Dla modelu SUR w ostaci () możemy badać rząd autoregresji dla losowego arametru β t. Dodatowo można weryfiować czy analizowany roces ma stały, czy też zmienny w czasie ierwiaste jednostowy. estowanie modeli odbywa się rzez orównanie ich mocy wyja- Rozłady rezentowane w artyule można znaleźć m.in. w siążce Gelmana,Carlina, Sterna i Rubina (995).

4 0 Jace Kwiatowsi śniającej. Przyjmując założenie, że dwa modele ( i ) są a riori jednaowo rawdoodobne orównanie mocy wyjaśniającej można doonać za omocą czynnia Bayesa, tóry dany jest wzorem: oznacza brzegową gęstość wetora obserwacji w mo- ( z i ) ij ( z j ) gdzie ( z ) ( = i, j) delu. Czynni Bayesa więszy od jedyni ( >) B =, (7) ij i j B oznacza, że model jest bardziej rawdoodobny niż model j. Jednym z odstawowych zagadnień we wniosowaniu bayesowsim jest obliczenie brzegowej gęstości wetora obserwacji: ( z ) ( Θ ) ( z Θ ) dθ =,, (8) =. Niestety ze względu na złożoność zagadnień bardzo rzado daje się ją obliczyć analitycznie. W rzyadu modeli SUR, gdzie wyorzystywany jest algorytm Gibbsa, tóry jest częścią metod numerycznych oreślanych jao metody onte Carlo wyorzystujące łańcuchy arowa 3, naturalnym narzędziem do estymacji brzegowej gęstości jest średnia harmoniczna dana wzorem (Newton i Raftery, 994): gdzie onurujące modele rerezentuje zbiór {,,... } N ( n) ( z ) = ( z Θ N n=, ), (9) ( ) i ( n) gdzie Θ są realizacjami z łańcucha arowa, natomiast z oznacza wetor obserwacji. Estymator ten (N-R) jest łatwy w użyciu. Wymagana jest tylo znajomość róbowej gętości y Θ, oraz realizacji z rozładu a osteriori. Główną wadą tego estymatora jest jego niestabilność, onieważ nie sełnia on centralnego twierdzenia granicznego (Carlin i Louis, 000). Z ratycznego untu widzenia dzieje się ta, onieważ bardzo małe wartości funcji wiarygodności w znaczny sosób wywierają wływają na wielość średniej harmonicznej. Oazuje się jedna, że dla wielu aliacji, algorytm N-R jest stabilny, bliso rawdziwej wartości brzegowej gęstości i z owodzeniem może być stosowany dla wielu zastosowań (Osiewalsi i Piień, 004). 3 arow Chain onte Carlo methods (CC).

5 Bayesowsie testowanie rocesów SUR.... Identyfiacja SUR na GPW Bayesowsie testowanie modeli rzerowadzono dla wybranych indesów i sółe notowanych na GPW w Warszawie w oresie od stycznia 000 do ońca wietnia 005. W artyule doonano analizy szeregów tygodniowych, o urzednim ich zlogarytmowaniu. Badaniu odlegały główne indesy: WIG, WIG0, IDWIG i ECHWIG oraz sółi. Ich szczegółowy wyaz znajduje się w tablicy. Dla ażdego rocesu rozważono cztery onurencyjne i wzajemnie wyluczające się modele. Rozważano możliwość istnienia rocesu ze stałym ierwiastiem jednostowym, czyli weryfiowano hiotezę, że badane rocesy odlegają błądzeniu rzyadowemu (model ). Dodatowo rozważono trzy rerezentacje rocesu SUR. Analizowano czy zmienny ierwiaste jednostowy może być oisany rzez roces biało-szumowy (model ; SUR;WN), roces autoregresyjny rzędu ierwszego (model AR()) lub drugiego (model zatem nastęującą ostać: : y t = ε t, : y t = β t yt + ε t, β = α +, 4 t η t 3 : y t = β t yt + ε t, β t = α + φ ( βt α) + ηt, 4 : y t = β t yt + ε t, β t = α + φ ( βt α) + φ( βt α) + ηt. 3 ; SUR; ; SUR; AR()). Poszczególne modele mają estowanie modeli odbywało się orzez obliczenie brzegowej gęstości wetora obserwacji za omocą estymatora Newtona i Raftery iego (994). Gęstość brzegowa dla ażdego modelu była obliczona w oarciu o łańcuch arowa, tóry sładał się z miliona iteracji. oc wyjaśniającą dla oszczególnych modeli orównywano za omocą czynnia Bayesa (7). W celu estymacji i testowania modeli rzyjęto rozład a riori, tóry wyraża stosunowo niewielą informację wstęną o arametrach: ( θ ) = ( α ) ( φ ) ( φ ) ( ω ) ( σ ) = N ( 0,0) N( 0,0) N( 0,0) IG( 0,0,0,0) IG( 0,0,0,0). = Ze względu na duże roziętości otrzymanych wartości, wynii logarytmowano. Zlogarytmowane czynnii Bayesa dla oszczególnych modeli obliczone względem modelu błądzenia rzyadowego rzedstawia tabela. Pogrubioną czcioną zaznaczono modele, tóre są najbardziej rawdoodobne. W rzyadach na 5 najbardziej rawdoodobny oazał się model błądzenia rzyadowego. Jest to model ze stałym ierwiastiem jednostowym. Wszystie

6 Jace Kwiatowsi analizowane indesy są rocesami zintegrowanymi rzędu ierwszego. Wśród analizowanych sółe najbardziej referowany jest również roces błądzenia rzyadowego. ylo trzy sółi to rocesy tyu SUR, czyli ze zmiennym ierwiastiem jednostowym. Są to ieszo, illenium i Otimus. W więszości rzyadów losowy arametr w rocesach SUR nie wyazuje autoorelacji, czyli jest białym szumem. abela. Logarytm dziesiętny czynniów Bayesa ( ) Badane rocesy log obliczony względem 0 B RWj modelu błądzenia rzyadowego dla wybranych indesów i sółe Błądzenie rzyadowe SUR;WN SUR; AR() 3 SUR; AR() 4 WIG WIG IDWIG ECHWIG APAOR BRE BZWBK DEBICA HANDLOWY IESZKO ILLENIU OPIUS PROCHNIK PSA WAWEL Źródło: Obliczenia własne. 3. Wniosi W artyule rzedstawiono modele ze stochastycznym ierwiastiem jednostowym SUR. Dodatowo omówiono bayesowsie testowanie tych modeli. Badania identyfiacji rocesów SUR dotyczyły wybranych sółe i indesów giełdowych notowanych na GPW w Warszawie. W oarciu o wynii rzerowadzonych badań można stwierdzić, że więszość analizowanych indesów i sółe wyazuje stały ierwiaste jednostowy. ylo ila z nich, mianowicie ieszo, illenium i Otimus to rocesy SUR.

7 Bayesowsie testowanie rocesów SUR... 3 Literatura Box, G.E.P., Jenins, G.. (976), ime Series Analysis: Forecasting and Control, San Francisco, Holden-Day. Carlin, B.P., Louis,.A. (000), Bayes and Emirical Bayes ethods for Data Analysis, New Yor, Chaman & Hall/CRC. Gelman, A., Carlin J., Stern, H., Rubin, D. (997), Bayesian Data Analysis, London, Chaman & Hall. Granger, C.W.J., Swanson, N.R. (997), An Introduction to Stochastic Unit root Process, Journal of Econometrics, vol. 80, Jones, C.R., arriott, J.. (999), A Bayesian analysis of stochastic unit root models, Bayesian Statistics, vol. 6, Jostova, G., Philiov, A. (004), Bayesian analysis of stochastic betas, Journal of Financial and Quantitative Analysis, w druu. Newton,.A., Raftery, A.E. (994), Aroximate Bayesian inference by the weighted lielihood bootstra (with discussion), Journal of the Royal Statistical Society B, vol. 56, Kwiatowsi, J. (004), aximum lielihood estimation of stochastic unit root models with GARCH disturbances, raca nieubliowana. Kwiatowsi, J. (005), A Bayesian analysis of SUR models, raca nieubliowana. Kwiatowsi, J., Osińsa,. (004), Forecasting SUR rocesses. A comarison to threshold and GARCH models, raca nieubliowana. Leybourne, S.J., ccabe, B.P.., ills,.c. (996), Randomized unit root rocesses for modelling and forecasting financial time series: theory and alications, Journal of Forecasting, vol. 5, Leybourne, S.J., ccabe, B.P.., remayne, A.R (996), Can economic time series be differenced to stationarity? Journal of Business and Economic Statistics, vol. 4, Osiewalsi, J., Piień,. (004), Bayesian comarison of bivariate ARCH-tye models for main exchange rates in Poland, Journal of Econometrics, vol. 3, Sollis, R., Leybourne, S.J., Newbold, P. (000), Stochastic unit roots modelling of stoc rice indices, Alied Financial Economics, vol. 0, 3 35.

Jacek Kwiatkowski Uniwersytet Mikołaja Kopernika w Toruniu. Bayesowskie testowanie procesów STUR analiza indeksów i spółek notowanych na GPW 1

Jacek Kwiatkowski Uniwersytet Mikołaja Kopernika w Toruniu. Bayesowskie testowanie procesów STUR analiza indeksów i spółek notowanych na GPW 1 DYNAICZNE ODELE EKONOERYCZNE IX Ogólnoolskie Seminarium Naukowe, 6 8 września 005 w oruniu Katedra Ekonometrii i Statystyki, Uniwersytet ikołaja Koernika w oruniu Uniwersytet ikołaja Koernika w oruniu

Bardziej szczegółowo

WYBRANE MODELE ZAWIERAJĄCE STOCHASTYCZNY PIERWIASTEK JEDNOSTKOWY W ANALIZIE KURSÓW WALUTOWYCH 1 1. WSTĘP

WYBRANE MODELE ZAWIERAJĄCE STOCHASTYCZNY PIERWIASTEK JEDNOSTKOWY W ANALIZIE KURSÓW WALUTOWYCH 1 1. WSTĘP PRZEGLĄD STATYSTYCZNY R. LVIII ZESZYT 3-4 0 JACEK KWIATKOWSKI WYBRANE MODELE ZAWIERAJĄCE STOCHASTYCZNY PIERWIASTEK JEDNOSTKOWY W ANALIZIE KURSÓW WALUTOWYCH. WSTĘP Granger i Swanson [5] wykazali że finansowe

Bardziej szczegółowo

Metody probabilistyczne Rozwiązania zadań

Metody probabilistyczne Rozwiązania zadań Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

Stacjonarność Integracja. Integracja. Integracja

Stacjonarność Integracja. Integracja. Integracja Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnoolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Koernika w Toruniu Wyższa Szkoła Informatyki i Ekonomii

Bardziej szczegółowo

Sygnały stochastyczne

Sygnały stochastyczne Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie

Bardziej szczegółowo

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y

Bardziej szczegółowo

Badanie stacjonarności szeregów czasowych w programie GRETL

Badanie stacjonarności szeregów czasowych w programie GRETL Badanie stacjonarności szeregów czasowych w programie GRETL Program proponuje następujące rodzaje testów stacjonarności zmiennych:. Funcję autoorelacji i autoorelacji cząstowej 2. Test Diceya-Fullera na

Bardziej szczegółowo

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1 Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych ZIP 007/008 (zaoczne) Rozłady zmiennych losowych I. X zmienna losowa soowa. Rozład zero jedynowy X rzybiera dwie wartości: i 0 Jeśli P(X ), to (X ) q P gdyż P(X ) P(X ) Rozład zmiennej losowej jest rozładem

Bardziej szczegółowo

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie procesów finansowych z długą pamięcią w średniej i wariancji

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie procesów finansowych z długą pamięcią w średniej i wariancji DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Piotr Fiszeder Uniwersytet Mikołaja

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać: RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od

Bardziej szczegółowo

Dynamiczne stochastyczne modele równowagi ogólnej

Dynamiczne stochastyczne modele równowagi ogólnej Dynamiczne stochastyczne modele równowagi ogólnej mgr Anna Sulima Instytut Matematyki UJ 8 maja 2012 mgr Anna Sulima (Instytut Matematyki UJ) Dynamiczne stochastyczne modele równowagi ogólnej 8 maja 2012

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyi,. 311 Wyład 3 PLAN: - Reetitio (brevis) - Algorytmy mięiej selecji: algorytmy ewolucyjne symulowane wyżarzanie -Zastosowanie

Bardziej szczegółowo

Prawdopodobieństwo i rozkład normalny cd.

Prawdopodobieństwo i rozkład normalny cd. # # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl

Bardziej szczegółowo

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004 Kody uffmana oraz entroia rzestrzeni rodutowej Zuzanna Kalicińsa maja 4 Otymalny od bezrefisowy Definicja. Kod nad alfabetem { 0, }, w tórym rerezentacja żadnego znau nie jest refisem rerezentacji innego

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych

Bardziej szczegółowo

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności

Bardziej szczegółowo

Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH

Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (dodatek 3) Modele MGARCH 1 / 11 Ogólna specykacja modelu MGARCH Ogólna posta dla N-wymiarowego procesu

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Uniwersytet Ekonomiczny w Krakowie Katedra Ekonometrii i Badań Operacyjnych

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Wykład 13 Druga zasada termodynamiki

Wykład 13 Druga zasada termodynamiki Wyład 3 Druga zasada termodynamii Entroia W rzyadu silnia Carnota z gazem dosonałym otrzymaliśmy Q =. (3.) Q Z tego wzoru wynia, że wielość Q Q = (3.) dla silnia Carnota jest wielością inwariantną (niezmienniczą).

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Modele zapisane w przestrzeni stanów

Modele zapisane w przestrzeni stanów Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy

Bardziej szczegółowo

Laboratorium Metod i Algorytmów Sterowania Cyfrowego

Laboratorium Metod i Algorytmów Sterowania Cyfrowego Laboratorium Metod i Algorytmów Sterowania Cyfrowego Ćwiczenie 3 Dobór nastaw cyfrowych regulatorów rzemysłowych PID I. Cel ćwiczenia 1. Poznanie zasad doboru nastaw cyfrowych regulatorów rzemysłowych..

Bardziej szczegółowo

OPTYMALIZACJA PROCESU ZRYWKI DREWNA W ASPEKCIE SKAŻENIA ŚRODOWISKA NATURALNEGO

OPTYMALIZACJA PROCESU ZRYWKI DREWNA W ASPEKCIE SKAŻENIA ŚRODOWISKA NATURALNEGO Inżynieria Rolnicza 13/2006 dolf Janeče *, Kazimierz Rutowsi **, Radomír damovsý *** * Česá zemědělsá univerzita v Praze, Faulta lesnicá a environmentální ** Katedra Inżynierii Rolniczej i Informatyi ademia

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

Podstawowe modele probabilistyczne

Podstawowe modele probabilistyczne Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje

Bardziej szczegółowo

Dynamiczne modele liniowe w badaniach okresowych

Dynamiczne modele liniowe w badaniach okresowych Dynamiczne modele liniowe w badaniach okresowych Katedra Statystyki UE w Poznaniu O czym będzie mowa? badamy zmienność pewnego parametru w czasie w pewnej populacji co pewien okres losujemy próbę na podstawie

Bardziej szczegółowo

4. Weryfikacja modelu

4. Weryfikacja modelu 4. Weryfiacja modelu Wyznaczenie wetora parametrów struturalnych uładu ończy etap estymacji. Kolejnym etapem jest etap weryfiacji modelu. Przeprowadza się ją w dwóch ujęciach: merytorycznym i statystycznym.

Bardziej szczegółowo

(u) y(i) f 1. (u) H(z -1 )

(u) y(i) f 1. (u) H(z -1 ) IDETYFIKACJA MODELI WIEERA METODAMI CZĘSTOTLIWOŚCIOWYMI Opracowanie: Anna Zamora Promotor: dr hab. inż. Jarosław Figwer Prof. Pol. Śl. MODELE WIEERA MODELE WIEERA Modele obietów nieliniowych Modele nierozłączne

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

Afiniczne rekursje stochastyczne z macierzami trójkatnymi

Afiniczne rekursje stochastyczne z macierzami trójkatnymi Afiniczne rekursje stochastyczne z macierzami trójkatnymi Ewa Damek (Uniwersytet Wrocławski ) (wyniki wspólne z Witoldem Światkowskim, Jackiem Zienkiewiczem - Uniwersytet Wrocławski, Muneya Matsui - Nanzan

Bardziej szczegółowo

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16 Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ

Bardziej szczegółowo

Heteroskedastyczość w szeregach czasowyh

Heteroskedastyczość w szeregach czasowyh Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009

STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar

Bardziej szczegółowo

1.3 Przestrzenie ilorazowe

1.3 Przestrzenie ilorazowe 1.3 Przestrzenie ilorazowe Niech X 0 będzie odrzestrzenią liniową X 0, +, rzestrzeni liniowej X, +,. Oreślmyzbiór x + X 0 := {x + y : y X 0 }. Zbiór ten nazywamy warstwą elementu x X względem odrzestrzeni

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Anna Janiga-Ćmiel WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Wrowadzenie W rozwoju każdego zjawiska niezależnie od tego, jak rozwój ten jest ukształtowany rzez trend i wahania, można wyznaczyć

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1 WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli

Bardziej szczegółowo

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika

Bardziej szczegółowo

STATYSTYKA USZKODZEŃ W ELEKTROWNIACH ZAWODOWYCH

STATYSTYKA USZKODZEŃ W ELEKTROWNIACH ZAWODOWYCH Maszyny Eletryczne - Zeszyty Problemowe Nr 1/2016 (109) 185 Sławomir Szymaniec Politechnia Oolsa, Oole SAYSYKA USZKODZEŃ W ELEKROWNIACH ZAWODOWYCH SAISICS OF FAILURES IN ELECRIC POWER SAION Streszczenie:

Bardziej szczegółowo

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ KINETYKA POLIKONDENSACJI POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ KINETYKA POLIKONDENSACJI POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDA FIZYKOCHEMII I TECHNOLOGII POLIMEÓW Prowadzący: Joanna Strzezi Miejsce ćwiczenia: Załad Chemii Fizycznej, sala 5 LABOATOIUM Z KATALIZY HOMOGENICZNEJ I HETEOGENICZNEJ

Bardziej szczegółowo

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

6. Inteligentne regulatory rozmyte dla serwomechanizmów

6. Inteligentne regulatory rozmyte dla serwomechanizmów 6. Inteligentne regulatory rozmyte dla serwomechanizmów Pojęcie regulatorów inteligentnych, w onteście niniejszego rozdziału, oreśla ułady sterowania owstałe rzy użyciu techni wywodzących się z ludzich

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

Własności estymatorów regresji porządkowej z karą LASSO

Własności estymatorów regresji porządkowej z karą LASSO Własności estymatorów regresji porządkowej z karą LASSO Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Warszawski Badania sfinansowane ze środków Narodowego Centrum Nauki przyznanych w ramach finansowania

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate

Modelowanie przepływu cieczy przez ośrodki porowate Modelowanie rzeływu cieczy rzez ośrodi orowate Wyład IV Model D dla rzyadu rzeływu cieczy nieściśliwej rzez ory nieodształcalnego szieletu. 4.. Funcja otencjału rędości. Rozwiązanie onretnego zagadnienia

Bardziej szczegółowo

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne. opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi

Bardziej szczegółowo

WSPÓŁCZYNNIK DWUMODALNOŚCI BC I JEGO ZASTOSOWANIE W ANALIZACH ROZKŁADÓW ZMIENNYCH LOSOWYCH

WSPÓŁCZYNNIK DWUMODALNOŚCI BC I JEGO ZASTOSOWANIE W ANALIZACH ROZKŁADÓW ZMIENNYCH LOSOWYCH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/3, 2014, str. 20 29 WSPÓŁCZYNNIK DWUMODALNOŚCI BC I JEGO ZASTOSOWANIE W ANALIZACH ROZKŁADÓW ZMIENNYCH LOSOWYCH Aleksandra Baszczyńska, Dorota Pekasiewicz

Bardziej szczegółowo

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO ELEKTRYKA 2012 Zeszyt 3-4 (223-224) Ro LVIII Piotr KOZIERSKI Instytut Automatyi i Inżynierii Informatycznej, Politechnia Poznańsa Marcin LIS Instytut Eletrotechnii i Eletronii Przemysłowej, Politechnia

Bardziej szczegółowo

Filtracja pomiarów z głowic laserowych

Filtracja pomiarów z głowic laserowych dr inż. st. of. Paweł Zalewsi Filtracja pomiarów z głowic laserowych słowa luczowe: filtracja pomiaru odległości, PNDS Założenia filtracji pomiaru odległości. Problem wyznaczenia odległości i parametrów

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

Metody Ekonometryczne

Metody Ekonometryczne Metody Ekonometryczne Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 4 Uogólniona Metoda Najmniejszych Kwadratów (GLS) 1 / 19 Outline 1 2 3 Jakub Mućk Metody Ekonometyczne

Bardziej szczegółowo

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP Załączni nr Do Szczegółowych Zasad Prowadzenia Rozliczeń Transacji rzez KDPW_CCP Wyliczanie deozytów zabezieczających dla rynu asowego (ozycje w acjach i obligacjach) 1. Definicje Ileroć w niniejszych

Bardziej szczegółowo

ANALIZA WPŁYWU BŁĘDÓW DYNAMICZNYCH W TORZE SPRZĘŻENIA ZWROTNEGO NA JAKOŚĆ REGULACJI AUTOMATYCZNEJ

ANALIZA WPŁYWU BŁĘDÓW DYNAMICZNYCH W TORZE SPRZĘŻENIA ZWROTNEGO NA JAKOŚĆ REGULACJI AUTOMATYCZNEJ ELETRYA 5 Zeszyt 4 (36) Ro LXI Henry URZĘDNICZO Instytut Metrologii, Eletronii i Automatyi, Politechnia Śląsa w Gliwicach ANALIZA WPŁYWU BŁĘDÓW DYNAMICZNYCH W TORZE SPRZĘŻENIA ZWROTNEGO NA JAOŚĆ REGULACJI

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,

Bardziej szczegółowo

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: STATYSTYKA W MODELACH NIEZAWODNOŚCI I ANALIZIE PRZEŻYCIA Nazwa w języku angielskim: STATISTICS IN RELIABILITY MODELS AND

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo

Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10

Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10 Metoda Monte Carlo Jerzy Mycielski grudzien 2012 Jerzy Mycielski () Metoda Monte Carlo grudzien 2012 1 / 10 Przybliżanie całek Powiedzmy, że mamy do policzenia następującą całkę: b f (x) dx = I a Założmy,

Bardziej szczegółowo

Różne rozkłady prawdopodobieństwa

Różne rozkłady prawdopodobieństwa Różne rozłady prawdopodobieństwa. Rozład dwupuntowy D(p). Zmienna losowa ξ ma rozład D(p), jeżeli P p {ξ = 0} = p oraz P p {ξ = } = p. Eξ = p D ξ = p( p). Rozład dwumianowy Bin(n, p). Zmienna losowa ξ

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo