Filtracja pomiarów z głowic laserowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Filtracja pomiarów z głowic laserowych"

Transkrypt

1 dr inż. st. of. Paweł Zalewsi Filtracja pomiarów z głowic laserowych słowa luczowe: filtracja pomiaru odległości, PNDS Założenia filtracji pomiaru odległości. Problem wyznaczenia odległości i parametrów ruchu mierzonego puntu adłuba dotyczy oszacowania chwilowego stanu uładu dynamicznego na podstawie pomiarów tego stanu, przy założeniu, że zarówno pomiar, ja i sam proces przetwarzania wewnątrz uładu są obarczone błędem. Rozwiązanie tego problemu możliwe jest poprzez zastosowanie filtru Kalmana lub inaczej reurencyjnego algorytmu dysretnej liniowej filtracji [1,,3]. Załada się, że załócenia i błędy pomiarów są białym szumem typu gaussowsiego. W taim wypadu problem pomiarów odległości za pomocą czujnia laserowego dotyczy oszacowania stanu x n R dysretnego procesu, tóry jest opisywany przez następujące stochastyczne równanie liniowe w chwili (model dynamii stanu): x = A 1 x 1 w (1), natomiast model pomiaru z m R jest opisany następująco: z = H x v (), gdzie: A 1 - macierz przejścia ( n) H - macierz ( n) n wiążąca stan uładu w chwili -1 ze stanem w chwili, m wiążąca stan x z pomiarem z w chwili, w, - zmienne losowe, reprezentujące błąd (szum) przetwarzania (procesu) i pomiaru, v tórych funcje rozładu prawdopodobieństwa są typu gaussowsiego (zmienne o rozładzie normalnym): ( w ) N( 0, Q ), p( v ) N( 0 R ) p,, a funcje gęstości prawdopodobieństwa są równe: 1 ( ) ( w ) µ w 1 f w = exp, f ( v ) = exp σ w π σ w σ v π σ v gdzie: ( v µ ) Q - miara zmienności białego szumu definiowanego zmienną w, dla rozładu normalnego równa wariancji σ w, R - miara zmienności białego szumu definiowanego zmienną v, dla rozładu normalnego równa wariancji σ v, µ, - parametry wartości średnich błędu przetwarzania i pomiaru, w µ v σ w, σ v - parametry odchyleń standardowych błędu przetwarzania i pomiaru, v (3), 47

2 Niech n xˆ R oznacza estymatę a priori stanu uładu x w chwili, czyli wiedzę o procesie przed tym momentem, oraz n xˆ R oznacza estymatę a posteriori stanu w chwili, czyli wiedzę na podstawie pomiaru z : x ˆ A x (4) = ˆ 1 Na tej podstawie można zdefiniować estymaty błędu e a priori i a posteriori oraz odpowiadające im macierze owariancji P : T - estymaty a priori: e x x, P E[ e e ] T - estymaty a posteriori: e x x, P E[ e e ] ˆ, (5) ˆ. (6) Zasada reurencji dla filtru Kalmana polega na tym, że w danej chwili -tej, doonywany jest pomiar stanu z, na podstawie tórego oraz estymaty a priori w chwili -1 wyznaczana jest estymata a posteriori x ˆ 1. Służy ona następnie do predycji estymaty stanu xˆ w następnym, -tym momencie. A zatem równania opisujące filtr Kalmana dzielą się na dwie ategorie: równania atualizujące w chwili -1 oraz równania predycyjne dla chwili. xˆ 1 Predycja 1 Opóźnienie cylu Atualizacja Rys. 1. Schemat modelu predycyjno-atualizacyjnego filtru Kalmana. xˆ W związu z powyższym otrzymujemy pięć równań Kalmana: 1. równanie estrapolacji stanu (4): x ˆ A xˆ (7) = 1. równanie estrapolacji owariancji błędu procesu: T P = A P 1 A Q (8) 3. równanie wzmocnienia: T [ H P H R ] 1 K (9) T = P H 4. równanie atualizacji stanu: xˆ xˆ K z H xˆ (10) [ ] = 5. równanie atualizacji owariancji błędu procesu: P I K H P (11) gdzie: I - macierz jednostowa o wymiarze [ ] = P, a indes T oznacza transponowanie macierzy 48

3 Symulacja filtracji pomiaru odległości. Przyładowy algorytm symulacji filtracji pomiaru odległości sensorem laserowym zaimplementowany w środowisu MATLAB na podstawie [] przedstawiono poniżej: function alman_dist(duration, dt) % function alman_dist(duration, dt) - symulacja filtru Kalmana % duration = czas trwania symulacji [s] % dt = odstęp pomiarowy [s] % dists = początowa odległość [m] measnoise = 1; % odchylenie st. - błąd pomiaru odległości [m] accelnoise = -0.01; % zmienność stanu reprezentowana przyśpieszeniem procesu [m/sec^] dists = 10; A = [1 dt; 0 1]; % macierz przejścia H = [1 0]; % macierz wiążąca stan x z pomiarem x = [dists; 0]; % początowy wetor stanu xest = x; % początowa estymata stanu Q = accelnoise^ * [dt^4/4 dt^3/; dt^3/ dt^]; % m. owariancji błędu oszacowania procesu zmiany stanu (odległości) w wyniu ruchu adłuba P = Q; % m. owariancji początowej estymacji R = measnoise^; % m. owariancji błędu pomiaru % ustalenie rozmiaru wetora innowacji Inn = zeros(size(r)); pos = []; % macierz rzeczywistych odległości posest = []; % macierz estymowanych odległości posmeas = []; % macierz pomiarów Counter = 0; for t = 0 : dt: duration, Counter = Counter 1; % Symulacja procesu ProcessNoise = accelnoise * randn * [(dt^/); dt]; x = A * x ProcessNoise; % Symulacja pomiaru MeasNoise = measnoise * randn; z = H * x MeasNoise; % Innowacja Inn = z - H * xest; % Kowariancja innowacji s = H * P * H' R; % Macierz wzmocnienia K = A * P * H' * inv(s); % Estymata stanu xest = A * xest K * Inn; % Kowariancja błędu predycji P = A * P * A' Q - K * H * P * A'; % Zapis parametrów odległości, ich estymat i pomiarów pos = [pos; x(1)]; posest = [posest; xest(1)]; posmeas = [posmeas; z]; end 49

4 % Wyres symulacji t = 0 : dt : duration; t = t'; plot(t,pos,'r',t,posest,'g',t,posmeas,'b'); grid; xlabel('czas [s]'); ylabel('odleglosc [m]'); title('symulacja filtru Kalmana'); W powyższym algorytmie ruch mierzonego puntu adłuba zasymulowano poprzez dobór parametrów macierzy A i wetora ProcessNoise. Macierz A jest macierzą przejścia uładu ze stanu poprzedniego do bieżącego w oresie dt, wetor ProcessNoise jest wetorem chwilowego przyśpieszenia uzmiennionego według rozładu normalnego funcją randn Problem wyznaczenia odległości i parametrów ruchu mierzonego puntu adłuba dotyczy oszacowania chwilowego stanu uładu dynamicznego na podstawie pomiarów tego stanu, przy założeniu, że zarówno pomiar, ja i sam proces przetwarzania wewnątrz uładu są obarczone błędem. Rozwiązanie tego problemu możliwe jest poprzez zastosowanie filtru Kalmana lub inaczej reurencyjnego algorytmu dysretnej liniowej filtracji [1,,3]. Załada się, że załócenia i błędy pomiarów są białym szumem typu gaussowsiego. W taim wypadu problem pomiarów odległości za pomocą czujnia laserowego dotyczy oszacowania stanu x n R dysretnego procesu, tóry jest opisywany przez następujące stochastyczne równanie liniowe w chwili (model dynamii stanu): 1. czas symulacji równy 60s;. dt = 0,5s; 3. początowa odległość równa 10m; 4. odchylenie standardowe pomiaru odległości równe 1m; 5. odchylenie standardowe przyśpieszenia (w procesie ruchu) równe 0,01m/s ; 6. zmienne odległości i przyśpieszenia generowane według rozładu normalnego. Kolorem czerwonym oznaczono rzeczywiste odległości, olorem niebiesim pomierzone odległości, olorem zielonym odległości estymowane filtrem Kalmana. 50

5 13 Symulacja filtru Kalmana Odleglosc [m] Czas [s] Rys.. Symulacja filtracji pomiaru odległości sensorem laserowym. Filtracja pomiarów rzeczywistych odległości. W algorytmie filtracji rzeczywistych pomiarów symulację procesu i pomiaru w algorytmie z rozdz. zastąpią rzeczywiste dane pomiarowe. Rysune 3 przedstawia pracę zbudowanego filtra w środowisu MATLAB dla parametrów: 1. czas symulacji równy 60s;. dt = 1s; 3. początowa odległość równa 10m; 4. odchylenie standardowe pomiaru odległości równe 1m; 5. odchylenie standardowe przyśpieszenia (w procesie ruchu) równe 0,01m/s ; 6. pomiary odległości uzysane z głowicy powięszone 10-rotnie dla przyjętego odch. standardowego pomiarów. Na rys. 3 olorem niebiesim oznaczono pomierzone odległości, olorem zielonym odległości estymowane filtrem Kalmana. 51

6 14 Measurement filtration ver x [m] Time [s] Rys. 3. Filtracja pomiaru odległości sensorem laserowym wersja pierwsza. Rzeczywiste pomiary z głowicy laserowej obejmują taże pochodną odległości po czasie - prędość zmiany odległości (v). Modyfiując macierz przejścia A do postaci: A = [1 dt v(t1)/dt; 0 1 dt; 0 0 1] oraz macierz owariancji błędu oszacowania procesu zmiany stanu (odległości) w wyniu ruchu adłuba Q do postaci: Q = accelnoise^ * [dt^4/4 dt^3/ dt^; dt^3/ dt^ 1; 0 0 1] algorytm filtracji będzie wierniejszy rzeczywistości. Rysune 4 przedstawia pracę zbudowanego filtra w środowisu MATLAB dla parametrów: 1. czas symulacji równy 60s;. dt = 1s; 3. początowa odległość równa 10m; 4. odchylenie standardowe pomiaru odległości równe 1m; 5. odchylenie standardowe przyśpieszenia (w procesie ruchu) równe 0,01m/s ; 6. pomiary odległości uzysane z głowicy powięszone 10-rotnie dla przyjętego odch. standardowego pomiarów, 7. pomiary prędości uzysane z wartości aprosymowanych przez głowicę laserową jej algorytmem filtracyjnym. 5

7 Na Rys. 4 olorem niebiesim oznaczono pomierzone odległości, olorem zielonym odległości estymowane filtrem Kalmana. 14 Measurement filtration ver x [m] Time [s] Rys. 4. Filtracja pomiaru odległości sensorem laserowym wersja druga Podsumowanie Przedstawione wersje algorytmu filtracji pomiarów odległości głowicami laserowymi umożliwiają oretę chwilowych błędów pomiarów w różnych wariantach systemów pomiarowych. Wersja pierwsza opiera się wyłącznie na mierzonych odległościach. Wersja druga bierze pod uwagę dodatowo rejestrowane chwilowe prędości. Możliwość fuzji pomiarów różnych parametrów prowadzi do poprawy jaości stosowanego filtru, a tym samym doładności estymowanych pomiarów. LITERATURA [1] Kalman R., A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME, Journal of Basing Engineering, vol. 8, March 1960, pp [] Simons D., Kalman Filtering with State Constraints: A Survey of Linear and Nonlinear Algorithms, Cleveland State University Department of Electrical and Computer Engineering, IET Control Theory & Applications, 009. [3] Welch G., Bishop G., An Introduction to the Kalman Filter, Transactions , Department of Computer Science, University of North Carolina, Chapel Hill, NC ,

8 54

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

(u) y(i) f 1. (u) H(z -1 )

(u) y(i) f 1. (u) H(z -1 ) IDETYFIKACJA MODELI WIEERA METODAMI CZĘSTOTLIWOŚCIOWYMI Opracowanie: Anna Zamora Promotor: dr hab. inż. Jarosław Figwer Prof. Pol. Śl. MODELE WIEERA MODELE WIEERA Modele obietów nieliniowych Modele nierozłączne

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki. Automatyka i Robotyka Systemy Sterowania i Wspomagania Decyzji

Politechnika Gdańska Wydział Elektrotechniki i Automatyki. Automatyka i Robotyka Systemy Sterowania i Wspomagania Decyzji Monitorowanie i Diagnostyka w Systemach Sterowania (MiDwSS) Podstawowe sposoby opisu niepewności, wybrane zagadnienia zastosowania estymacji rekursywnej dla potrzeb monitorowania i diagnostyki w systemach

Bardziej szczegółowo

Detekcja i śledzenie ruchomych obiektów w obrazie

Detekcja i śledzenie ruchomych obiektów w obrazie Detecja i śledzenie ruchomych oietów w orazie Piotr Dala Plan prezentacji Wprowadzenie Metody wyrywania oietów ruchomych Podstawowe metody Modelowanie tła Usuwanie cienia Przetwarzanie morfologiczne Metody

Bardziej szczegółowo

Restauracja a poprawa jakości obrazów

Restauracja a poprawa jakości obrazów Restauracja obrazów Zadaniem metod restauracji obrazu jest taie jego przeształcenie aby zmniejszyć (usunąć) znieształcenia obrazu powstające przy jego rejestracji. Suteczność metod restauracji obrazu zależy

Bardziej szczegółowo

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych.

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych. REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzei z wyorzystaniem sztucznych sieci neuronowych. Godło autora pracy: EwGron. Wprowadzenie. O poziomie cywilizacyjnym raju, obo wielu

Bardziej szczegółowo

Modele zapisane w przestrzeni stanów

Modele zapisane w przestrzeni stanów Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy

Bardziej szczegółowo

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Filtr Kalmana Struktury i Algorytmy Sterowania Wykład 1-2 prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Politechnika Gdańska, Wydział Elektortechniki i Automatyki 2013-10-09, Gdańsk Założenia

Bardziej szczegółowo

Algorytmy estymacji stanu (filtry)

Algorytmy estymacji stanu (filtry) Algorytmy estymacji stanu (filtry) Na podstawie: AIMA ch15, Udacity (S. Thrun) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 kwietnia 2014 Problem lokalizacji Obserwowalność? Determinizm?

Bardziej szczegółowo

Sygnały stochastyczne

Sygnały stochastyczne Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie

Bardziej szczegółowo

ZAJĘCIA II. Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe

ZAJĘCIA II. Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe ZAJĘCIA II Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe Po co statystyka w identyfikacji? Zmienne losowe i ich parametry Korelacja zmiennych losowych Rozkłady wielowymiarowe i sygnały stochastyczne

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Dr inż. Paweł Fotowicz. Procedura obliczania niepewności pomiaru

Dr inż. Paweł Fotowicz. Procedura obliczania niepewności pomiaru Dr inż. Paweł Fotowicz Procedura obliczania niepewności pomiaru Przewodnik GUM WWWWWWWWWWWWWWW WYRAŻANIE NIEPEWNOŚCI POMIARU PRZEWODNIK BIPM IEC IFCC ISO IUPAC IUPAP OIML Międzynarodowe Biuro Miar Międzynarodowa

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Seweryn MAZURKIEWICZ* Janusz WALCZAK* ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU W artykule rozpatrzono problem

Bardziej szczegółowo

Wpływ częstotliwości taktowania układu FPGA na dokładność estymacji prędkości silnika prądu stałego

Wpływ częstotliwości taktowania układu FPGA na dokładność estymacji prędkości silnika prądu stałego Tomasz BINKOWSKI Politechnika Rzeszowska, Polska Bogdan KWIATKOWSKI Uniwersytet Rzeszowski, Polska Wpływ częstotliwości taktowania układu FPGA na dokładność estymacji prędkości silnika prądu stałego Wstęp

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonometryczne modele nieliniowe Wykład 10 Modele przełącznikowe Markowa Literatura P.H.Franses, D. van Dijk (2000) Non-linear time series models in empirical finance, Cambridge University Press. R. Breuning,

Bardziej szczegółowo

Obserwatory stanu, zasada separowalności i regulator LQG

Obserwatory stanu, zasada separowalności i regulator LQG Obserwatory stanu, zasada separowalności i regulator LQG Zaawansowane Techniki Sterowania Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber ZTS (IAiR PW) LQR Anna Sztyber / 29 Plan wykładu Obserwatory

Bardziej szczegółowo

Ćwiczenie nr 1: Wahadło fizyczne

Ćwiczenie nr 1: Wahadło fizyczne Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel

Bardziej szczegółowo

ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU

ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU Mirosław Tomera Aademia Morsa w Gdyni Wydział Eletryczny Katedra Automatyi Orętowej ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU W pracy przedstawiona została implementacja sieci neuronowej

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Rozdział Metoda największej wiarygodności Ogólnie w procesie estymacji na podstawie prób x i (każde x i może być wektorem) wyznaczamy parametr λ (w ogólnym przypadku również wektor) opisujący domniemany

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11 Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Dokumentacja. Kalibracja parametrów modelu Hestona za rozszerzonego filtra Kalmana. Mikołaj Bińkowski Wiktor Gromniak

Dokumentacja. Kalibracja parametrów modelu Hestona za rozszerzonego filtra Kalmana. Mikołaj Bińkowski Wiktor Gromniak Dokumentacja Kalibracja parametrów modelu Hestona za pomoca rozszerzonego filtra Kalmana Mikołaj Bińkowski Wiktor Gromniak Spis treści 1 Wstęp 2 2 Struktura katalogów 2 3 Zależności 2 4 Funkcje 3 4.1 heston_calibr_kalman..........................

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 5 - Identyfikacja Instytut Automatyki i Robotyki (IAiR), Politechnika Warszawska Warszawa, 2015 Koncepcje estymacji modelu Standardowe drogi poszukiwania modeli parametrycznych M1: Analityczne określenie

Bardziej szczegółowo

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19) 256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia

Bardziej szczegółowo

POZYCYJNE STEROWANIE RUCHEM STATKU Z RÓŻNYMI TYPAMI OBSERWATORÓW. BADANIA SYMULACYJNE

POZYCYJNE STEROWANIE RUCHEM STATKU Z RÓŻNYMI TYPAMI OBSERWATORÓW. BADANIA SYMULACYJNE Mirosław omera Aademia Morsa w Gdyni POZYCYJNE SEROWANIE RUCHEM SAKU Z RÓŻNYMI YPAMI OBSERWAORÓW. BADANIA SYMULACYJNE W pracy przedstawiono wynii badań symulacyjnych uładu sterowania wielowymiarowego ruchem

Bardziej szczegółowo

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO ELEKTRYKA 2012 Zeszyt 3-4 (223-224) Ro LVIII Piotr KOZIERSKI Instytut Automatyi i Inżynierii Informatycznej, Politechnia Poznańsa Marcin LIS Instytut Eletrotechnii i Eletronii Przemysłowej, Politechnia

Bardziej szczegółowo

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji. emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę

Bardziej szczegółowo

ESTYMACJA PARAMETRÓW TERMOFIZYCZNYCH CIAŁ IZOTROPOWYCH ZA POMOCĄ METODY FILTRACJI DYNAMICZNEJ ORAZ PRZEDZIAŁOWEGO UŚREDNIANIA WYNIKÓW POMIARÓW

ESTYMACJA PARAMETRÓW TERMOFIZYCZNYCH CIAŁ IZOTROPOWYCH ZA POMOCĄ METODY FILTRACJI DYNAMICZNEJ ORAZ PRZEDZIAŁOWEGO UŚREDNIANIA WYNIKÓW POMIARÓW MODELOWANIE INśYNIERSKIE ISSN 896-77X 34, s. 73-78, Gliwice 007 ESTYMACJA PARAMETRÓW TERMOFIZYCZNYCH CIAŁ IZOTROPOWYCH ZA POMOCĄ METODY FILTRACJI DYNAMICZNEJ ORAZ PRZEDZIAŁOWEGO UŚREDNIANIA WYNIKÓW POMIARÓW

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

5. WNIOSKOWANIE PSYCHOMETRYCZNE

5. WNIOSKOWANIE PSYCHOMETRYCZNE 5. WNIOSKOWANIE PSYCHOMETRYCZNE Model klasyczny Gulliksena Wynik otrzymany i prawdziwy Błąd pomiaru Rzetelność pomiaru testem Standardowy błąd pomiaru Błąd estymacji wyniku prawdziwego Teoria Odpowiadania

Bardziej szczegółowo

FILTRACJA KALMANA W TECHNICE NA PRZYKŁADZIE URZĄDZENIA SST

FILTRACJA KALMANA W TECHNICE NA PRZYKŁADZIE URZĄDZENIA SST Zeszyty Nauowe WSInf Vol 12, Nr 1, 2013 Mirosław Zając Politechnia Łódza, Instytut mechatronii i Systemów Informatycznych ul. Stefanowsiego 18/22, 90-924 Łódź email: mire21.mire21@wp.pl FILRACJA KALMANA

Bardziej szczegółowo

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej P. OTOMAŃSKI Politechnika Poznańska P. ZAZULA Okręgowy Urząd Miar w Poznaniu Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej Seminarium SMART GRID 08 marca

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia

Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia SIWOŃ Cezary 1 Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia WSTĘP Utrzymanie stałej częstotliwości napięcia w sieci energetycznej jest jednym z najważniejszych

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Badanie stacjonarności szeregów czasowych w programie GRETL

Badanie stacjonarności szeregów czasowych w programie GRETL Badanie stacjonarności szeregów czasowych w programie GRETL Program proponuje następujące rodzaje testów stacjonarności zmiennych:. Funcję autoorelacji i autoorelacji cząstowej 2. Test Diceya-Fullera na

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio

Bardziej szczegółowo

3 MODELE PROCESÓW STOCHASTYCZNYCH 3

3 MODELE PROCESÓW STOCHASTYCZNYCH 3 3 MODELE PROCESÓW STOCHASTYCZNYCH 3 3.1. Wprowadzenie Prawdopodobieństwo i procesy stochastyczne służą do opisu i reprezentacji niepewności lub niejednoznaczności. Podejście probabilistyczne nie jest w

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Stosowane metody wykrywania nieszczelności w sieciach gazowych

Stosowane metody wykrywania nieszczelności w sieciach gazowych Stosowane metody wykrywania nieszczelności w sieciach gazowych Andrzej Osiadacz, Łukasz Kotyński Zakład Systemów Ciepłowniczych i Gazowniczych Wydział Inżynierii Środowiska Politechniki Warszawskiej Międzyzdroje,

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Estymacja wektora stanu w prostym układzie elektroenergetycznym

Estymacja wektora stanu w prostym układzie elektroenergetycznym Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun

Bardziej szczegółowo

PORÓWNANIE METOD ESTYMACJI ZMIENNYCH STANU W UKŁADZIE KASKADOWYM DWÓCH ZBIORNIKÓW

PORÓWNANIE METOD ESTYMACJI ZMIENNYCH STANU W UKŁADZIE KASKADOWYM DWÓCH ZBIORNIKÓW Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 3 XXII Seminarium ZASOSOWANIE KOMPUERÓW W NAUCE I ECHNICE 1 Oddział Gdański PEiS Referat nr 9 PORÓWNANIE MEOD ESYMACJI ZMIENNYCH

Bardziej szczegółowo

Filtr Kalmana - zastosowania w prostych układach sensorycznych.

Filtr Kalmana - zastosowania w prostych układach sensorycznych. Filtr Kalmana - zastosowania w prostych układach sensorycznych. Jan Kędzierski Koło Naukowe Robotyków KoNaR. www.konar.pwr.wroc.pl 9 października 2007 Spis treści 1 Wstęp 2 2 Własności KF 2 3 Statystyka

Bardziej szczegółowo

Wyznaczanie orientacji obiektu w przestrzeni z wykorzystaniem naiwnego filtru Kalmana

Wyznaczanie orientacji obiektu w przestrzeni z wykorzystaniem naiwnego filtru Kalmana Robert BIEDA, Rafał RYIEL Politechnia Śląsa w liwicach Wyznaczanie orientacji obietu w przestrzeni z wyorzystaniem naiwnego filtru Kalmana Streszczenie. W pracy zaprezentowano sposób estymacji orientacji

Bardziej szczegółowo

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka

Bardziej szczegółowo

Estymacja parametrów Wybrane zagadnienia implementacji i wykorzystania

Estymacja parametrów Wybrane zagadnienia implementacji i wykorzystania Estymacja parametrów Wybrane zagadnienia implementacji i wykorzystania Wykład w ramach przedmiotu Komputerowe systemy sterowania i wspomagania decyzji Plan wykładu Potrzeba estymacji parametrów Estymacja

Bardziej szczegółowo

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Analiza składników podstawowych - wprowadzenie (Principal Components Analysis

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

1 Klasyfikator bayesowski

1 Klasyfikator bayesowski Klasyfikator bayesowski Załóżmy, że dane są prawdopodobieństwa przynależności do klasp( ),P( 2 ),...,P( L ) przykładów z pewnego zadania klasyfikacji, jak również gęstości rozkładów prawdopodobieństw wystąpienia

Bardziej szczegółowo

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y

Bardziej szczegółowo

ALHE Z11 Jarosław Arabas wykład 11

ALHE Z11 Jarosław Arabas wykład 11 ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement

Bardziej szczegółowo

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Dynamiczne modele liniowe w badaniach okresowych

Dynamiczne modele liniowe w badaniach okresowych Dynamiczne modele liniowe w badaniach okresowych Katedra Statystyki UE w Poznaniu O czym będzie mowa? badamy zmienność pewnego parametru w czasie w pewnej populacji co pewien okres losujemy próbę na podstawie

Bardziej szczegółowo

Wykorzystanie symetrii przy pomiarze rozkładu kąta rozproszenia w procesie pp pp

Wykorzystanie symetrii przy pomiarze rozkładu kąta rozproszenia w procesie pp pp Wykorzystanie symetrii przy pomiarze rozkładu kąta rozproszenia w procesie pp pp M. Barej 1 K. Wójcik 2 1 Akademia Górniczo-Hutnicza w Krakowie 2 Uniwersytet Śląski w Katowicach 16 września 2016 M. Barej,

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Filtr Kalmana. Zaawansowane Techniki Sterowania. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber

Filtr Kalmana. Zaawansowane Techniki Sterowania. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber Filtr Kalmana Zaawansowane Techniki Sterowania Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber ZTS (IAiR PW) Filtr Kalmana Anna Sztyber 1 / 32 Plan wykładu 1 Sformułowanie problemu 2 Niestacjonarny

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

4. Weryfikacja modelu

4. Weryfikacja modelu 4. Weryfiacja modelu Wyznaczenie wetora parametrów struturalnych uładu ończy etap estymacji. Kolejnym etapem jest etap weryfiacji modelu. Przeprowadza się ją w dwóch ujęciach: merytorycznym i statystycznym.

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K. TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności

Bardziej szczegółowo

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne

Bardziej szczegółowo

Symulacyjne badanie wpływu systemu PNDS na bezpieczeństwo i efektywność manewrów

Symulacyjne badanie wpływu systemu PNDS na bezpieczeństwo i efektywność manewrów dr inż. st. of. pokł. Stefan Jankowski Symulacyjne badanie wpływu systemu PNDS na bezpieczeństwo i efektywność manewrów słowa kluczowe: systemy pilotowe, systemy dokingowe, dokładność pozycjonowania, prezentacja

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 3

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 3 Zestaw 3 Zadanie. 1. Dla zmiennej losowej o rozkładzie normalnym N (100; 10) obliczyć: a) P(X

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016 Aplikacje Systemów Wbudowanych Nawigacja inercyjna Gdańsk, 2016 Klasyfikacja systemów inercyjnych 2 Nawigacja inercyjna Podstawowymi blokami, wchodzącymi w skład systemów nawigacji inercyjnej (INS ang.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10 Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Nr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej

Nr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej Politechnia Poznańsa Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 2 Badania symulacyjne napędów obrabiare sterowanych numerycznie Opracował: Dr inż. Wojciech Ptaszyńsi Poznań, 3 stycznia

Bardziej szczegółowo

Zmienność wiatru w okresie wieloletnim

Zmienność wiatru w okresie wieloletnim Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa 5.02.2015 Zmienność wiatru w okresie wieloletnim Dr Marcin Zientara DCAD / Stermedia Sp. z o.o. Zmienność wiatru w różnych skalach

Bardziej szczegółowo

Jądrowe klasyfikatory liniowe

Jądrowe klasyfikatory liniowe Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie

Bardziej szczegółowo

Kaskadowy sposób obliczania niepewności pomiaru

Kaskadowy sposób obliczania niepewności pomiaru Kaskadowy sposób obliczania niepewności pomiaru Pomiary Automatyka Robotyka 5/2004 Paweł Fotowicz Zaproponowane postępowanie pozwala na wykonywanie szybkich obliczeń niepewności, przy użyciu arkusza kalkulacyjnego.

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo