Jacek Kwiatkowski Uniwersytet Mikołaja Kopernika w Toruniu. Bayesowskie testowanie procesów STUR analiza indeksów i spółek notowanych na GPW 1
|
|
- Natalia Komorowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 DYNAICZNE ODELE EKONOERYCZNE IX Ogólnoolskie Seminarium Naukowe, 6 8 września 005 w oruniu Katedra Ekonometrii i Statystyki, Uniwersytet ikołaja Koernika w oruniu Uniwersytet ikołaja Koernika w oruniu Bayesowskie testowanie rocesów SUR analiza indeksów i sółek notowanych na GPW. Wstę Przerowadzone w ostatnim czasie badania emiryczne dotyczące rocesów makroekonomicznych i finansowych wskazują, że rocesy te mogą osiadać losowy ierwiastek jednostkowy. Procesy te określane mianem rocesów ze stochastycznym ierwiastkiem jednostkowym (SUR) ze względu na wystęujący w nich losowy arametr są częściowo stacjonarne lub niestacjonarne. Celem rezentowanego artykułu jest rzedstawienie w oarciu o wnioskowanie bayesowskie wyników badań dotyczących identyfikacji rocesów ze stochastycznym ierwiastkiem jednostkowym dla wybranych sółek i indeksów giełdowych notowanych na GPW w Warszawie. Na gruncie klasycznym, wyniki dotyczące identyfikacji modeli SUR zamieścili w swoich racach m.in. Leybourne, ccabe i remayne (996), Granger i Swanson (997), Sollis, Leybourne i Newbold (000), Kwiatkowski i Osińska (004), Kwiatkowski (004). W zakresie wnioskowania bayesowskiego badania emiryczne rzerowadzili Jones i arriott (999). Szerszy ois bayesowskiej analizy rocesów (SUR) można znaleźć w artykule Kwiatkowskiego (005). Jako wcześniejsza racę z tego zakresu należy wymienić artykuł Jonesa i arriotta (999), w którym rzedstawiono bayesowską estymację modelu SUR w wersji Grangera i Swansona (997). Praca zrealizowana w ramach rojektu badawczego nr H0B 05 5; jkwiat@uni.torun.l
2 W rezentowanym artykule roonuje się natomiast wykorzystanie modelu SUR w wersji Leybourne, ccabe i remayne (996), która zdaniem autora jest łatwiejsza w stosowaniu i znacznie mniej wymagająca od strony numerycznej. Układ artykułu jest nastęujący. Część druga rzedstawia model ze stochastycznym ierwiastkiem jednostkowym oraz związane z nim wnioskowanie bayesowskie. Część trzecia zawiera badania emiryczne rzerowadzone dla wybranych sółek i indeksów giełdowych notowanych na GPW w Warszawie. W części czwartej zamieszczone są wnioski.. odel i wnioskowanie bayesowskie. Rozważaną rerezentację modelu SUR (stochastic unit roots rocess) można rzedstawić nastęująco: y = β y + ε, t t t t t = α + φ βt α φ βt ( ) ( α) t β + η, () gdzie y t oznacza realizację rocesu w chwili t. Losowy arametr β t jest stacjonarnym rocesem autoregresyjnym. Procesy ε t i η t są białymi szumami odowiednio z wariancjami σ i ω. Dodatkowo zakłada się, że są wzajemnie niezależne. Jeżeli y t jest rocesem błądzenia rzyadkowego to wariancja białego szumu ω równa jest zero. Dodatkowo bezwarunkowa wariancja w równaniu () ma zdegenerowany rozkład w zerze. Dla ω > 0 () jest rocesem ze stochastycznym ierwiastkiem jednostkowym. Parametr w tym modelu zmienia się w czasie wokół jedynki, zatem jest to roces, który jest częściowo stacjonarny lub niestacjonarny. Przyjmując, że arametr β t jest rocesem autoregresyjnym rzędu drugiego oraz zakładając, że rozkład obserwacji i nieobserwowanego arametru w modelu SUR jest warunkowym rozkładem normalnym możemy zaisać: y t y ( β y ) t βt, σ ~ N t t,, σ, dla t + ( ) β t βt, βt, α, φ, φ, ω ~ N α φi βt i α, ω. () i= W szczególnych rzyadkach, w których stochastyczny ierwiastek jednostkowy jest rocesem autoregresyjnym rzędu ierwszego lub białym szumem wystarczy założyć w (), że odowiednie wsółczynniki autoregresji
3 Bayesowskie testowanie rocesów SUR... 3 są równe zero tj. φ i = 0, i =,. W oarciu o wymienione wyżej założenia gęstość róbkową w modelu SUR można rzedstawić nastęująco: ( y y ) 0,, θ = N α + φi ( βt i α), ω N ( βt yt, σ ) β, (3) t= i= t= gdzie θ = ( α, φ, φ, ω, σ )', α R, Φ = ( φ, φ )' C, ω R+, σ R+, β = ( β, β,..., β )' R ; - oznacza liczbę obserwacji, natomiast C - jest obszarem zmienności arametrów, rzy których roces autoregresyjny w modelu () jest stacjonarny. Jeżeli rzyjmiemy założenie o niezależności arametrów w modelu SUR, to rozkład a riori wektora θ jest iloczynem gęstości brzegowych rozkładów jego składowych: ( θ) ( α) ( φ ) ( φ ) ( ω ) ( ) =. (4) σ Dla wszystkich arametrów rzyjęto standardowe rozkłady właściwe: ( ) ( α = N µ α, σα ), ( ) (, φ = N µ φ σ ) φ, ( φ ) ( ) N µ, φ σ φ ( ω ) = IG( a,b ), ( ) = IG( a,b ) gdzie ( µ,σ ) =, σ, (5) N oznacza rozkład normalny o średniej µ i wariancji σ, natomiast IG ( a, b) oznacza odwrócony rozkład gamma z arametrami a > 0, b > 0. Ze względu na fakt, że arametr β t jest częścią modelu, można założyć, że wszystkie zawarte o nim informacje znajdują się w funkcji wiarygodności (Jones i arriott, 999; Jostova i Philiov, 004). Stąd łączny rozkład a osteriori wektora θ będący iloczynem rozkładu a riori (5) i róbkowej gęstości (3) ma ostać: ( β, θ y, y ) N( µ, σ ) N( µ, σ ) N( µ, σ ) IG( a, b ) IG( a b ) 0 α α φ, φ φ φ N α + φ. (6) ( βt i α), ω N( βt yt, σ ) i t= i= t= W celu otrzymania brzegowych rozkładów a osteriori można zastosować algorytm Gibbsa, który jest jedną z bardziej oularnych metod stosowanych we wnioskowaniu bayesowskim do wyznaczenia róbkowych gęstości Rozkłady rezentowane w artykule można znaleźć m.in. w książce Gelmana, Carlina, Sterna i Rubina (995).
4 4 brzegowych i ich charakterystyk. Poszczególne rozkłady brzegowe wykorzystywane rzy algorytmie Gibbsa dla składowych wektora θ oraz dla losowego arametru β t znajdują się w racy Kwiatkowskiego (005). Jednym z fundamentalnych zagadnień w analizie szeregów czasowych jest wybór odowiedniego modelu. Dla modelu SUR w ostaci () możemy badać rząd autoregresji dla losowego arametru β t. Dodatkowo można weryfikować czy analizowany roces ma stały, czy też zmienny w czasie ierwiastek jednostkowy. estowanie modeli odbywa się rzez orównanie ich mocy wyjaśniającej. Przyjmując założenie, że dwa modele ( i i j ) są a riori jednakowo rawdoodobne orównanie mocy wyjaśniającej można dokonać za omocą czynnika Bayesa, który dany jest wzorem: ( z i ) ( z ) B ij =, (7) j gdzie ( z k ) ( k i, j) modelu. Czynnik Bayesa większy od jedynki ( >) k = oznacza brzegową gęstość wektora obserwacji w B oznacza, że model i jest bardziej rawdoodobny niż model j. Jednym z odstawowych zagadnień we wnioskowaniu bayesowskim jest obliczenie brzegowej gęstości wektora obserwacji: ( z k ) ( Θk k ) ( z Θk k ) dθk =,, (8) =. Niestety ze względu na złożoność zagadnień bardzo rzadko daje się ją obliczyć analitycznie. W rzyadku modeli SUR, gdzie wykorzystywany jest algorytm Gibbsa, który jest częścią metod numerycznych określanych jako metody onte Carlo wykorzystujące łańcuchy arkowa 3, naturalnym narzędziem do estymacji brzegowej gęstości jest średnia harmoniczna dana wzorem (Newton i Raftery, 994): gdzie konkurujące modele rerezentuje zbiór {,,... } N ( n) ( z k ) = ( z Θ k k ) N n=,, (9) ( n) gdzie Θ k są realizacjami z łańcucha arkowa, natomiast z oznacza wektor obserwacji. Estymator ten (N-R) jest łatwy w użyciu. Wymagana jest tylko ij 3 arkow Chain onte Carlo methods (CC).
5 znajomość róbkowej gętości ( y, ) Bayesowskie testowanie rocesów SUR... 5 Θ oraz realizacji z rozkładu a k k osteriori. Główną wadą tego estymatora jest jego niestabilność, onieważ nie sełnia on centralnego twierdzenia granicznego (Carlin i Louis, 000). Z raktycznego unktu widzenia dzieje się tak, onieważ bardzo małe wartości funkcji wiarygodności w znaczny sosób wywierają wływają na wielkość średniej harmonicznej. Okazuje się jednak, że dla wielu alikacji, algorytm N-R jest stabilny, blisko rawdziwej wartości brzegowej gęstości i z owodzeniem może być stosowany dla wielu zastosowań (Osiewalski i Piień, 004).. Identyfikacja SUR na GPW. Bayesowskie testowanie modeli rzerowadzono dla wybranych indeksów i sółek notowanych na GPW w Warszawie w okresie od stycznia 000 do końca kwietnia 005. W artykule dokonano analizy szeregów tygodniowych, o urzednim ich zlogarytmowaniu. Badaniu odlegały główne indeksy: WIG, WIG0, IDWIG i ECHWIG oraz sółki. Ich szczegółowy wykaz znajduje się w tablicy. Dla każdego rocesu rozważono cztery konkurencyjne i wzajemnie wykluczające się modele. Rozważano możliwość istnienia rocesu ze stałym ierwiastkiem jednostkowym, czyli weryfikowano hiotezę, że badane rocesy odlegają błądzeniu rzyadkowemu (model ). Dodatkowo rozważono trzy rerezentacje rocesu SUR. Analizowano czy zmienny ierwiastek jednostkowy może być oisany rzez roces biało-szumowy (model ; SUR;WN), roces autoregresyjny rzędu ierwszego (model 3 ; SUR; AR()) lub drugiego (model 4 ; SUR; AR()). Poszczególne modele mają zatem nastęującą ostać: : y t = ε t, : y t = β t yt + ε t, β = α +, t η t 3 : y t = β t yt + ε t, β t = α + φ ( βt α) + ηt, 4 : y t = β t yt + ε t, β t = α + φ ( βt α) + φ( βt α) + ηt. estowanie modeli odbywało się orzez obliczenie brzegowej gęstości wektora obserwacji za omocą estymatora Newtona i Raftery ego (994).
6 6 B RWj abela. Logarytm dziesiętny czynników Bayesa ( ) log obliczony względem modelu błądzenia rzyadkowego dla wybranych indeksów i sółek. 0 Badane rocesy Błądzenie rzyadkowe SUR;WN SUR; AR() 3 SUR; AR() 4 WIG 0,000 95,75 97,500 98,596 WIG0 0,000 55,668 56,7 58,65 IDWIG 0,000 95,434 95,300 98,837 ECHWIG 0,000,697,565 7,30 APAOR 0,000,7 0,93 0,50 BRE 0,000 8,44 8,80 0,659 BZWBK 0,000 8,55 9,867,538 DEBICA 0,000 6,37 5,365 3,4 HANDLOWY 0,000 35,4 3,703 33,766 IESZKO 0,000 -,098 -,894 -,36 ILLENNIU 0,000-3,047-3,00 -,890 OPIUS 0,000 -,658 -,039-9,573 PROCHNIK 0,000,6,6,65 PSA 0,000 9,46 8,569 9,759 WAWEL 0,000 3,54 4,587 5,796 Źródło: Obliczenia własne.
7 Bayesowskie testowanie rocesów SUR... 7 Gęstość brzegowa dla każdego modelu była obliczona w oarciu o łańcuch arkowa, który składał się z miliona iteracji. oc wyjaśniającą dla oszczególnych modeli orównywano za omocą czynnika Bayesa (7). W celu estymacji i testowania modeli rzyjęto rozkład a riori, który wyraża stosunkowo niewielką informację wstęną o arametrach: ( θ ) = ( α ) ( φ ) ( φ ) ( ω ) ( σ ) = N ( 0,0) N( 0,0) N( 0,0) IG( 0,0, 0,0) IG( 0,0, 0,0) = Ze względu na duże roziętości otrzymanych wartości, wyniki logarytmowano. Zlogarytmowane czynniki Bayesa dla oszczególnych modeli obliczone względem modelu błądzenia rzyadkowego rzedstawia tabela. Pogrubioną czcionką zaznaczono modele, które są najbardziej rawdoodobne. W rzyadkach na 5 najbardziej rawdoodobny okazał się model błądzenia rzyadkowego. Jest to model ze stałym ierwiastkiem jednostkowym. Wszystkie analizowane indeksy są rocesami zintegrowanymi rzędu ierwszego. Wśród analizowanych sółek najbardziej referowany jest również roces błądzenia rzyadkowego. ylko trzy sółki to rocesy tyu SUR, czyli ze zmiennym ierwiastkiem jednostkowym. Są to ieszko, illennium i Otimus. W większości rzyadków losowy arametr w rocesach SUR nie wykazuje autokorelacji, czyli jest białym szumem. 3. Wnioski W artykule rzedstawiono modele ze stochastycznym ierwiastkiem jednostkowym SUR. Dodatkowo omówiono bayesowskie testowanie tych modeli. Badania identyfikacji rocesów SUR dotyczyły wybranych sółek i indeksów giełdowych notowanych na GPW w Warszawie. W oarciu o wyniki rzerowadzonych badań można stwierdzić, że większość analizowanych indeksów i sółek wykazuje stały ierwiastek jednostkowy. ylko kilka z nich, mianowicie ieszko, illennium i Otimus to rocesy SUR. Literatura Box, G.E.P., Jenkins, G.. (976), ime Series Analysis: Forecasting and Control, San Francisco, Holden-Day. Carlin, B.P., Louis,.A. (000), Bayes and Emirical Bayes ethods for Data Analysis, New York, Chaman & Hall/CRC. Gelman, A., Carlin J., Stern, H., Rubin, D. (997), Bayesian Data Analysis, London, Chaman & Hall.
8 8 Granger, C.W.J., Swanson, N.R. (997), An Introduction to Stochastic Unit root Process, Journal of Econometrics, vol. 80, s Jones, C.R., arriott, J.. (999), A Bayesian analysis of stochastic unit root models, Bayesian Statistics, vol. 6, s Jostova, G., Philiov, A. (004), Bayesian analysis of stochastic betas, Journal of Financial and Quantitative Analysis, w druku. Newton,.A., Raftery, A.E. (994), Aroximate Bayesian inference by the weighted likelihood bootstra (with discussion), Journal of the Royal Statistical Society B, vol. 56, s Kwiatkowski, J. (004), aximum likelihood estimation of stochastic unit root models with GARCH disturbances, raca nieublikowana. Kwiatkowski, J. (005), A Bayesian analysis of SUR models, raca nieublikowana. Kwiatkowski, J., Osińska,. (004), Forecasting SUR rocesses. A comarison to threshold and GARCH models, raca nieublikowana. Leybourne, S.J., ccabe, B.P.., ills,.c. (996), Randomized unit root rocesses for modelling and forecasting financial time series: theory and alications, Journal of Forecasting, vol. 5, s Leybourne, S.J., ccabe, B.P.., remayne, A.R (996), Can economic time series be differenced to stationarity? Journal of Business and Economic Statistics, vol. 4, s Osiewalski, J., Piień,. (004), Bayesian comarison of bivariate ARCH-tye models for main exchange rates in Poland, Journal of Econometrics, vol. 3, s Sollis, R., Leybourne, S.J., Newbold, P. (000), Stochastic unit roots modelling of stock rice indices, Alied Financial Economics, vol. 0, s
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAICZNE ODELE EKONOERYCZNE IX Ogólnoolsie Seminarium Nauowe, 6 8 września 005 w oruniu Katedra Eonometrii i Statystyi, Uniwersytet iołaja Koernia w oruniu Jace Kwiatowsi Uniwersytet iołaja Koernia w
WYBRANE MODELE ZAWIERAJĄCE STOCHASTYCZNY PIERWIASTEK JEDNOSTKOWY W ANALIZIE KURSÓW WALUTOWYCH 1 1. WSTĘP
PRZEGLĄD STATYSTYCZNY R. LVIII ZESZYT 3-4 0 JACEK KWIATKOWSKI WYBRANE MODELE ZAWIERAJĄCE STOCHASTYCZNY PIERWIASTEK JEDNOSTKOWY W ANALIZIE KURSÓW WALUTOWYCH. WSTĘP Granger i Swanson [5] wykazali że finansowe
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnoolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Koernika w Toruniu Wyższa Szkoła Informatyki i Ekonomii
REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój
1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie procesów finansowych z długą pamięcią w średniej i wariancji
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Piotr Fiszeder Uniwersytet Mikołaja
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
( n) Łańcuchy Markowa X 0, X 1,...
Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}
Dynamiczne stochastyczne modele równowagi ogólnej
Dynamiczne stochastyczne modele równowagi ogólnej mgr Anna Sulima Instytut Matematyki UJ 8 maja 2012 mgr Anna Sulima (Instytut Matematyki UJ) Dynamiczne stochastyczne modele równowagi ogólnej 8 maja 2012
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
Modele zapisane w przestrzeni stanów
Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja
WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ
Anna Janiga-Ćmiel WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Wrowadzenie W rozwoju każdego zjawiska niezależnie od tego, jak rozwój ten jest ukształtowany rzez trend i wahania, można wyznaczyć
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Uniwersytet Ekonomiczny w Krakowie Katedra Ekonometrii i Badań Operacyjnych
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)
Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Podstawowe modele probabilistyczne
Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje
STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Laboratorium Metod i Algorytmów Sterowania Cyfrowego
Laboratorium Metod i Algorytmów Sterowania Cyfrowego Ćwiczenie 3 Dobór nastaw cyfrowych regulatorów rzemysłowych PID I. Cel ćwiczenia 1. Poznanie zasad doboru nastaw cyfrowych regulatorów rzemysłowych..
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg
Dynamiczne modele liniowe w badaniach okresowych
Dynamiczne modele liniowe w badaniach okresowych Katedra Statystyki UE w Poznaniu O czym będzie mowa? badamy zmienność pewnego parametru w czasie w pewnej populacji co pewien okres losujemy próbę na podstawie
... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...
4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem
MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek
Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
1 WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
1 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy):
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA *
ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Joanna Górka WŁASNOŚCI PROGNOSTYCZNE
Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11
Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)
2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info
Analiza zdarzeń Event studies
Analiza zdarzeń Event studies Dobromił Serwa akson.sgh.waw.pl/~dserwa/ef.htm Leratura Campbell J., Lo A., MacKinlay A.C.(997) he Econometrics of Financial Markets. Princeton Universy Press, Rozdział 4.
Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16
Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR NNN FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR FF 2013
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR NNN FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR FF 2013 Ryszard Węgrzyn Zastosowanie wybranych modeli zmienności w analizie ryzyka cen akcji Słowa kluczowe:...
Sprawy organizacyjne
Sprawy organizacyjne forma zajęć warunki uczestnictwa warunki zaliczenia Modelowanie Rynków Finansowych 1 Hipoteza Random Walk na wschodzących rynkach Europejskich Graham Smith, Hyun-Jung Ryoo (2003) Variance
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Rachunek Prawdopodobieństwa Anna Janicka
Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej
Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym
Stopę zbieżności ciagu zmiennych losowych a n, takiego, że E (a n ) < oznaczamy jako a n = o p (1) prawdopodobieństwa szybciej niż n α.
Stopy zbieżności Stopę zbieżności ciagu zmiennych losowych a n, takiego, że a n oznaczamy jako a n = o p (1 p 0 a Jeśli n p n α 0, to a n = o p (n α i mówimy a n zbiega według prawdopodobieństwa szybciej
O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE
Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru
Egzamin / zaliczenie na ocenę*
Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1
Ekonometria dynamiczna i finansowa Kod przedmiotu
Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:
Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH
Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (dodatek 3) Modele MGARCH 1 / 11 Ogólna specykacja modelu MGARCH Ogólna posta dla N-wymiarowego procesu
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Metoda Johansena objaśnienia i przykłady
Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian
Metody probabilistyczne
Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,
Janusz Górczyński. Prognozowanie i symulacje w zadaniach
Wykłady ze statystyki i ekonometrii Janusz Górczyński Prognozowanie i symulacje w zadaniach Wyższa Szkoła Zarządzania i Marketingu Sochaczew 2009 Publikacja ta jest czwartą ozycją w serii wydawniczej Wykłady
Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10
Metoda Monte Carlo Jerzy Mycielski grudzien 2012 Jerzy Mycielski () Metoda Monte Carlo grudzien 2012 1 / 10 Przybliżanie całek Powiedzmy, że mamy do policzenia następującą całkę: b f (x) dx = I a Założmy,
strona 1 / 5 Specjalizacja: B4. Analiza kointegracyjna Publikacje:
Specjalizacja: B4. Analiza kointegracyjna Publikacje: 1. Autorzy: Grabowski Wojciech; Welfe Aleksander Tytuł: Global Stability of Dynamic Models Strony: 782-784 - Teoria ekonometrii (B1. Makroekonometria)
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Algorytmy MCMC i ich zastosowania statystyczne
Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 1 1 Co to jest MCMC? 2
Karolina Napierała Wojciech Otto
Kalkulaca rezerw w ubezieczeniach maątkowych w oarciu o teorię zaufania, z równoczesnym r wykorzystaniem danych o odszkodowaniach wyłaconych i rezerwie liczone metodą indywidualną Karolina Naierała Wociech
Własności estymatorów regresji porządkowej z karą LASSO
Własności estymatorów regresji porządkowej z karą LASSO Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Warszawski Badania sfinansowane ze środków Narodowego Centrum Nauki przyznanych w ramach finansowania
Metody Ekonometryczne
Metody Ekonometryczne Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 4 Uogólniona Metoda Najmniejszych Kwadratów (GLS) 1 / 19 Outline 1 2 3 Jakub Mućk Metody Ekonometyczne
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
Testy pierwiastka jednostkowego
2 listopada 2017 Proces generujący ceny Wnioski Słaba efektywność rynkowa i błądzenie przypadkowe Załóżmy, że rynek jest słabo efektywny Logarytmicznej stopy zwrotu ( p t = ln ( Pt P t 1 )) w czasie t
Fuzja sygnałów i filtry bayesowskie
Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna
Metoda najmniejszych kwadratów
Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: STATYSTYKA W MODELACH NIEZAWODNOŚCI I ANALIZIE PRZEŻYCIA Nazwa w języku angielskim: STATISTICS IN RELIABILITY MODELS AND
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Statystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA DANYCH ANKIETOWYCH Nazwa w języku angielskim: Categorical Data Analysis Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Specjalność
0.1 Modele Dynamiczne
0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od